
SOVIET PHYSICS JETP VOLUME 17, NUMBER 3 SEPTEMBER, 1963 

THEORY OF NON -UNIFORM ANTI FERROMAGNETIC SPIN CHAINS 

L.N.BULAEVSKII 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor October 17, 1962 

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 1008-1014 (March, 1963) 

A linear system of spins with antiferromagnetic interaction between nearest neighbors is 
considered, the interaction constants between each spin and its left and right neighbors being 
different. A system with such a non-uniform interaction may serve as a model for 7r-elec­
trons of linear molecules with alternating bonds. The transformation of spin operators to 
operators of the Fermi type and the Hartree-Fock approximation are used. It is shown that 
in a system with non-uniform interaction an excitation gap exists for any number of spins. 
In a linear chain the gap disappears only in the case of uniform exchange interaction of an 
infinite number of spins. The method of calculation can be extended to more complex struc­
tures. 

IN the preceding paper [iJ a linear chain of spins 
having the same exchange interaction for all neigh­
boring pairs of spins was investigated. It was 
pointed out that such a system could serve as a 
model for long molecules with conjugated bonds. 
Ginzburg and Fa'ln [2] raised the question of the 
character of the excitation spectrum for a linear 
system of spins of a more complicated type. 

In the present paper we consider a chain of 
spins s = 1/2, shown schematically in Fig. 1, in 
which the circles represent the positions of the 
spins and the dashes the interactions between them. 
This chain consists of N links, two spins per link; 
within the link the spins interact with constant J 1; 

the interaction between the nearest spins of neigh­
boring links is specified by the constant J2. The 
Hamiltonian of the system has the form 

N 

::;e = ~ J1 (silsi2- -H + J2 (si2siH 1- -H, (1) 
i=I 

where Sj1 is the operator of the first spin of the 
j -th link and Sj2 is the operator for the second 
spin of the same link. 

According to Bogolyubov, [ 3] a spin exchange 
Hamiltonian can be written down for a system of 
electrons ipteracting with ions and among them­
selves, with the following restrictions: 

a) the many-electron wave function is made up 
only of atomic wave functions of the valence elec­
tron CfJf• where the atomic wave function C{Jf corre­
sponds to the lowest energy state of the valence 
electron; 

b) if the expansion is over the smallness parame­
ter E ~ cpf1 cpf2 with f1 ;;.! f2 (the product of the wave 

~-o~ 
J,~ J,J,~ 

FIG.l 

functions enters in integrals of the Coulomb, ex­
change, and overlap types, etc.), then higher order 
terms in E, beginning with E4, are neglected. 

In order to obtain the Hamiltonian (1), it is nec­
essary to make still another approximation, namely 
to neglect all integrals with atomic wave functions 
cpf1 and cpf2 for which I f1 - f2 I 2:: 2. If it is nec­
essary to keep integrals with I f1 - f2 I ::s n, then 
the interactions between each spin and its n neigh­
bors must be taken into account in the spin ex­
change Hamiltonian. 

From what has been said, it is clear that the 
Hamiltonian (1) with the assumptions mentioned 
describes 1r-electrons in linear and cyclic polyene 
molecules with alternating bonds, if one takes as 
the atomic wave function cpf the appropriate linear 
combination of s- and p-orbitals of the carbon 
atoms. 

Polyene molecules with alternating bonds have 
been considered by Longuet-Higgins and Salem [ 4J 
and by Ooshika [ 5] using the linear combination of 
atomic orbital-molecular orbital (LCAO-MO) 
method. 

In the Hamiltonian (1) it is convenient to change 
to dimensionless parameters by exchanging J 1 by 
unity (thus expressing all energy magnitudes in 
units of J 1 ) and J2 by the quantity y = Jd J 1 which 
characterizes the non-uniformity of the exchange 
interaction. For y = 1, the system is completely 
uniform, and one can introduce the period of the 
chain, which is half as great as in the case 0 ::s y 
<L 
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It was shown in [ 1] that in a system with uni­
form interaction, the gap Emin between the ground 
state of the system ( total spin S = 0) and the first 
excited state with S = 1 decreases with increasing 
number of spins according to the law Emin i'::j 1/N 
and disappears in the limit of infinite N. In the 
investigation the spin operators were transformed 
to operators of the Fermi type, and the resulting 
Hamiltonian with four-Fermion interaction was 
solved in the Hartree-Fock approximation. In the 
present paper the same method is used, and it is 
shown that the gap Emin of order 1 - y remains 
for arbitrary N. 

1. TRANSFORMATION OF THE SPIN HAMIL­
TONIAN 

For spins s = 1/2 the Fermi operators l/Jj1, 

lJ.ij2 and their Hermitian conjugate operators lJ.ij1 

and l/Jj2 can be introduced: 
± (2)2i-2sz sz sz sz s± 'lli1 = 11 12 . . . i-1,1 i-1,2 i1 ' 

± (2)2i-1s·z sz sz sz sz s± 'Pi2 = 11 12 . . . i-1,1 j-1,2 i1 i2 ' 

where s± = sx ± iSY. 1l 

We introduce a momentum k characterizing 

(2) 

the distribution of field over the chain and analogous 
to the wave momentum of electrons in crystals. 
From the periodicity conditions l/Jj1 = l/Jj+N, 1 and 
l/Jj2 = l/Jj+N,2, it follows that k = 2rrn/N, n = 1, 2, ... , 
N. The transition to the momentum representation 

In the operators ak, l3k the value of the z com­
ponent of the total spin Sz is written in the form 

Sz = N- 2J (akctk + ~k~k)• 
k 

(6) 

The Hamiltonian (5) describes a system of two 
kinds (a and {3) of Fermi -particles with a four­
Fermion interaction; Sz is expressed through the 
operator for the total number of particles. 

2. HARTREE-FOCK APPROXIMATION AT ABSO­
LUTE ZERO 

Replacing the mean value of the four operators 
by an average in pairs, we obtain the Hartree-Fock 
approximation 

E = (;!f) = ~ [ w% n% + w~ n~ J 
k 

+ + ~ IV (k1k2k2k1) (n%,nt + ntn2, + nk.nt + n~,n%,) 
k1k2 

+ V (k1k2k1k2) (- n~.n~,- n~,nt + nk,n2, + nf.nt)J. (7} 

Here n~ = (ak:ak), ni3k= (/3"iJ1k), and the average 
is to be understood in the quantum-mechanical and 
statistical sense. In Eq. (7) and henceforth, we 
set N = 1, i.e., the energy and other thermodynamic 
quantities are calculated for one link. 

We determine the occupation numbers n~ and 
n~ from the condition for minimum free energy 
F = E - Ta, where T is a dimensionless tempera­
ture and the entropy a is expressed through the 

(3) occupation numbers 

together with the canonical transformation 

ak = 2-•;, (ak + Pk) e-i'fk, bk = 2-•;, (ak - ~k) e''fk; 

tan 2(jlk =- r sin k/(1 + r cos k) 
(4) 

brings the Hamiltonian (1) into the form 

;Je = ~ (w~ e~:J; ctk + w~ pl; Pk) 
k 

x exp {- i (rpk, - CJlk, + (jlk,- (jlk,)}, 

w~· il = - 1/2 (I + r) ± 1/ 2 VI + r 2 + 2r cos k. (5) 

1lThe transformation to Fermi operators is possible for any 
half-integral spin. [ 11 ] 

a= -~[n~lnn~+ (l-nk)ln(l-nk)+n21nn2 
k 

+(l-n2)ln(l-n2)J. (8) 

The system of equations for determining the 
occupation number has the form 

n~· il = [ 1 + exp (e~·ll!T)rt, 

e~· il = w~· il + V (0) ~ (n~, + n~.) ± 2Jv (k, k') (n~, - np, 
k' k' 

V (ktk~) = ReV (k1k2k1k2) = 1/ 2 cos 2 (CJlk,- fJlkJ 

+ 1/2 r cos (k2- k1- 21Pk, + 2()lk,), 

V (0) = ReV (k1k2k2k1) = 1/2 (l + r). (9) 

The solution of this system of equations for T 
= 0 is easily obtained: 

n~ = 0, n~ = 1, 

e~ =- e2 = 1/2 VI + y2 + 2r cos k + 1/ 2 cos 2CJlk~cos 2rpk· 
k' 

+ 1/ 2 r cos (k + 2fJlk) 2Jcos (k' + 2qJk'). (10) 
k' 
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For large N it is possible to replace the sum­
mation over momenta by an integration; then 

e" = _i_ VI + 2 + 2 cos k + (c1 + rc2) + (rc1 + c2) cos k 
k 2 r · r v 1 + 1• + 21 cos k 

where K ( x) and E ( x) are complete elliptical 
integrals. 

The energy of the ground state for large N is 

) 2 2/ E0 =- 1/ 4 (1 + 1)- (c1 + c2 -c1- C2 I· (12) 

The energy spectrum of the system is shown 
schematically in Fig. 2. The energy of the quasi­
particles is distributed in two bands; the width of 
each band is y + 2~. The upper level contains the 
N levels of a-quasiparticles with positive values 
of energy, the lower, N levels of {3 -quasiparticles 
with negative values of energy. In the ground state 
the band for the a -particles is filled in accordance 
with the Fermi distribution and the upper band for 
the {3-particles is empty. The state with one ex­
cess a -particle corresponds to a level of the sys­
tern with Sz = - 1; an energy of Ek = E~ is neces­
sary for its excitation. The state without one {3-
particle ( j3 -hole) gives Sz = + 1, and the energy 
excitation of this level is E k = - E ~ = E'k. 

There is an energy gap Emin for excitation: 

Bmin = 1 /2 (1 - j) + C1- C2. (13) 

The gap vanishes only for y = 1. In this case, we 
have for the ground-state and excitation energies 

Eo = _lf2p2, Bk =pI cos (k/2) [, 

p = I + ~ ~ I cos 41· 
k 

k=z:Jn, n=1,2, ... ,N. 
(14) 

For large N we go over to integration, and p = 1 
+ 2/rr, Emin = (n + 2)/N for N odd and E0 = -1.338. 
These results agree with those obtained previously 
[1J 

The contribution of the correlation forces to 
the energy of the ground state for y = 1 is easily 
specified by the methods of quantum field theory 
[S]. The calculation of the diagrams shown in Fig. 
3, where all the unbroken lines are taken in the 
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Hartree-Fock approximation and the interaction 
lines in the lower approximation D0( k) = 2 cos k, 
gives Eo= - 1.370. An accurate value for the 
energy of the ground state for an infinite uniform 
chain was obtained by Orbach; [ 7] itis E 0 = -1.386. 

Note that for N even (polymers of the type 
c4nHm) the ground state of a uniform chain turns 
out to be four-fold degenerate. In fact, from Eq. 
(14) E~ = - E~ = 0, if k = n/2. Correspondingly, 
the states with N/2 + 1 (Sz =- 1 ), N/2 - 1 (Sz 
= + 1) particles and the two states with N/2 par­
ticles have the same energy. The three states 
with Sz = 0, ± 1 belong to S = 1, and the level with 
Sz = 0 to S = 0. This result contradicts the demon­
strations by Marshall [B] and by Karayianis, Mor­
rison, and Wortman [SJ that the ground state of 
spins with antiferromagnetic interaction is nonde­
generate. Obviously, the degeneracy is lifted by 
the correlation forces, the level S = 0 becoming 
the ground level, and S = 1 the first excited state. 

It is interesting to compare the accurate data 
of Orbach for finite uniform chains [ 1o] with N 
= 3.5 with the results of the Hartree-Fock approxi­
mation. For this, it is necessary to consider that 
the terms SN-281 1 and S:N2Si 1 in the Hamiltonian 
(1) are replaced'by lJ!N2<J; 1 1 ~nd <J;! 1<J!N2• respec­
tively, even though their ~quality does not follow 
from the transformation (2). For Emin Orbach 
obtained 0.68 for N = 3 and 0.43 for N = 5. Cal­
culation by the Hartree-Fock approximation gives 
respectively 0.81 and 0.51. The Hartree-Fock ap­
proximation is found to be accurate for y = 0. From 
Eqs. (11) and (12) we obtain E 0 = - 1 and Ek = 1. 

Ginzburg and Fain [2l assumed that in the ex­
citation spectrum of a nonuniform linear chain 
Emin- 0 as N- oo, This assumption was based 
on results of spin-wave theory, which gives Ek 
~ -fY sin k for the excitation spectrum. As the 
authors themselves emphasized, [2] the absence of 
a gap for large N could not possibly be assumed, 
since the applicability of spin-wave theory to a 
linear chain is doubtful. The results of this work 
show that when y < 1 the spin-wave theory gives 
incorrect results. This is explained by the fact 
that the spin-wave approximation assumes degene­
racy of the ground state ( sublattice "+-" and 
'' - + ") even for y = 0, when the system degene­
rates into spin pairs and the interaction is only 
within a pair. But the ground state of a system of 
two spins with antiferromagnetic interaction is not 
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degenerate; it has S = 0. The excited states of two 
spins are separated from the ground state by the 
gap Emin = 1; they have S = 1. It should be men­
tioned that a similar conclusion about the inappli­
cability of spin-wave theory cannot be made in the 
case of two- and three-dimensional antiferromag­
netic substances. 

In the ferromagnetic case ( J 1, J2 < 0), the ground 
state has E 0 = 0 and total spin S = N, according to 
Eq. (9). For the "one-particle" excitation spec­
trum (excitation of the level with S = N - 1) we 
have 

et:· 13 = 1/ 2 (1 + r) ± 1/ 2 Yl + y2 + 2y cos k. (15) 

For small values of k, Eq. (15) gives Ef!_ 
~ ~y/2 ( 1 + y) and Emin ~ 1/N2 for sufficiently 
large N. The branch E~ also gives E~- 0 as 
y - 0. This property of a nonuniform ferromag­
netic chain and the absence of an excitation gap for 
N- oo are results of the degeneracy of the ground 
state of two spins with ferromagnetic interaction. 

The expression for the heat capacity of a linear 
chain with antiferromagnetic interaction will con­
tain a factor exp ( - Emin/T). At room tempera­
tures and y < 1 this factor is exponentially small. 
The magnetic permeability in fields H < JdJ.l will 
have the same property, since under usual condi­
tions paramagnetism is not exhibited by a system 
with nonuniform interaction. 

In comparing this work with that of Longuet­
Higgins and Salem C4J and of Ooshika, [ 5] it is nec­
essary to note that the LCAO-MO method without 
electronic interactions in the molecular orbitals 
gives the same result for the spectrum of single­
electron excitations as the spin exchange Hamil­
tonian without terms in the z -components of the 
spin operators. Thus it is assumed that if integrals 
with single-particle wave functions cpf1 and cpf2 
for which I f1 - f2 I> n are neglected in the LCAO­
MO method, then in the spin Hamiltonian one con­
siders the interactions of each spin with only its 
n neighbors. The resemblances and differences 
between the two methods become clearer if it is 
kept in mind that the terms containing the z com­
ponents of the spin operators describe the interac­
tion of the a- and {3 -fermions. 

The transformation of the spin operators to 
Fermi-type operators together with the Hartree-

Fock approximation for the Hamiltonian obtained 
permits consideration of spin structures of a more 
complicated type than is illustrated in Fig. 1. With­
out complicating the calculations too much linear 
chains with next-nearest neighbor interactions can 
be handled. A four-fermion interaction Hamiltonian 
is obtained in the Fermi operator representation. 
Such a Hamiltonian will also describe the structure 
represented schematically in Fig. 4. 

Hamiltonians with four- and six-fermion inter­
actions can be used to describe more complicated 
structures, and only in the case of structures that 
are infinite in two or three dimensions do terms 
representing the interaction of an infinite number 
of fermions appear in the Hamiltonian. 

In conclusion, the author sincerely thanks V. L. 
Ginzburg for suggesting the problem and reviewing 
the manuscript, N. E. Nikulkin for the numerical 
calculations, and B. M. Bolotovski'L and V. K. 
Bykhovskil for valuable discussions. 
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