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Decay of a fast particle involving a small transfer of momentum from to the atoms of the matter 
as a result of Coulomb scattering is considered. It is shown that interference of Coulomb 
scattering of the initial particle and the decay products leads to an appreciable decrease of 
the decay probability at ultrahigh energies. 

1. INTRODUCTION 

IN the case when an unstable particle decays not 
in vacuum but in matter, the Coulomb scattering 
of the particles participating in the decay process 
is usually disregarded. The argument usually 
used in this connection is that a sufficiently large 
momentum is transferred during the decay, so that 
distances comparable with interatomic distances 
cannot be appreciable. Actually, these considera
tions are not accurate, for during the course of 
the decay a finite small momentum can be trans
ferred to the external field of the atoms of the 
medium, and then large distances can become 
significant. 

Since the arrangement of the atoms of the mat
ter is not known, it is meaningful to speak of a de
cay probability averaged over the atom positions. 
We can separate here two different cases of Cou
lomb scattering during the course of decay. The 
simplest is the case when the Coulomb scatterings 
of the initial and final particles are independent of 
each other (the average momentum is transferred 
to the matter only by the initial particle or only by 
the final particle). Then the Coulomb scattering 
does not differ from multiple scattering by a single 
particle, and since there is only one preferred 
direction of the initial particle momentum, the 
momentum averaged over the atom positions has 
the same direction as initially. It follows there
fore that there is no average momentum transfer 
to the matter, the kinematics of the decay remains 
the same as in vacuum, and the argument advanced 
that large distances are insignificant remains valid. 

Consequently the Coulomb scattering prior to 
the instant of decay or after the instant of decay 
can be neglected. 

The situation is different if the Coulomb scat
tering occurs within the effective region of the de-

cay. In this region we can no longer use the con
cept of initial and final particle, and consequently 
we cannot establish precisely which particle trans
fers the momentum. The momentum transfer is 
essentially connected in this case with the exist
ence of both the initial and final particles, and we 
have here not one but at least two preferred mo
mentum directions, of the initial and final par
ticles. Consequently the average momentum trans
ferred to the matter is not zero and the kinematics 
differs from that in vacuum; thus, if the momen
tum transferred to the matter is sufficiently small, 
large distances can become influential. 

It follows from the foregoing that the effect 
under consideration has essentially a quantum 
character. In fact, the effect due to the transfer 
of momentum inside the interaction region, i.e., 
interference between the scattering of the initial 
and final particles, cannot be obtained by classical 
calculations. 

We develop a general method for analyzing de
cay processes in matter with allowance for the 
possible momentum transfer to the medium during 
the decay. The analysis is confined to the case of 
sufficiently fast particles, the momenta of which 
are large compared with the reciprocal of the 
Thomas-Fermi radius of the atom A. = me2z113 
(ti = c = 1 ), so that we can consider only Coulomb 
scattering on the atomic nuclei, the presence of 
the electron shell being really regarded as a 
screen factor. The effective values of the momen
tum transferred to the atoms of the medium are 
small in this case, so that it is possible to neglect 
the recoil of the atoms, regarding the summary 
potential of the atoms of the medium as an external 
field: 

U (x) = ~ U 0 (x- Xa) - (~ U 0 (x -X a)) , 
a a 

where U0 ( x) is the potential of an individual atom 
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and the symbol ( ... ) denotes averaging over the 
coordinates xa of the atoms. By virtue of the neu
trality ofthe medium as a whole, (L;u0(x-xa)) 

a 
is a constant independent of x. 

The problem consists of calculating the proba
bility of decay in an external field U ( x), averaged 
over the locations of the atoms of the medium. The 
calculations simplify appreciably if the averaging 
over the coordinates of the atoms is carried out 
not in the final result, but at an earlier stage, using 
the diagram technique developed by Abrikosov and 
Gor'kov [i] to take into account the effect of impur
ities in superconductivity theory, and by Edwards [2] 
in the theory of electric conductivity. 

2. AVERAGED TRANSITION PROBABILITY 

The decay probability in a medium can be rep
resented as a series in powers of a potential U(x) 
(if the momentum representation is used, the 
Fourier component V ( p) will be involved), so 
that the averaging of the probability reduces to 
averaging the products V (Pi ) V ( P2 ) ... V ( Pn). If 
it is assumed that the Born approximation holds 
for scattering by a single atom, then we can take 
into account for each fixed degree of the potential 
of the individual V0(p) only the highest degree in 
the number n0, of atoms per unit volume, neglect
ing the remaining powers of n0• 

In this approximation the average of the product 
of the potentials is represented by a sum over all 
possible combinations of pairwise averages, in the 
form [a] 

<V (p) V (p')> = F (p) fJ (p~- p:); 

F (p) = no (2n)S I Vo (p) l2f1 (P4)· (2.1) 

The presence of o(p -p') in (2.1) allows us to 
make an analogy between (2.1) and the propagation 
function of the "quasiparticle." The analogy with 
quantum field theory can be made even more com
plete if we formulate a rule for obtaining the aver
aged transition probability from a known matrix 
element which, as can be readily verified, assumes 
the same form as the Wick theorem, except that the 
convolution of the operators is replaced by paired 
aver aging of the potentials (2 .1) . 

It follows therefore that we can use a graphic 
method, analogous to the diagrams of the quantum 
field theory. However, since it is necessary to 
average the transition probability and not a matrix 
element, we cannot confine ourselves to ordinary 
diagrams for matrix elements, and we must con
sider generalized Feynman diagrams, which show 

in addition to the diagram for the matrix element 
M also the mirror reflection of the diagram, cor
responding to the Hermitian-conjugate matrix ele
ment M+. An example of such a diagram is shown 
in Fig. 1, in which the pair averaging (2.1) is shown 
by a dashed line. 

~ I ~ ~ :¥ ~ H+ 
I \ I 

/ ' I / ' / ' I I \ /- ...... 

;:_;y- r ~ -rH // 
a b c d 

FIG. 1 

The use of the graphic method enables us to 
separate the most essential diagrams in each ap
proximation, and then sum the diagrams. It is pos
sible to disregard, first of all, diagrams of the type 
of Fig. lc, which pertain to the scattering by a 
single particle, and the diagrams (Fig. ld) which 
do not describe the transfer of momentum to the 
medium. The main diagrams are those of type la 
and lb, which describe the transfer of momentum 
to the medium within the effective region of inter
action. Summation of diagrams of this type is fa
cilitated by the fact that the quantity n0A. - 3, which 
is the analog of the interaction constant, is ~ 10-4 

even for dense media. It is therefore sufficient to 
use an approximation of the Bethe-Salpeter type. 

Let us consider the decay of a charged particle 
into two neutral particles and one charged particle. 
If we integrate over the momenta of the neutral 
particles, then the transition probability will be a 
function of the momenta Pi and p2 of the initial 
and final charged particles only. Graphically this 
is represented by joining the lines of neutral par
ticles on Fig. 2. In order to take into account the 
scattering of the medium, it is necessary to sum 
diagrams of the type la and lb. 

Let us sum first all diagrams of type la. Such 
a sum, obviously, satisfies an integral equation of 
the type 2a. The similarity between this equation 
and the Bethe-Salpeter equation becomes obvious 

p P' ~ p' JI' a:~ = + 

p p' p p' p p' 

I ~ J1nL b I + I 
I I 

p p' p p' p p' 

FIG. 2 
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if the lines of the momenta for the conjugate ma
trix element are turned in the opposite direction 
(Fig. 2b). 

Let us denote the sum of the diagrams of type 
la by Ra(P2• Pi; p2, pi). Then for p »A. the equa
tion of Fig. 2a assumes the form 

R.a (p2,pi; P~,p~) =R. 0 (p2,pi; P~,p~) 

, ~ d4/F(l) Ra (p2 + l, P1. p~, P~ -I) 
-t-4EI£2 ' ' I (pi-1)2-m2-itJ 1 I (P2+ 1)2-m2+ ib 1 

(2.2) 

where F(Z) has been defined in (2.1). The effec
tive values of l in the integral (2. 2) do not exceed 
A., for when p » A. we can assume that 
Ra(P2 + Z,pl; P2,p1-l) ~ Ra(P2,pi; P2,p1), hence 
the solution (2.2) has the form 

Ra (p2, PI; p~, P~) = R. o (p2, PI; p~, P~) ( l - B (p2,p~)) -I; 

B (p, p') = n0 (2n) 3 4£I£2 ~ d3 ljV0 (I) j2 (J2- 2p'l- ib)-I 

x (J2 + 2pt + io)-I. (2.3) 

Let us sum now the diagrams of the type lb and 
all the cross diagrams, in which there are lines of 
type la and lb. In this case it is convenient to 
start from the sum of the diagrams Ra, surround
ing it with lines of the type lb, which leads to an 
interval equation (Fig. 3) in analytic form 

(2.4) 

+~ 
' / 

...... __ ..--
FIG. 3 

The solution of (2 .4) is found in analogy with the 
solution of (2.2) and has the form 

R. (p2, PI; p~,p~)=R.o (p2, PI; p~,p~) 

x [I- B (p2, P~)]-I [I- B* (p~, PI)]-I. 

The transition probability is connected with the 
value of R(p2, pf; p2, Pi) for pairwise coinciding 
arguments. Therefore the decay probability in the 
medium dW ( p2, p1 ), integrated over the momenta 
of the neutral particles, is connected with the cor
responding decay probability in vacuum dW 0 ( p2, Pi) 
by the relation 

dW (p2, P1,) = dWo (p2, PI) I 1 ~ B (P 2, PI) l-2 • (2.5) 

In calculating the integral (2.3) for very high en
ergies of the initial particle, it is necessary to take 
into account the final energy width of the particle 
state with definite momentum in the matter, aris
ing as a result of Coulomb scattering by the atoms 
of the matter. In other words, we cannot assume 
that the Green's function of the particle in the 
medium coincides with its vacuum value, but it is 
necessary to use the Green's function of the par
ticle in the matter, averaged over the atom loca
tions. An account of this circumstance causes the 
quantity 6 in (2.3) to be finite and in the exponen
tial- screening approximation, 

U0 (r) =(Ze2/4:rtr) e-'-r, 

it is determined by the formula 

Calculation of the integral (2.3) in the approxi
mation employed yields for the region J. « 1 of 
small angles of charged-particle emission, which 
is of greatest interest at high energies, 

B =- (a/4/..) :rt (1'}2 + {}~r)-'/,(1 + {}~r (1'}2 + {}~r)-I); 

(2.7) 

It follows from (2. 7) that Coulomb scattering de
creases the decay probability. An appreciable de
crease in the decay probability occurs when B ~ 1, 
i.e., when the condition ,J ~(a/A.) is satisfied. 

If this condition is satisfied for the angles J. 
~ M/E that are effective during the decay, then 
the influence of the Coulomb scattering will greatly 
affect not only the differential but also the total de
cay probability. It follows therefore that the total 
probability of any decay in matter decreases ap
preciably at energies above the critical value 

(2. 8) 

which for dense media near the end of the periodic 
system yields energies on the order of ( 104-105 )M. 

3. DECAY OF A FAST MUON IN MATTER 

Let us illustrate the application of the method 
with JJ.-e decay in matter as an example. Assum
ing the meson to be sufficiently fast, we can use 
(2.5)-(2.7). As is well known, the differential de
cay probability integrated over the momenta of the 
neutral particles of a completely polarized muon in 
vacuum has the form 

dW 0 = 3 (~~~(!) {13M2 - 4 (pvkv)] (pvkv) 

(3.1) 
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where Pv and kv are the 4-momenta of the meson 
and decay electron; we have neglected here the 
ratio of the electron mass me to its energy w. 
The range of variation of k in (3 .1) is limited by 
the condition 

Mme < Pvkv <-} (M 2 + m~). (3.2) 

in a system traveling together with the meson; this 
condition thus determines the maximum and mini
mum energies of the decay electron. 

In calculating the total probability, only the 
upper limit is important, and we can neglect the 
electron mass in (3.2), too. Integrating (3.1) with 
account of (3.2), we readily obtain the total decay 
probability of a moving meson in vacuum 

W o = 'To1 (M/E), 

which agrees with the Lorentz transformations for 
the lifetime of the meson. The total decay proba
bility in matter can be readily estimated for ener
gies which are larger than the critical energy (2.8). 
In this case the effective values of angle rJ. are 
small compared with 8cr. so that the ratio dW/dW0 

does not depend on the decay angle and is deter
mined by the meson and electron energies: 

( £2 _ wz )2 
dW::::::: dWo E•- wz +nEw ' t} < t}cr• 

(3.4) 

Substituting (3 .1) in (3 .4) and integrating with 
account of (3.2), we can obtain the total decay 
probability in matter in the form 

w~0.3Wo, E';?>Ecr· (3.5) 

pendence of dW I dW 0 on the decay angle, which 
complicates the integration. For energies less 
than critical the decay probability in matter coin
cides with the decay probability in vacuum. It 
follows from the foregoing that at ultrahigh ener
gies the lifetime of the muon relative to decay 
into an electron and neutrino increases appre
ciably. This can give rise to a situation wherein 
the probability of decay into another final state is 
comparable with or larger than (3.5). In particu
lar, if the characteristic angle of emission of a 
charged particle in decay exceeds M/E, for ex
ample ,... ../ M/E , then the Coulomb scattering 
hardly influences the probability of such a decay. 

It must be noted that the effect considered here 
is an analog of the Landau-Pomeranchuk effect 
for bremsstrahlung [4]. In both cases there is a 
decrease in the probability of the process because 
the Coulomb scattering inside the effective inter
action region disturbs the coherence of the par
ticles participating in the process. The only dif
ference is that the bremsstrahlung for soft quanta 
has a classical limit, and in this limiting case it 
is possible to consider the effect classically. 

The author is grateful to V. M. Galitski1 for a 
discussion of the results. 
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