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An asymptotic expression is obtained in the "one-logarithm" approximation for the scatter
ing cross section of relativistic electrons in an external field, for the case of large momentum 
transfer to the field. 

1. Abrikosov [1] has found the cross section for 
scattering of an electron by an external field for 
the case of large momentum transfer in the 
"doubly-logarithmic" approximation, in which the 
main terms in the matrix element in the n-th order 
of perturbation theory are of the type e2nLm ( L is 
the logarithm of a large energy). [Z] 

For the example of a vertex part, the writer and 
Fomin [3] have shown that it is possible to calculate 
the terms that come next after the main ones, of 
the type emLzn-1 ("one-logarithm" approxima
tion). In the present paper a calculation is made 

in the one-logarithm approximation for the cross 
section for electron scattering in an external field 
in the high-energy region: E » m, pq » m 2 (p and 
q are the four-momenta of the incident and scat
tered electron, and E is its energy). 

2. Let us first find the contribution to the matrix 
element from the main diagrams, in which all of 
the photon lines run across the vertex at which the 
external field acts ( see figure ) . 

To begin with we consider the contribution from 
diagrams with one photon line (diagram a): 

(1l e2 \ d4k uqrfL(q-k+m)A(,o-k+m)rfLuP 
Mo = nt J (2n)• '(- 2pk + k2 + p2 - m2 + ie) (- 2qk + k2 + q2 - m2 + ie) (k' + ie)' {1) 

a b c 

where Up and uq are the spinor amplitudes for the 
incident and scattered electron and AJJ. is the poten
tial of the external field. 

For p2 = m 2, q2 = m 2 the integration over the 
region of small momenta leads to divergences; 
therefore we shall regard p2 -m2 and q2 -m2 as 
differing from zero by small quantities, and set 
p2 = m 2, q2 = m 2 only after the removal of the in
frared divergences (Article 5). 

As in [1•2] we break up the vector k into com
ponents in the plane of p and q and perpendicular 
to this plane: 

k = u (p- yq) + v (q- yp) + kj_, k3_ =- 2pqz, 

where k1P = k1q = 0, y = m 2/2pq. The new vari-

abies u and v vary between infinite limits, and z 
ranges from zero to infinity ( k1 is a spacelike 
vector); the fourth variable is the angle in the 
plane of k1. 

The terms in the numerator of the integrand in 
Eq. (1) which are quadratic in k make a contribu
tion in the high-momentum region and will be con
sidered separately (Article 3). The terms linear 
in k1 do not lead to logarithmic terms. When we 
further use the fact that pup = mup and transfer 
the factors p and q across the YJJ.• we get, on 
dropping terms of the order m 2/2pq 

(1) e2 - ' 1 
M 0 = Jli UqAUp 4n 

\\' (1- u- v) dudvdz 
X .l.l) [u(1-v)-a+rv+z-ie][v(1-u)l-~+ru+z-ie][uv-z-f-ie] 

(1) e2 - ~ (1) + M 1 = 4 n2 UqfiUpJ {1- u- v} + M 1 , (2) 

where a = (p2 -m2 )/2pq, {3 = (q2 -m2 )/2pq; and 
Mfl> is the contribution to M~l> which comes from 
large values of k. 
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Let us first find Re J { 1}. The logarithmic 
terms will be correctly taken into account if the 
integration over u, v is taken between the limits 
(- 1, 1) ( cf. [J]), and then the only contribution to 
the integral over z is that from the residue at the 
point z = uv: 

1 1 
\ (' 6(uv) 

Re/{1}= -n .l du J dv(u-ct-f-lv)(v-f3+1u) 
-1 -1 

= - n ( 2 In r In ~- In2 ~ ) + 0 (1). 

There are contributions to J { u} from the res
idues from the second and third denominators 

where Mln) is the contribution to Mbn) from the 
region of large momenta of the virtual photons 
(more exactly, from regions where at least one 
of the photon momenta is large). 

In the expression written the integrations over 
the variables (ui, Vi, Zi) relating to each photon 
can be carried out independently. The calculations 
are analogous to those for M~1 > and give the follow
ing result: 

(n) ( e2 )n- A [ 1 ( rxf3 rx )n Re Mo = - 4n UqAUp fiT 21n r ln-y - In2 rr 

+ 1 (2I I rx~ I 2 :x)n-1 4I ]+M<n> (5) (n -1)! n r n r- n rr . n r 1 • 

In the square of the absolute value of the matrix 
element the one-logarithm terms in Im M~n) lead 
to terms of the type e2kL2k-2• Therefore in the 
one-logarithm approximation Im M~n) does not 
contribute to the cross section. 

3. Let us now find the contribution from the 
main diagrams which comes from the region of 
high momenta of the virtual photons. One-loga
rithm terms arise if the photon line carrying a 
large momentum is located higher than all the 
other photon lines. The integration over this large 
momentum is carried out independently, and those 
over the others, as in Article 1. The result is the 
following expression for the contribution to M(n) 
which comes from the region of large momenta: 

M(n) = (~)n (_1_)n-1 (- ni)n-1 (2 In In~- In2 ~)n-1_ 
1 nt 4n (n -1)! y I f3 

(' d4k Uql/i AklpUp e2 - A 1 A2 
X j (2n)2 (k2 - 2pk) (k2 - 2qk) k2 = n UqAUp. -.r 1n 2pq 

( 
e2 )n-1 1! ( rx~ 2 :x )n- 1 

X - 4n (n _ 1)! 2 In r In r- In rf . (6) 

J {u} = J {v} = 4n In r + 0 (!). 

For M~1 > we finally get 

R.e Mb1>=- ::uqAup(2 Inyln~- In2 f3rx + 4lnr)+Mil). 
I (3) 

Im M~1 > also contains one-logarithm terms, but 
their contribution to the cross section is of the 
order e4L2, which is not retained in our present 
approximation. 

Let us now consider the main diagrams with n 
photon lines. Combining all of the diagrams in 
M~n) (diagram c) and symmetrizing the integrand 
in the variables k1o ... , kn (see Appendix), we get 
to one-logarithm accuracy 

(4) 

The one-logarithm contributions from diagrams in 
which there are photon lines that do not run across 
the main vertex (electron proper-energy insertions 
and side vertices) cancel each other, with the ex
ception of proper-energy parts that lie below all 
the photon lines. Their contribution is given by 
(cf.[4J) 

M2 --uqAup --In- --In----In--(n) _ e2 - A ( 1 A2 1 p 2 - m2 1' q2- m2) 

n · 4 m2 2 m 2 2 m2 

( e2 )n-1 1 ( ~ ctf3 2 ct )n-1 
X - 4n (n- 1)! 2 In I In r - In 1f . (7) 

Here charge renormalization and wave-function 
renormalization have been performed. 

The sum of the contributions (6) and (7) is inde
pendent of the cut-off momentum A and is given by 

(n) (n) e2 - A ( 1 1 rxf3) ( e2 )n-1 1 
M 1 +M2 =-;uqAup 4 1nr- 2 Inr" - 4n (n- 1)! 

( rxf3 2 ct )n-1 
X 2 In r In r -In 1f . (8) 

4. Diagrams obtained from the main diagrams 
(see figure ) by the insertion of proper-energy 
parts in photon lines also give a contribution in 
the one-logarithm approximation. It can be shown 
that the only contribution is that from the imaginary 
part of the proper-energy function. For example, 
an insertion in M~1 > gives 

\ 6 (uv - z- 41) dudvdz 
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By inserting a proper-energy part in each photon line of M~n) in turn and symmetrizing the inte
grand in k1o ... , kn, we get 

- A e4 3 ( ez )n-1 1 ( cr~ 2 cr ) n-1 
=UqAup 36n2 1n Y·- 4n (n- 1)! 21nyln-y-ln lf . (9) 

The contribution from the photon proper-energy 
insertions corresponding to the external potential 
is of the form 

X (2 In r In cr~ - ln2 :!..)n-1 • 
ll ~ 

(10) 

Combining the expressions (5) and {8)-{10), we 
find the final expression for the matrix element for 
electron scattering in an external field: 

00 

2] (n) - A [ 4 e 2 e2 ( 1 1 cr;3 \ M = M = u Au 1--- In r + - -In r-- In --o- 1 
q P 3 :rt :rt 4 2 Y' I 

n=O 

+ ~ ln3r] exp {- !:___ (2 In r In ~- ln2 __::_)} • (11) 
36n2 4:rt I ~ 

5. Let us now consider the scattering of an elec
tron in an external field with the emission of pho
tons whose total energy does not exceed .6.E « E 
( E is the energy of the electron ) . 

The matrix element for scattering with the 
emission of one such photon is of the well known 
form ( cf. [5]) 

1M = V 4ne ( 2qe _ 2pe ) M, 
V 2 I k 1 2qk + q2 - m2 2pk- p2 + mz 

where ki-t is the momentum of the photon and ell 
is its polarization. 

Summing the square of the absolute value of 
1M over the polarizations and integrating over 
photon energies from 0 to .6.E, we get the follow
ing expression for the cross section for scattering 
with the emission of a photon of energy not exceed
ing .6.E: 

da<ll = da<oJ (J (p, q) + J (- p) + J (q)], 

LlE 
(' d3k 8pq 

J (p, q) = - 2Jte2 .l (2n)sl k 1 (2qk + qz- m2 ) (2pk- p2 + m2 ) 

0 

e2 ( Lie cr~ 1 2 cr ) =-it 21nyln 8 -lnrlny-+;rlnlf +0(1), 

J (- p) + J (q) 
AE 
(' d3k [ 4m2 4m2 J 

= 2Jte2 j (2n)"l k 1 (2qk + q2 - m2) 2 + (2pk -p2 + m2) 2 . 

0 

da< 0> is the cross section for scattering without 
emission of a photon. 

It can be shown that to one-logarithm accuracy 
the cross section with the emission of r photons 
is of the form 

Lle Lle-)k11 Lle-lk.)-... -lkr-1 I r 

d3k ~ d3k ~ d3k, 1 2:rte 2 

dc;(r) = dc;(O) \ (2~)13 • (2~)23 .. . (-2 3 -, rr -1 k I j ,. ,. n) r. i 
0 0 1 . 

f r - 8pq 

X 1fi (2qk1 + q2 - m2) (2pki- p2 + m2 ) 
1 

r [ 4 2 + 2] (2qki + ~z- mz)z 
1 

4m2 Jfi -8pq } + (2pki- p2 + m2)2 so;6i (2qks + qz - m2) (2pks- p2 + m2) . 

(13) 

Carrying out the integration over kr, we get an 
expression of the type (12) with .6.E replaced by 
.6.E - I k1l - ... - I kr-11· Expanding this expres
sion in powers of k, we can show that the added 
terms give contributions of the order of .6.E/ E. 
Therefore we can replace all upper limits in Eq. 
(13) by .6.E. The result obtained is 

[( ez )' 1 ( Lie crB 1 cr )' dc;<rl = de; <ol - - - 21n r In- -In r In--'-+ .-ln2 -
n r! e 1 2 ~ 

ez ( Lie cr~) ( ez )r-1 1 ( Lie +it - 21n e +In tz - n (r _ 1)! 21n r In e 
cr~ 1 2 cr)r-1] -In r In r + 2 1n i3 . {14) 

Summing da<r) over r, we get the cross sec
tion for scattering with the emission of photons of 
energy not exceeding .6.E: 

00 
[ ez ( Lie cr3)] de; = 2] dc;(r) = dc;(O) 1 + n - 2 In e + In ~ 

r=O 

x exp {-~(21n yin ~e -lnr In¥+ iln2 ~)}. (15) 

Substituting the value of da<O> according to Eq. 
(11), we get 

( 13 e2 m2 e2 Lie e4 I 3 m2 ) de;= do0 1--6 -In 2--2 -In--+ 1-8 ., n 2,----n pq :rt e w pq 

x exp 1-2-ln-. -ln-r e2 mz lie} 
L n 2pq e ' 

(16) 

~ ( Lie cr~) = n -- 2ln e +In r" + 0 (1); (12) where da0 is the cross section for electron scat-
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tering in an external field in first-order perturba
tion theory. 

The logarithmic terms in the parentheses in 
Eq. (16) are the desired corrections to the doubly
logarithmic approximation of [t]. We note that 
part of these corrections have been taken into ac
count by Yennie, Frautschi, and Suura[G] by another 
method in a treatment of the infrared divergence. 

The writer is grateful to P. I. Fomin for helpful 
advice in the course of this work and for discus
sions, and also to A. I. Akhiezer for a discussion 
of the results of this work. 

APPENDIX 

We shall explain the symmetrization procedure 
for the simplest example of M~2 > (diagram b ) : 

We have denoted by Mf2> the contribution from large momenta (the corresponding terms have 
been omitted in the numerator of the integrand in Eq. (A.1). In the denominators we have dropped 
terms of the type of ( z1z 2 )1/2 cos ( <P1- cp 2 ), as was also done in [3]. 

Reducing the expression in square brackets in Eq. (A.1) to a common denominator, we get 

J _ (' ( 1 - u1 - u2 - vi - v.) du1 du2 dv1 dv2 dz1 dz2 
- J (UIVl- ZI) (UzVz- Zz) [UI (1- Vt)- a+ jVI + ZI] [u2 (1- Vz)- a+ jV2 + Z2j 

(1- Ut) 
X [vi (1- UI)- [3 + rul + zi] [(vi+ Vz) (1- UI- u.)- [3 + r (ui + u.) + Zt + z.] 

X [t- (ul + U2) V1V2 + [3 (1- VI- V2) + 2jVIV2 + ZIV 2 + ZzVI 1~ 
(ui + U2) (1- VI- V2)- a+ j (VI+ V2) + ZI + Z2 • 

Estimates show that the second term in the square brackets in Eq. (A.2) gives a contribution 
of the order L 2, which is not of "one-logarithm" type. Writing the remaining integral in the form 

J _ 1 (' (1- UI- u2 - VI- vz) dui du2dvi dv2 dz1 dzz 
- Z J (UIVI- ZI) (U2V2- Z2) [ui (1- VI)- a+ jVI + ZI] [u2 (1- V2)- a+ jV2 + Z2] 

r 1- U1 1- u. J 
X LVI (1 - U1) - [3 + jU1 + Zl + V2 (1 - U2)- [3 + jU2 + Zz 

(A.2) 

(A.3) 

and then reducing to a common denominator in Eq. (A.3), we again omit terms of order L 2• The result 
is then 

J _ 1 (' (1 - u1- Uz- Vt- v2) du1dv1dz1 
- 2 J [ui (1- Vt)- a+ rv1 + zt] [v1 (1- u1)- [3 +jUt+ z1] [u1v1- zi] 

duzdvzdz2 

Here the integrations over k1 and k2 can now be 
carried out independently. 

1 A. A. Abrikosov, JETP 30, 96 (1956), Soviet 
Phys. JETP 3, 71 (1956). 

2 V. V. Sudakov, JETP 30, 87 (1956), Soviet 
Phys. JETP 3, 65 (1956). 

3 S. Ya. Guzenko and P. I. Fomin, JETP 44, 000 
(1963), Soviet Phys. JETP 17, in press. 

4 A. I. Akhiezer and V. B. BerestetskH, Kvanto-

(A.4) 

vaya elektrodinamika (Quantum Electrodynamics), 
2d ed. Fizmatgiz, 1959. 

5 J. M. Jauch and F. Rohrlich, The Theory of 
Photons and Electrons, Addison-Wesley, 1955. 

6 Yennie, Frautschi, and Suura, Ann. Phys. 13, 
379 (1961). 

Translated by W. H. Furry 
173 


