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The properties of a Fermi system with an interaction in the case of pairs of nonzero angular 
momentum are investigated. A decoupling of the three-particle Green's function is proposed 
which allows one to obtain solutions both with an isotropic and an anisotropic gap. It is shown 
that the solution with an anisotropic gap is asymptotically exact. A discussion is given of the 
difficulties arising in obtaining a basis for solutions with an isotropic gap. 

1. INTRODUCTION 

THE problem of pairings with nonzero angular 
momentum in a Fermi system has been repeatedly 
discussed recently [1- 10] in connection with the 
problem of the superfluidity of He3• The author 
has shown [U] that production of Cooper pairs in 
the triplet state with a total component of spin 
equal to zero is possible in antiferromagnetic 
substances as a result of the interaction between 
conduction electrons induced by spin waves. Pos
sibly such a mechanism is responsible for the oc
currence of superconductivity in ruthenium and 
osmium, for which no isotopic effect has been 
found [12•13]. 

The theory of Fermi systems with an interac
tion in the case of pairs of nonzero angular mo
mentum is developed on the basis of the reduced 
BCS Hamiltonian [14]: 

+ 1""' ,++ H red=~ ~pUpaUpa + 2V .Li v (p, p) ap'aa- p',- aUpaU-p,-o 

p,o p,p',o (1) 

Here tp is the kinetic energy of a fermion of mo
mentum p referred to the Fermi energy, V is the 
volume of the system, ap<P afx;- are the creation 
and annihilation operators for a fermion of mo
mentum p and spin component u. The "potential" 
of the interaction V ( p, p' ) in the isotropic model 
depends only on the scattering angle: V(p, p') 
== V ( nn' ) , where n == p/p, and differs from zero 
in an energy shell of thickness 2w near the Fermi 
surface. 

For the investigation of the ground state of the 
system with the "reduced" interaction Gor'kov and 
Galitskii [3] have generalized the technique of de
coupling the chain of equations for the Green's func
tion developed by Gor'kov [15] to the case of conden-

sation of Cooper pairs with nonzero relative angular 
momentum. In this paper we propose a solution 
with an isotropic gap. Other authors [1•2• 6- 10] as
sume that in the ground state the gap is anisotropic 
in spite of the fact that the original Hamiltonian is 
isotropic. In particular, Anderson and Morel have 
obtained this result with the aid of a variational 
principle by minimizing the average value of the 
energy over states of the Bardeen type: 

<D = IT (up + Vpa; a~ p) <D0 , 

p 

where <I> 0 is the "vacuum" amplitude. 
In the next section we shall utilize a technique 

of calculation which differs inappreciably from the 
technique of Gor'kov and Galitskil [3J, and we shall 
obtain, by decoupling the chain of equations for the 
Green's functions, solutions both with an isotropic 
and with an anisotropic gap. In Sec. 3 it is shown 
that the anisotropic solution is asymptotically ex
act for V- oo. We shall also describe the diffi
culties arising in attempting to find a basis for the 
isotropic solutions. 

2. STATES WITH ISOTROPIC AND ANISOTROPIC 
GAP 

The energy spectrum of the system is deter
mined by poles of the Fourier transform of the 
Green's function 

G (p, t- t') =- i<Ta;a (t) a;a (t')) = <(apa (t); a;a (t')), 

(2) 

where the angle brackets denote averaging over a 
Gibbs ensemble. 

The equation of motion for the function 
G(p, t -t') has the form 
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i ft G (p, t- t') = 6 (t- t') + ~PG (p, t- t') 

- t ~v (p, p') r (p, p', t- t'), 
p' 

where r is the two-particle Green's function: 

(3) 

r (p, p', t- t') = {a~p.-a (t) a-p',-a(t) ap'a (t); a;a (t')>. 

(4) 

We set up the equation of motion for the function r: 

ift r (p, p', t- t') =- ~pr (p, p', t- t') 

- ~ ~V (p, p") {apaa; .. aa~p",-aa-p•,-h',a; a;a (!')} 
p" 

+ {a~p.-ai 1t (a-p',-aap•a); a;a (!')}. (5) 

We shall achieve the simplest interpolation de
coupling of three-particle Green's functions appear
ing in (5) by pairing the operators apa and apa· In 
order to simplify the resulting system of equations 
we impose the additional condition 

{a~p.-oi ~ (a_p•-oap•o); a;o (!')} = 0. (6) 

The solutions which we shall obtain below satisfy 
this condition. Thus, we shall obtain a closed sys
tem of equations for G(p, t-t') and r(p,p', t-t') 
which on going over to Fourier components assume 
the form 

(w- ~p) G (p, w) + (2~)" ~d3p'V (p, p') r (p, p', w) = 1, 
(7) 

(w + ~p) r (p, p', w) 

= (2~)• G (p, w) ~d3p"dwV(p, p") r (p", p', w). (8) 

A. States with isotropic gap. By taking into ac
count the symmetry of the desired solution we shall 
assume r ( p, p', w) to be a function of t, t', w and 
of the angle between the vectors p and p'. We ex
pand V(p,p') and r(p,p', w) in a series of spher
ical harmonics: 

V (p, p') = ~ (2l + 1) VtPt (nn') = 4:rt ~ VtYtm (n) v;m (n'), 
1 l,m ( 9) 

r (p, p', w) = ~ r 1 (~, ~', w) P 1 (nn') 
I 

=4:rt ~ 21 ~ 1 rt(~. ~', w) Ytm (n) v;m (n'); (10) 
l,m 

PZ(nn') are the Legendre polynomials. On substi
tuting these expressions into (7) and (8), we shall 
obtain equations for G (p, w) and for the coeffi
cients in the expansion of the function r ( p, p'' w ) : 

(w- ~) G (p, w) + ~p1 ~ d~Tt (~, ~', w) = 1, (11) 
I 

(w + ~) rt (~. ~', w) = 2~ G (p, w) Pt~d~"dwrt (~", ~', w). 

(12) 

Here we have introduced the notation Pl 
= Vzpij/27r2v0, where p0, v0 are the Fermi momen
tum and velocity. 

The function G(p, w) whose poles determine the 
spectrum of single particle excitations can be eas
ily found: 

G(p,w)=w+~~+i!.:.2 th f3ep{(t-~)6(w+ep) 
w2- EP 2 ep 

-(1+~)6(w-ep)}, (13)* 

the imaginary part is determined in accordance 
with Landau's theorem [16], Ep = ( t~ + ~ 2 ) 112 is 
the energy of an elementary excitation, {3 is the 
reciprocal temperature, and 

112 =-f~r;~'rt(~. ~',w)d~d~'dw. (14) 
n I .l 

On dividing Eq. (12) by w + t and on integrating 
over t, t', w, we obtain 

0) 

At (I - p1 ~ ds ~ th ¥) = 0, (15) 
0 

At=~ rt (~. ~,, w) d~ d~' dw. (16) 

The system (15) admits the trivial solution Az = 0 
for all l corresponding to the normal state. There 
also exists a number of nontrivial solutions deter
mined by equations 

0 

(17) 

In particular, at the temperature T = 0 we obtain 
from these equations 

11 (0) = 2w exp (- 1 I P1), (18) 

which coincides exactly with the solution of Gor'kov 
and Galitskii [S]. The maximum gap ~. and conse
quently, the thermodynamically most advantageous 
state corresponds to maximum Pl· The ratio of 
the critical temperature T c to ~ ( 0 ) is the same 
as in the case of a pairing with l = 0: Tc = 1.75 x 
~(0 ). 

So far we have not used the additional condition 
(6) which can be written in the form 

*th =tanh. 
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It can be easily shown that equations (11), (12), 
(19), can be satisfied simultaneously 0 by setting 
all the rz except rzo equal to zero, and 

fz, (~, ~,, ro) = ~1/t, (~, ro) ~ F;, (~', ro) dro 

= iF 1, (~, ro) F;, (~'), 

where 
i/1. 

Ft,(~, ro) = w + ~ G (p, ro). 

(20) 

(21) 

A physical interpretation of the solution ob
tained was proposed by Gor'kov and Galitskil [a]. 

The decoupling of the function r (p, p', w) adopted 
by us means that the operator zp+ljJ+ can create a 
pair of relative angular momentum l, while the 
component of the angular momentum m can be 
arbitrary. Averages of four Fermi operators can 
be represented in the present scheme in the fol
lowing manner: 

< 1jnjnp+ \jJ +) 

=2J<Nf'IJ'IJ[N+2, l,m><N+2, l,m['IJ+'il+[N), 
m (22) 

where the state IN+ 2, l, m) is obtained from the 
state IN) of a system of N particles by the addi
tion of a pair of relative angular momentum l and 
component m. 

B. States with anisotropic gap. Anisotropic so
lutions can be obtained if we assume that the func
tion r (p, p'' w) can be factorized: 

r (p, p', ro) = iF (p, ro) F'(p'), (23) 

where 

F (p) = 2~ ~droF(p, ro). (24) 

From relation (8) one can easily show that 

(ro + ~p) F(p, ro) = (2~)4 G (p, ro) ~ d3p' droV(p, p') F(p', ro). 

(25) 

The function G(p, w) is of the form (13) where, 
however, Ep = (t~ + l.6.(p)l 2 ) 112, while the function 
.6.(p) can be expressed in terms of F(p, w) in the 
following manner: 

~ (p) = (2~)4 ~ d3p' droV(p, p') F(p', ro). (26) 

By eliminating the function F ( p, w ) we obtain the 
equation for the energy gap .6. ( p): 

!)Generally speaking, there is no need to give such a proof, 
since the system of equations for a pairing of angular momen
tum l = l 0 is formally the same as in the case l = 0, when the 
solution is well known to exist. 

(27) 
~ ( ) - n \ d3 'V ( ') /1,. (p') th f3ep' 

P - (2n)4 J P p, P e(p') -2-' 

which, gnerally speaking, is complex [a physical 
meaning can be ascribed to the absolute value of 
the function .6. ( p ) ]. The energy gap .6. ( p ) depends 
only on the direction of the vector p: .6. ( p) = .6. ( n). 
On expanding .6.(n) in terms of spherical harmon-
ics: 

~ (n) = ~ ~tmYtm (n), (28) 
l, m 

we shall obtain for the expansion coefficients .6.zm 
a system of transcendental equations: 

w 

~lm = PI 2J ~I'm'~ d~' ~ dn' 
l', m' 0 

Yz'm' (n') v;m (n') [3 V\;'" + I /1,. (n') [2 

X V~'"+Jfl.(n')J• th 2 
(29) 

The additional condition (6) can be rewritten in the 
following manner: 

nT (p, p', ro) + (2!)• ~ d3p"V (p', p") 

X {n (p') f (p,- p", ro) 

- [1- n (- p')l r (p, p", ro)} = 0, 

where n(p) = (apuap0-). 

(30) 

The anisotropic solution obtained by us satisfies 
Eq. (30) only if the function F(p, w ), and conse
quently also .6.(p ), is even (or odd) 2> with 

F (p, ro) = ± F (- p, ro) = ~~(~~ G (p, ro). (31) 

This means that among the solutions of the equa
tion for .6.(p) only those are acceptable in which 
.6.(p) is expanded in terms of spherical harmonics 
with only even values of l (singlet state ) or only 
with odd values of l (triplet state). 

It is of interest to note that the critical temper
ature T c. determined from the condition that the 
function .6. ( p) vanishes identically, satisfies the 
same equation both in the case when the gap is 
isotropic and in the case when the gap is aniso
tropic. This equation is of the form 

w 

\ d~ ~ 
1 = Pt0 J T th 2Tc , 

0 

where p z0 is the maximum positive value of pz. 

The critical temperature is equal to 

Tc = 3.5 ro exp (- ljp1). 

(32) 

(33) 

Thus, if in the interaction V(p, p') at least one 

2>Incidentally, such symmetry properties of the function 
~(p) are obvious. 
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of the quantities Vz is positive, then at sufficiently 
low temperatures the system will exhibit the prop
erty of superfluidity (or superconductivity). A 
positive sign of Vz denotes attraction of a pair of 
fermions in a state of angular momentum l. 

3. ASYMPTOTIC EXACTNESS OF SOLUTIONS IN 
THE CASE OF THE REDUCED HAMILTONIAN 

The problem of the symmetry properties of the 
state of thermodynamic equilibrium of a system 
with interaction in pairs of angular momentum dif
ferent from zero is at the present moment contro
versial [1- 3•6- 10]. The solution with an isotropic 
gap proposed by Gor'kov and Galitski1 [3] cannot 
be obtained, for example, by the variational method, 
since the structure of the wave function of the iso
tropic ground state, if the latter exists, is very 
complicated. In the paper by Hone C7J it is shown 
that it is very difficult to construct a chain of 
many-particle isotropic Green's functions satis
fying the equations of motion obtained with the aid 
of the reduced Hamiltonian. However, we note that 
such objections are not valid as proofs. At the 
same time it is asserted that if in the reduced 
Hamiltonian one neglects the kinetic energy, then 
the method of Anderson and Morel gives the cor
rect value for the energy of the ground state [8]. 

We shall show in this section that solutions with 
an anisotropic gap are asymptotically exact, and 
we shall describe the difficulties arising in efforts 
of finding a basis for the isotropic solutions. 3> 

In the preceding section by decoupling the three
particle Green's function we obtained a closed sys
tem of equations for the one- and two-particle 
Green's functions. We now turn to the solution 
of an infinite chain of equations for the Green's 
functions. 

Following Bogolyubov [17• 18] we shall consider 
the temperature Green's functions 

GWI (p, t- t') = (apo (t)_~ (t); a~',a (t')). (34) 

r 9l (p, p', t- t') 

= Ja+ (t) a-p', -0 (t) a;,, a (t) m (t); ap'- (t')~, (35) 
~ -p,-cr u ,;/ 

where ro?, m are products of the form 

where all the operators appearing in GW? and r% 
are different. 

3lThe asymptotic exactness of the BCS solution was first 
proved by BogolyubovJ17 ·'•] Recently the same result was 
also obtained by Klein ['•] and by Haag.[20 ] 

We construct equations of motion for these 
functions: 

:t GW? (p, t - t') = {j (t - t') (ro?) + ~PGW/ (p, t - t') 

+ ~] V (p, p') (a~P. -crGp•aG-p•, -a~; a;o> 
p' 

(36) 

i :t r 9l (p, p', t- t') =- ~prl)l (p, p', t- t') 

1 'V V ( ") / + + m. + (f')'--- lf ~ p, P "\GpoGp"aG-p", -aG-p•, -aGp•0 U<, Gpo J 
p" 

/ + . d ( ) m. + (t')'--+ "\a-p, -al dt U-p', -aU/a "'• Gpo / 

J+ . r/>Jl:. + •'--+ "\a-p, -aG-p', -aGp•al at, Upa (I),_/. (37) 

In Eqs. (36) and (37) we can, preserving an ac
curacy up to terms of order 1/N ( N is the number 
of particles in the system, N/V =canst), neglect 
terms in which the same operator is repeated sev
eral times. Then the chain of equations (36) and 
(37) will be closed even though it is infinite. 

We shall attempt to obtain an asymptotically 
exact solution of our chain of equations in the form 

GWI (p, t- t') = (~) G (p, t- t'), 

r;_n (p, p', t- t') = <ffi> r (p, p', t- t'). 

Since the averages 

< idro?/dt) = < idffi!dt) = 0, 

(38) 

(39) 

the chain of equations (36) and (37) reduces to the 
pair of equations for G(p, t- t') and r (p, p', t- t') 
which on going over to Fourier components assume 
the form (7) and (8) [taking into account the addi
tional conditions (6)]. Thus, the solutions obtained 
in the preceding section satisfy the chain of asym
ptotically exact equations for the Green's function. 

The decoupling of (38) and (39) is justified in 
the case of the solution with an anisotropic gap 
since in this case all the many-particle Green's 
functions under consideration can be factorized 
and, in particular, r (p, p', w) = iF(p, w) F*(p' ). 
This shows that the properties of a superconduc
ting system with an anisotropic gap can be de
scribed by means of a quadratic approximating 
Hamiltonian of the type of Hamiltonian proposed 
by Bogolyubov =11• 18]: 

H = ] gpa;aapo +a I ~ (p) I (a;aa~p. -o + a-p, -aG>o)}, (40) 
p,o 

which can be diagonalized with the aid of a canon
ical transformation. 4> The approximating Hamil-

4lSolutions with an anisotropic gap can be obtained in the 
case of the Hamiltonian Hred with the aid of Bogolyubov's 
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tonian, however, is not suitable for obtaining so
lutions with an isotropic gap (Z ~ 0 ), since aver
ages of the type ( apa-pa:p'ap') on being averaged 
using the Hamiltonian (40) would have the struc
ture of products F(p) F*(p') which in the scheme 
of Gor'kov and Galitskil would denote pairing in an 
S-state. 

However, if we seek such a system of Green's 
functions that 

r (p, p', w) = f 1 (\;, \;', w) Pt (nn'), 

then the decoupling of (38) and (39) is unacceptable, 
since the symmetry of many-particle Green's func
tions is violated. For example, in the case of such 
decoupling averages of the type 

turn out to be proportional to Pz(n1n1) Pz(n2n2) and 
are altered by the interchange of arguments n1 ~ n2, 

i.e., the required symmetry is absent. Therefore, 
one should seek other methods of laying a basis for 
the isotropic solution. 

In the preceding section we decoupled the three
particle Green's function. One can proceed some
what further in this direction. If we restrict our
selves to a discussion of Green's functions in which 
products of the type aga:gafa-f occur not more 
than twice, while the number of products of the 
type apap can be arbitrary, then one can pair the 
operators ai)a and apa• by assuming that the four
particle Green's function is of the following form: 

The functions Fz ( t, w ) and Fz ( t) are defined by 
relations (20) and (21) of the preceding section. 
The expression (41) possesses the necessary sym
metry. 

In the third term of the right hand side of Eq. 
(36) as a result of integrating over p' using the 
weighting function V ( p, p' ) the dependence on n 
disappears in virtue of the relation 

~ dn' Pt (nn')Pt(n1n') = 'Ll =; 1 Pt (nn 1), (42) 

canonical transformation. The present author["] has obtained 
the Hamiltonian for the interaction of conduction electrons of 
an antiferromagnetic substance with spin waves. By applying 
the method of canonical transformation to this Hamiltonian one 
can also obtain the energy spectrum for a system with an 
anisotropic gap. 

and the integral turns out to be proportional to 
(im), and this leads to the equation for G(p, w) 
discussed in the preceding section in the case of 
an isotropic gap. A similar situation holds also 
for Eq. (37). 

Unfortunately, we cannot demonstrate a de
coupling of the functions Gw1 and rsn containing a 
greater number of operators of the type aga~gag'a-g' 
and the question of whether there exist isotropic 
solutions of the infinite chain of equations remains 
open. It is possible that the scheme of Gor'kov and 
Galitskil is an approximate one even in the case of 
the reduced interaction. 

Thus, at the present moment there have been 
proposed a number of solutions of the problem of 
pairings with nonzero angular momentum. For a 
given interaction V ( p, p' ) only one solution is ac
ceptable. The problem of the choice of this solution 
is very complicated. The system (29) can be solved 
in the general case only by numerical methods. 
Vaks, Galitskil, and Larkin[10] have succeeded in 
showing that certain particular anisotropic solu
tions are unstable. It is possible that an experi
mental investigation of superconducting ruthenium 
and osmium will clarify the situation. 

I express my gratitude to L. P. Gor'kov for use
ful discussions. 
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