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Isolated waves of finite amplitude propagating in a cold plasma at an arbitrary angle with re
spect to the magnetic field are analyzed. It is shown that three waves of this kind are possible: 
large scale compressional shocks (Alfven waves), rarefaction shocks (magnetic sound waves), 
and small-scale compressional shocks corresponding to high-frequency magnetic-sound waves. 
The relation between the wave amplitude and the Mach number is established. The critical mag
netic field at which the solution for the compressional wave becomes unstable is also determined. 

1. INTRODUCTION 

MEDIA in which the dispersion is nonlinear for 
small oscillations can support the propagation of 
stationary isolated waves: if the phase velocity of 
the waves diminishes (increases) with increasing 
wave number, the stationary isolated wave is a 
density compression (rarefaction). [1] 

In the present work we consider an isolated 
wave propagating in a cold low-density plasma 
(so that dissipation processes can be neglected) 
at an arbitrary angle with respect to the unper
turbed magnetic field H0• The case being treated 
is of interest as it exhibits several oscillation 
branches. In the low frequency region ( w ~ iti 
= eH0 /mic, Hi is the ion Larmor frequency) these 
are accelerated waves ("magnetic" sound) with a 
minimum phase velocity v + = H0 I...; 47rnomi , and 
retarded Alfven waves with a maximum phase ve
locity v- = v + cos e (here e is the angle between 
the direction of propagation and the magnetic field). 

The qualitative behavior of w/k as a function of 
frequency is shown in Fig. 1 (cos e » ..,; me /mi , 
cf. [2J). The existence of two branches means that 
the isolated wave can be a compression or rarefac
tion shock. 

In the high -frequency region ( Qi « w « ite) 
there is one branch with a high phase velocity w/k 
= v +...; w/iti . The characteristic frequency here is 
...; iteiti while the effective value of the magnetic 
field in the wave is of order H0 ...; mi /me so that 
w/k- v +...; mi /me . Higher propagation velocities 
mean that the change in the various physical quan
tities in the wave can be anomalously large. The 
theorem given in [1] does not hold here and if the 
fine structure of the wave at its base is neglected 
the wave is always a compression shock. 
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FIG. 1 

The limiting cases indicated above differ appre
ciably in their propagation scales. The flow of 
plasma must be symmetric with respect to the peak 
of the wave in the coordinate system moving with 
the wave since there is no dissipation. It is clear 
that in the case of Alfven and magnetic-sound 
.shocks (large-scale waves) the ions cannot execute 
very many rotations in the magnetic field of the 
shock without disturbing the correlation between 
the trajectories of the heavy particles at the "in
put" and "output" of the wave. Taking the ion 
Larmor radius as a characteristic dimension of 
the wave we find 

The wavelength of the high-frequency shock (small
scale wave) is determined by the electron Larmor 
radius and is of order ...; mec2/ 47re2n0 • 

In this work we consider the structure of the 
isolated wave indicated above and establish the re
lation between wave amplitude and Mach number. 
We also find the limiting values for various physi
cal quantities and the limitations on the Mach num
ber. We note that the problem of the isolated wave 
has been considered earlier for the case e = 1r/2 
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in [1•3•4] and for the case e = 0 in [5- 7]. Finally, 
a low-amplitude rarefaction shock has been inves
tigated by Galeev and Karpman. [a] 

2. EQUATIONS OF MOTION AND CONSERVATION 
LAWS 

In the present work we limit ourselves to the 
nonrelativistic case: v0 /c « 1, where v0 is the 
propagation velocity of the wave. Then, the initial 
system of equations of motion for the electrons 
and ions and Maxwell's equations are 

ave i e (. 1 ) a/+ (vc,iV) Ve,i ==f-. E +- [ve,;H] , 
nze,t c 

ane,; I at+ div ne,iVe,i = 0, 

rot E ~~ - _!_ aH 
c at ' 

divE= 4ne (n1 - ne), div H = 0. 

(1)* 

(2) 

(3) t 

(4) 

We assume further that all quantities depend 
only on~= z +v0t, with H- H0, ve i- 0, and 

' ne,i- no as ~ -±co. The system in (1)-(4) can 
now be written conveniently in complex form: 

dv,.,; _ ie (H o o 
Pc.i(jt = + 1~ Pe,i- H j_- H :; Ve,i I Vo), 

l::l e,t 

dve,i 
-

11 = =t= _e -[E -j- _!_ Im (v* J Pe,i d£ m .v0 II c e,iH) ' 
e,t 

dE 11 / d~ = 4nen 0 (1/pe- I I p), 

H =o (R.e H, Im H, H~1 ). 

The projections of various vectors on the z axis 
are denoted by II while the projections on the x 
axis are denoted by 1. 

(5) 

(6) 

(7) 

(8) 

The equations in (5)-(8) have the following first 
integrals (conservation of momentum): 

meVe + m,v, = H'i: (H- H~) I 4Jtn 0v0 , (9) 

nleVc + m,v, = {E~; + I H'lf2 - I H [2} I 8nn 0v0• (10) 

We shall treat in detail the quasi-neutral case: 

The quasi-neutrality of a plasma is guaranteed 
over a wide range of angles e by the fact that the 
problem is nonrelativistic. It follows from (10) 
that in this case 

p = I + ( I H~ 12 - I H 1
2) I 8nn0m;vZ,. (11) 

*[vH]: v x H. 
trot= curl. 

3. LARGE-SCALE WAVES 

The drift approximation can be used for the de
scription of electron motion in large-scale waves. 
The only limitation is on the range of variation of 
fJ: the condition cos e » v' me /mi must hold. 

From (5) and (10) we find that the electron and 
ion velocities and the magnetic fields are related 
by 

Ve = V0 (Hp- H 0J I H~l, 

Vt = fl~: V0 (H- H~_) I H11 , 

(12) 

(13) 

where JJ. = v Jv0 is the reciprocal Mach number 
(JJ.II• JJ.l = JJ. cos e, JJ. sin e. 

It will now be convenient to write all quantities 
in dimensionless form. We introduce the notation: 

H = H'}_ VJ.: ei<e, I HI H'lf = v~' ~ = ~;'t, 

~~ = fl il V mic2 I 4ne2no. 

Equation (7) now becomes 

ip (A-) 1:r (V~ e1<e) + vr ei<e (p (A-)- fl~l) + fl~l -I = 0. (14) 

Here p(A.) .= 1 + %JJ.i(1-A.). Multiplying Eq. (14) 
by d(.fi: e-lcp) and taking the real part, we have 
after integrating using the boundary conditions 
A.(± co)= 1 and cp(±co) = 0 

o- fl~~) (A- 2 v-x cos (jl + 1) = fl}_ ("'- 1)2 14. (15) 

Using the last expression we can eliminate the 
function of cp in (14). Thus we obtain the following 
equation for A.: 1> 

p (A-) dA, I dT = ± ~fl}_l A- lj Y(A-+ --A) (A--A-_), 

A±= I+ 4fl7 (1-fl~: ±fl j_ Vl-fl~l ). (16) 

Here, ..f'i:; is the maximum value of the magnetic 
field in the compressional wave, R is the mini
mum magnetic field in the rarefaction wave. It is 
evident from Eq. (16) that the isolated wave can be 
either a compression shock or a rarefaction shock. 
Since A. is real and A. - 1 when T - ±co, we must 
satisfy the condition 1m A.± = 0 and 4 ~ 1, which 
can be rewritten: 

(17) 

One of the conditions in (17) is obvious and the 
other means that the velocity of the compression 
(rarefaction) wave must be smaller (larger) than 
the phase velocity of the accelerated (retarded) 
waves. 

The qualitative behavior of v' A.± ( JJ.) is shown 

1>1n Eq. (16) we must use both signs since we require a 
symmetric solution and cL\/dT has different signs with respect 
to the center of symmetry T = 0. 
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FIG. 2 

in Fig. 2. It is evident that the relation between 
amplitude and Mach number for the (p > 1) is not 
unique. 

In the case of the rarefaction waves ( diamag
netic wave or A. < 1 ) with J-1. = 2/ v 1 + 3 cos2 e the 
amplitude of the transverse magnetic field vanishes 
at the extremum while the density is given by the 
expression 

(n I no)mln = (1 + 3 cos2 8) I (3 + cos2 8). (18) 

In the paramagnetic wave (A. > 1) the amplifi
cation of the transverse magnetic field can reach 
a maximum of a factor of three. In this case J-1. = 1 
while the density is given by 

(19) 

The density vanishes at e = 30°. At this point 
the solution no longer holds. This situation arises 
because we have neglected the thermal spread in 
the velocities of the plasma particles. Actually, 
the plasma flux at the compression point is re
tarded and transfers its energy to the magnetic 
field. If the retardation is strong (the plasma 
essentially comes to rest vii + v0 ~ 0 ), because 
of the thermal spread there is flux of reflected 
particles and this is obviously not taken into ac
count by the equations of motion (1). The criterion 
for the single-velocity approximation can be writ
ten as follows: 

(20) 

Here T and y are the temperature and adiabatic 
index of the plasma. 

Thus, when e ::::: 30° the maximum magnetic 
field in the paramagnetic wave (and this also ap
plies to the wave velocity v0 ) must be rather 
small. From the condition p > 0 we find that in
equality (17) and 1 < A.+ < 9 for the compression 
wave must be replaced by 

4 ctg• e 
1 <A+< 1 + 1 +sin e ' 

(21) * 
*ctg =cot. 

The upper limits on v0 and A.+ in the last inequal
ities are determined taking account of (20). 

Equation (16) can be integrated in terms of ele
mentary functions. Since (A. > 1) we have for the 
compression wave 

arc ch [1 + 2 (1- L)'(/,+- /,)I(/, -1) <"-+- /,_)) 

2 Y<t-t" -1) (1- t-tl 1 ) 

-arc cos ( 1 + 2 :+ -=._"-{_) = T. (22)* 

We now write expressions for the physical quan
tities in dimensional form. The following formulas 
hold for a low amplitude compression wave ( 1 - J.Lfi 
= %o2 tan2 e): 

( 11 tg• e) n = n0 1 + Cii(i"" , 
11 tg• e 

vn =-Vo~· v0 = v_, 
(23)t 

v. ~ v1 =sin 0 v+F (£), (24) 

H = H~ (1 + 6 I ch a) (1 + F(£)), 

F (£) = ch! IX (I sh2 a- II+ 2i sh a) -1, a= 6tg28 · £1£r 
(25)t 

The solution for the rarefaction wave is obtained 
from (22) by replacing \r by A. 'F and A. - 1 by 1 -A.. 

We now find the quasi-neutrality condition for 
the plasma. It follows from Eq. (6) that 

(26) 

Substituting E11 in Eq. (8) we find that the quasi
neutrality condition for the plasma is 

(27) 

4. SMALL-SCALE WAVES 

We now consider small-scale waves. We assume 
at the outset that the parameter E = v me /mi cos2 e 
is small. In this case the drift approximation can
not be used to describe the electron motion since 
the wave length is of the order of the electron 
Larmor radius. However, the calculations can be 
simplified considerably if we limit ourselves to the 
analysis of waves whose amplitude is not too small. 

Since the electrons execute about one orbit in 
the magnetic field of the wave for the conditions 
that hold here, the electron angular momentum 
cannot be smaller than the ion angular momentum: 
meve ~ miVi· 

For this reason we can neglect the ion current 
in Maxwell's equations. The characteristic value 
of the induced magnetic field in the wave is H 

*ch =cosh. 
ttg = tan. 
~sh = sinh. 
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...... H0 IE. Hence, to accuracy of order E we can 
neglect Hi everywhere compared with H and take 
the condition H ( ± oo) = 0 as the boundary condition 
on H. Thus, H satisfies the following equation 
approximately 

(28) 

which is equivalent to the equation of motion of a 
nonlinear oscillator in a magnetic field. 

From momentum and energy conservation we 
have 

darg H eH~1 
P~=2mlvo" 

(29) 
Turning to dimensionless variables we write 

I HI= H 0v I eM; M = H~1 IVI6nn0m,v~. 
£ = £.TJ, £, = Y m,c2 I 4ne2n0• (30) 

From Eq. (29) we obtain the following equation 
for v 

p (v) dv I dTJ = ± v V V!- v2, (31) 

where v + = ,; 1 - M2 is the maximum value of the 
magnetic field in the wave. 

In the approximation used here we have p ( v) 
= 1 - 2v2• From the conditions p > 0 and Im v + = 0 
we obtain the following limitations on the reciprocal 
Mach number: 

(32) 

When v + is approximately 1/ f2 the particle den
sity at the maximum again becomes large. The 
condition that must be satisfied if one is to neglect 
the thermal spread of the velocities in this case is 
less stringent than in Eq. (20): 

(33) 

Integrating Eq. (31) we have 

arcch v + I v - 2v + V v~ - v2 = v + I 11 I· (34) 

For amplitudes that satisfy the condition E « v + 
« 1 the second term in the left side of Eq. (34) 
can be neglected. Returning to the physical vari
ables, we obtain the following expressions: 

v 11 = - 2v0 I f 1
2 , n = n0 (1 + 2j f 1

2), V 11 = H~i I V 16rtn0me , 

H = V m, I me H'i1 f (£), Ve = 2 V m1 I me v0f (£), 
(35) 

where f( ~) = v+eiU~e/coth ( v+U~e ). Here, we 
have neglected the difference in the velocity of 
rotation of the phase of the magnetic field and the 
electrons, a procedure that is valid only for low
amplitude waves. It is evident from Eq. (35) that 
the energy in the wave is distributed equally be
tween the magnetic field and the translational and 
rotational motion of the plasma. Since the electron 
velocity is assumed to be nonrelativistic, the fol
lowing condition must be satisfied: 

(36) 

Estimates analogous to those in Eqs. (26) and 
(27) show that the quasi-neutrality of the plasma is 
also provided by the nonrelativistic condition for 
the problem (36). 

The author is indebted to V. L. Pokrovskii for 
a number of valuable remarks. 
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