
SOVIET PHYSICS JETP VOLUME 17, NUMBER 4 OCTOBER, 1963 

EXCITATION OF ION-ACOUSTIC WAVES AND ELECTRON HEATING IN A PLASMA IN 

AN EXTERNAL ELECTRIC FIELD 

Yu.B. PONOMARENKO 

Submitted to JETP editor October 24, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 1289-1297 (April, 1963) 

We consider a plasma with cold ions in a strong external electric field that is periodic in time. 
The collisionless mechanism responsible for electron heating under these conditions is analyzed. 
This heating mechanism operates as follows: because of the external electric field the electrons 
acquire a velocity with respect to the ions; ion-acoustic waves are excited and these tend to 
smooth the electron distribution function. The smoothing process is repeated in the periodic 
electric field, leading to flattening of the electron distribution function (consequently an increase 
in electron temperature) in the velocity range corresponding to twice the velocity acquired by 
the electrons in the external field. 

VARIOUS kinds of waves can be excited in a plasma 
when the static particle distribution function de
parts from equilibrium. If, for example, a strong 
current flows through the plasma, i.e., the ions and 
electrons (with Maxwellian velocity distributions) 
move with respect to each other with a constant 
velocity greater than some critical value, one finds 
that ion-acoustic waves are excited. [t] The quasi
linear theory [2 •3] takes account of the feedback 
effect of the growing waves on the particle distri
bution function for the weakly unstable case, where 
the growth rate is small compared with the fre
quency and the energy density of the wave is small 
compared with the thermal energy density of the 
particles. Under these conditions only the fine de
tails of the particle distribution function are af
fected (for example, when ion-acoustic waves are 
excited the electron distribution function is flat
tened in a narrow velocity region about the velocity 
of the ion-acoustic wave). The gross plasma para
meters, such as the moments of the distribution 
function, are not affected significantly. Below we 
describe a case in which the instability is weak but 
in which one of the gross parameters, i.e., the 
electron temperature, is changed significantly. 

We shall treat a spatially uniform problem: a 
plasma in a strong magnetic field in which the ions 
and electrons can be described by a one-dimen
sional distribution function f ( v), where v is the 
velocity in the direction of the magnetic field. 

Let us assume that there is an external electric 
field E = E0cos w t in the same direction as the 
magnetic field. Under the effect of this field the 
electrons move with respect to the ions and if 
Ti << T (Ti, T are respectively the ion and elec-

tron temperatures) ion-acoustic waves are ex
cited in the plasma; these waves are characterized 
by a phase velocity u ranging from a velocity of the 
order of the ion thermal velocity uTi = .J Ti/M to 
the ion acoustic velocity u0 = )T/M (cf. [tJ). In 
general, the feedback effect of the ion-acoustic 
waves leads to the formation of a plateau on the 
particle distribution function. [ 3] In what follows 
we neglect the diffusion of the heavy ions under the 
effect of the waves and assume, for simplicity, that 
the ions are cold, Ti = 0 (so that uTi= 0 ). We 
assume that the plateau on the electron distribution 
function is formed so rapidly that it is in existence 
at any instant of time ( cf. Appendix); our problem 
then is to analyze the time variation of the electron 
distribution function. 

In the coordinate system in which the mean 
electron velocity v vanishes (Fig. 1) the ion dis
tribution function and the associated plateau on the 
electron distribution function execute periodic 
motion with amplitude V0 = eE 0/mw (the field 
amplitude E0 is limited by the condition V0 < VT; 
if this condition is not satisfied, the growth rate is 
comparable with the frequency and the quasi-linear 
theory no longer applies). Assume that at time t 
the ions as a whole have a velocity V = V0sin w t 

FIG. 1. Electronic (f) and 
ionic (solid vertical line) dis
tribution functions. The pla
teaus of width u0 execute 
periodic motion in the region 
(:-V0 , V0 ). The case shown in 
the figure corresponds to pla-
teau motion towards increas~ -v, 
ing v. 
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FIG. 2. Smoothing of the dis
tribution function in the region 
(0, u0 ). 

and that the height of the plateau on the electron 
distribution function f ( v) = c in the range ( V, V 
+ llo ); in the ion coordinate system ( v = V + u) we 
have f ( u) = c in the range 0 < u < u0 ( u is the 
statistical velocity of the electron in the ion co
ordinate system) (Fig. 2). In a time ~t the ex
ternal electric field shifts the plateau by an amount 
~ V = em-1E0cos w t ·~t and the electron distribu
tion function in the plateau region acquires the 
step shape shown in Fig. 2 by the solid line. The 
number of electrons in the plateau region is then 
reduced by I~ V I [ c - f ( u0 )]. On the other hand, 
this reduction is also equal to u0 [ c ( V) - c ( V 
+ ~ V)], where c ( V + ~ V) is the height of the 
plateau established after electron diffusion due to 
the ion-acoustic waves has occurred (the value 
c ( V + ~ V) is shown in Fig. 2 by the dashed curve). 
Equating these expressions we find 

± u0dcjdV = f (u 0 + V)- c (V), (1) 

where the plus sign is written when the plateau 
moves in the direction of increasing V (Figs. 1 
and 2 illustrate this case) and the minus sign is 
written for motion in the opposite direction. It is 
evident from Fig. 2 that as the plateau moves there 
is a discontinuity at the fixed end and that beyond 
this region a continuous trail f(V) = c remains. 

We now consider the case of a strong electric 
field u0 <t: V0• If the width of the plateau u0 is 
small it is evident from (1) that the distribution 
function f ( v) does not change appreciably in one 
period. Hence, from (1) we obtain an equation that 
describes the variation of f ( v) in a time much 
greater than the period of the external electric 
field 2rr I w. 

We consider the time interval ~T ~ 2rrn/w, 
n ~ 1, and find the quantity 

at !>.f (!>.fln 
a-r: = !>.-r: = :!.nnjw' 

where (~On is the change in the distribution 
function in n periods as found from Eq. (1). The 
solution of Eq. (1) is 

(2) 

Thus, after a single traversal of the smoothing 
region the electron distribution function f is trans
formed into L±f. In a full period the plateau moves 
in the forward and reverse directions so that f 
- L_(L+O = (L_L+)f and inn periods f 
- ( L+L_)nf; the change (~On of the distribu-
tion function f in n periods under the effect of the 
smoothing region of width u0 is 

Substituting this expression in the relation 
of/oT = (~0nw/2rrn, to accuracy of order (u0/V0 )2 

we obtain the equation for the distribution function: 

D = u~w/ 2:n:. (3a) 

Since the number of particles in the interval 
(- V0, V0 ) is conserved the boundary condition for 
the diffusion equation (3a) is 

(()f I av)u=±V, = 0. (3b) 

Up to this point we have considered the diffusion 
of electrons due to waves whose phase velocities 
(in the ion coordinate system) lie in the range 
(0, u0). However, ion-acoustic waves are also 
excited in the range (- u0, 0). The plateaus on 
the electron distribution function f are different 
in these regions since the waves are damped on 
ions located at zero (we recall that the ions are 
cold UTi = 0; when UTi "' 0 the plateau regions 
are separated by a space I u I < UTi in which 
there are no waves because of strong damping on 
the ions). Hence, there are two independent 
smoothing regions, each of width u0, rather than 
one region of width 2u0; thus, the diffusion coef
ficient D is twice as large as that given in Eq. 
(3a): 

D = u~w/:n: = wT!:n:M. (3c) 

The electron diffusion mechanism in the range 
(- V0, V0 ) can be understood as follows. Let us 
consider an insulated rod of length 2V0 in which 
the thermal conductivity is infinitely large in some 
region u0 ( u0 < 2V0 ) and zero elsewhere. The 
temperature f is independent of distance v (me as
ured from the center of the rod) in the region u0 

and is equal to c; the temperature distribution f 
is maintained in time f = f ( v) in the remaining 
parts of the rod. If the region u0 with infinite 
thermal conductivity is displaced by a distance 
~ V (Fig. 2), the region beyond remains continuous 
f ( v) = c while the temperature c is changed in 
such a way that the amount of heat Q in the region 

uo 
u0 is conserved ( Q = J fdV = const; the specific 

0 
heat of the rod is taken as unity). Under these 
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conditions the temperature c in the region u0 is 
described by Eq. (1). 

If u0 ~ V0 the temperature f does not change 
appreciably in a single traversal of the region u0 

along the rod; in this case the slow equalization 
of the temperature f in the rod can be described 
by the "heat conductivity equation" (3a) and (3b) 
in which w/2rr = cp is the transit time of the rod 
through the region u0 in the forward and reverse 
directions (the motion of the region in time can be 
arbitrary and can vary from one period cp to 
another; we consider the case V(t) = V0sinwt). 
If the rod contains two regions of infinite thermal 
conductivity separated by some range in which 
the thermal conductivity is zero (Fig. 1) the "ther
mal-conductivity coefficient" V is given by Eq. 
(3c). Finally, the width of the smooth region u0 

can depend on a function { f}, for example 

v. 
(' mV2 

{f} = J 2 tdV, 
-v. 

where m is a constant. 
An exact solution of Eqs. (3a)-(3c) that takes 

account of the time variation of the temperature t 
and the diffusion coefficient D is given in the Ap
pendix. We present the basic results (for the case 
in which the initial electron distribution function 
is Maxwellian). 

In accordance with Eqs. (3a) -(3c) the distribu
tion function f ( v) is equalized in the range 
(- V0, V0 ) (Fig. 3) as T- co, where 

v. 

foo = 2~(} ~ fodv. 
-V, 

The characteristic equilibration time tn is 

tD~V~jD ~v~;wu~. 

(4a) 

(4b) 

The electron temperature is increased by the fol
lowing amount by virtue of the work done by the 
external electric field: 

(4c) 

(the function f is normalized to unity). 
The electron temperature increment ~ T grows 

as the amplitude of the electron oscillations V0 

A I I 

-v. 0 Vo u 

FIG. 3. Smoothing of distribu
tion function in the interval (-V0 , V0 ) 

as 'T -> oo. 

increases and, for a fixed frequency w, is pro
portional to the amplitude of the external field E 0• 

If the amplitude of the electric field Eo is such 
that V0 is comparable with the electron thermal 
velocity V0 "" VT the change ~ T is comparable 
with T, that is to say, the electron temperature 
T increases by approximately a factor of two by 
virtue of the work done by the external electric 
field. 

It is of interest to compare the increase in 
energy density ( n~ T) with the Joule heat gene
rated in the same time tn. If the frequency of the 
external electric field w is much larger than the 
collision frequency v, the Joule heat generated 
per unit time is 

Q ~ E~we" ~ Egvw~ I w2 , 

since E" = ImE = Im [ 1- w~/w (w + iv)]. When 
V 0 "" VT the temperature change ~ T "" T so that 
n~T/tnQ"" 1/tnv. 

These estimates show that the Joule heating 
can be much smaller than the collisionless heat
ing if the equilibration time tn is much smaller 
than the collision time 1/v, that is to say, if the 
following inequality is satisfied: 

m ro 1 
1~--ND-"'M ro 0 ')..,' 

where Nn is the number of particles in a Debye 
sphere and A. is the Coulomb logarithm (A. "" 10 ). 

We have assumed up to this point that the elec
trons acquire a periodic velocity with respect to 
the ions in the external electric field. However, 
the motion of the electrons with respect to the ions 
can also result from electric fields in a wave of 
arbitrary amplitude which might be formed in the 
plasma. Such a wave must be rapidly damped be
cause of the excitation of ion-acoustic waves and 
because of electron heating. We use energy con
servation to estimate the damping time tE for 
such a wave: 

E~ (t) I 8n + nT (t) + it (t) = const. (5) 

Here, E 0 is the amplitude of the electric field of 
the wave in which the electrons acquire a velocity 
with respect to the ions, T is the electron tempera
ture, (£ is the energy of the ion-acoustic waves. 
Neglecting the change in the latter (an appropriate 
estimate is given in the Appendix) we have from 
Eq. (5) 

E~ I d ( E~) E~/8n T E~J8n 
tE ~- 8n d-e 8n ~ --,;r- dT/dt ~~to. 

We have shown above that the amplitude Eo is 
limited by the inequality V0 = eE 0/mw < VT; when 
V0 "" VT the damping time is given by 
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(6) 

When w ~ Woi the wave is damped in a time of the 
order of one period 1/ w. This damping mechanism 
was invoked [ 3J in the interpretation of experiments 
carried out by Zavo1ski1 et al [4] (in which connec
tion the present problem was studied). However, 
in these experiments the amplitude of the field Eo 
was so large that the maximum electron velocity 
with respect to the ions V0 was greater than the 
electron thermal velocity VT· Under these condi
tions the waves excited in the plasma have growth 
rates comparable with the frequency, so that the 
damping time and increase in electron temperature 
given above can differ from the corresponding ex
perimental quanti ties. 

The author is indebted to A. A. Vedenov for 
suggesting this problem and for guidance and to 
M. A. Leontovich for valuable discussions. 

APPENDIX 

The derivation of Eq. (1) is based on the assump
tion that the plateau in the distribution function 
exists at any time in each diffusion region (- u0, 0) 
and ( 0, u0 ). This assumption is justified if there 
are always ion-acoustic waves with phase veloci
ties u in these regions and if the wave energy is 
large enough so that the characteristic electron 
diffusion time ( t) (for the establishment of the 
plateau) in velocity space is much smaller than 
the period of the external electric field. 

We first investigate the way in which the energy 
of the ion acoustic-waves changes in motions of 
the plateau region. The equations of the quasi
linear theory, which describe the diffusion of elec
trons due to wave effects in the region 0 < u < u0, 

shown in Fig. 2, are of the form: [3] 

ae/at = Aeaf/au, e = £2/Sn, 
at/at =a (PJJaflau)!au, 5J =Be. (A.1) 

The functions A and B in (A.1) depend only on the 
velocity u. If the ion-acoustic waves are charac
terized by the dispersion relation 

ro 2 = ro~1k2/(k2 +D~2) 

the functions A and B are given by 

B ___ 4_n_c_(e'---/m-'-)_2 --::

- l u I (1 - u2 / u~) ' 

(A.2) 

Here, Woi and woe are the ion and electron plasma 
frequencies, De is the Debye radius, u0 = V T/M 
is the ion-acoustic velocity. 

The equations in (A.1) have the integral 

_i!_ A -1 B ~ - jJ_ = 0 au at at . 
(A.3) 

We introduce below in place of the time t the 
variable V = V0sin w t. Inasmuch as there is a 
plateau in the region ( 0, u0 ), f ( u, V) = c ( V) (Fig. 
2), after integration of (A.3) over velocity from 0 
to u we have (taking account of the fact that Eu=o 
= 0 because of ion damping) 

A-1BaelaV = udc/dV. (A.4) 

Hence 

e - e0 = uAB-1 (c - c0). (A.5) 

The relation in (A.4) can also be obtained by in
tegrating (A.3) over velocity between the limits 
( u, u0 + 0 ). Since Eu=uo+O = 0, we have 

(A.6) 

The function f has a discontinuity at the point u0: 

f (u, V) = c + (f- c) 8 (u - u0 + V (t) - v), (A. 7) 

where <p(x) = 1 when x> 0, <p(x) = 0 when x< 0; 
v is the ion coordinate in the coordinate system in 
which the electrons are at rest. Taking account 
of (1), from (A.6) and (A. 7) we have 

U0-0 Uo+O 

_ 1 ae _ (" at 1 at 
A B W - - ~ av du - ~ av du 

u U 0-0 

de de 
=- (u 0 - u) dV - (f- c) = u dV . 

For motion of the region ( 0, u0 ) in the direction 
of lower V in place of (A.5) we have 

e- e0 = (u - u0 ) AB-1 (c - c0). (A.8) 

We introduce the notation 

z = JuAB- 1 J. (A.9) 

Then, (A.5) and (A.6) can be written in the form 

e- e0 = (c- c0) X {z 
-(y-z), 

(A.10) 

where the upper factor is written for motion of the 
region in the direction of increasing V while the 
lower is written for motion in the direction of de
creasing V. For the region (- u0, 0) the factors 
in (A.10) must be taken locally. Now, using (A.10) 
we must find an equation describing the change in 
wave energy after long intervals of time in the 
same way as (3) is obtained from (1). For this 
purpose, using (A.10) we compute the change of 
energy !1E in a time 11 T which extends over many 
periods of the external electric field (Fig. 4). 
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FIG. 4. Time dependence of the plateau level for the case 
of an even distribution function f(v) = -f(v). The arrows in
dicate the direction of motion of the plateaus toward increas
ing v (the plateau level varies from c0 to c1) and in the oppo
site direction. 

According to (A.lO) and Fig. 4, in which we 
have shown the time dependence of the level of 
the plateau in the region ( 0, u0 ), the change of E 

in one period is 

while the change in n periods is 

(~8)n = (z- y/2) (C2n- Co)· 

Since the difference E~ between the highest 
and lowest values of the energy of any wave is 
finite [from (A.lO)] it is evident that E~ 
= y [ f ( 0, T) - f ( V0, r)], if n is high enough the 
changes of E in the interval from T to 27fk/ w and 
from 27f ( k + n )/ w to T + 6 r can be neglected: 

(L'>e)n ae 
2nnjw-+ 7fT · 

Substituting the expression for (6 E )n and taking 
account of the fact that 

we have 

C2n -Co= M(Vo, T)[l +0(~)], 
2nn!w = ~T[l +O(*)J. 

~ = (z- y) 8f(Vo, T) 
a-r 2 a-r • (A.ll) 

According to (A.2) and (A.9) the quantities y 
and z are weak functions of the time T since u0 

= u0 ( r) = ..j T ( r)/M. In carrying out an estimate 
we neglect this dependence. From (A.ll) we have 

8 (u, T) -8 (u, 0) = (z- y/2) [f Wo. T) - f Wo, 0)1. 
(A.12) 

Using the last relation we can determine when 
the wave existence criterion E (u, r) > 0 is satis
fied in the regions 0 < I u I < u0• Since the quan-

FIG. S. Variation of the 
plateau level in the case of 
a gradual increase in the 
field amplitude to the sta
tionary value. 

tity f ( V0, T) - f ( V0, 0) increases monotonically 
during the electron diffusion time, it follows from 
(A.9) and (A.12) that waves with phase velocity u 
in the range 0 < I u I < u0/2 will be damped. This 
condition imposes a limitation on the initial spec
trum of excited waves E ( u, 0): 

e (u, oo) = e (u, 0) + (z- y/2) f/co- f (V0, 0)1 > 0, 
o < I u I < uof2. (A.13) 

The last condition on E ( u, 0) is satisfied, for 
example, when the external electric field grows to 
an amplitude Eo in several periods as shown in 
Fig. 5 (the electron diffusion during the growth 
time is neglected). 

Since this process is analogous to that shown 
in Fig. 4, we can apply (A.12) taking account of 
the notation used in Fig. 5 [at the beginning of the 
process, f = f(O, 0), E = 0 and at the end f 
= f ( V0, 0 ), E = E ( u, 0)]. As a result we have 

e (u, 0) = (z _ .J?.) X {f (V o. 0)- f (0, 0), 0 <I u 1 < uo/ 2 , 
2 0, uo I 2 < I u I < uo 

(A.14) 

so that in the electron diffusion process, in ac
cordance with (A.12), 

e (u, -r) = (z-Jf-)x {f(Vo, -r)-f(O, 0), O<JuJ<uo/2 . 
2 f(Vo, -r)-f(Vo, 0), uof2<[u[<uo 

(A.15) 

Using (A.l) and (A.2) we can write the second 
criterion for the existence of a plateau in the form 

1/w ~ (t) ~ u~I(B) (e). (A.16) 

For the initial distribution E ( u, 0) given in (A.14) 
the characteristic energy of the ion-acoustic waves 
( E ) is taken to be 

(~e) ~ (y) [/ (0, 0)- f Wo. 0)1 ~ (y)!Vn (A.17) 

which, taking account of (A.9) yi.elds 

1/w ~ Vr!W0eU0 ~ llwol· 

If, however, ( E ( u, 0)) ~ ( 6E), in the estimate 
in (A.l6) we must take (E) = ( E ( u, 0)). 

We now estimate the total change of wave energy. 
This is obtained by integrating the right side of 
(A.12) over k between the limits (-co, co). Since 
y and z are functions of the phase velocity u it 
is convenient to convert to the integration variable 
u, which is expressed in terms of k by the disper
sion relation u2 = w~i/ ( ~ + ni). We have 

woi ( m )2 ~ ---u;- (~e)~ nT M . 
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We can now compare the energy changes in (5): 

In conclusion, we write the solution of (3) taking 
account of the time variation of the diffusion coef
ficient. Let us start with the equation 

(A.19) 

with initial and boundary conditions in which D 
depends on the functional { f} of a function to be 
determined so that it is an unknown function of 
time. The form of the functional { f} and the func
tion D = D ({ f}) are known. 

Replacing the time r by the variable x 

dx =Ddr, (A.20) 

we obtain from (A.19) an equation with exactly the 
same conditions, but for which D = 1. If it is 
possible to write the solution of the equation 
f(x, v) in explicit form then D(x) = D({f(x, v)}) 
is also known, and after substitution in (A. 2) we have 

X 

(' dx' 
r = .l D ({f (x, v)}) · (A.21) 

0 

The function to be determined f ( r, v) is found by 
eliminating the parameter x from (A.21) and the 
relation f = f(x, v). 

For the equations (3a)-(3c) we have 

D = : T k) = n~ (To+ {f}- {fo}), 
v, 

{f} = ~ mt fdv, T 0 = T (0), fo = f (0, v), 
-V, 

f (x, V) = ~ t<n) exp{- ;: n2x }cosn:n: ~0 , 
n=O 0 

00 

fo (v) = ~ t<n) cos n:n: ~0 , 

n=o 

X 00 

r = n: ~[To+ ~ t<n) ( exp {- (~:Y x'} 
0 n=l 

-1 

-1) mV~ \~n1f] dx'. 
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