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A simple method is proposed for expanding any many-point amplitude in relativistic theory 
in terms of partial waves. The expansions obtained are used for analyzing the asymptotic 
behavior of inelastic processes by the Regge [i] and Gribov [2] method. 

1. EXPANSION OF MANY -POINT DIAGRAMS IN 
HELICAL PARTIAL WAVES 

LET Ml'm';l"m" be the amplitude of the four­
point diagram of Fig. 1-the transition of the par­
ticles 1, {3 into 2, a -where l', m' and l", m" 
are the spins and projections of the spins of par­
ticles a and {3 on the directions na and n13 of 
their momenta in the c.m. system of the reaction. 
We assume for simplicity that the spins of par­
ticles 1 and 2 (and henceforth also of all other 
particles, unless otherwise stipulated) are equal 
to zero. 

According to Jacob and Wick[a] the expansion 
of Mz'm';l"m" in partial waves has the form 

Mt•m•; l"m" = ~ (2L + 1) 
LM 

D (L)• ( )D(L) ( ) t(l', I") (t· I ") 
X M,m' fla M,m" fl(3 L;·m',m" 'S 'S ' (1) 

(l' l") 
where fL;m' ,m" denotes the helical partial ampli-
tude; it depends on s' = p~, s" = p~, and on the 
energy t = (pf3 +Pi )2 = ( Ef3 + Ei )2 - (Pf3 +Pi )2, 

while 

= i (M-m') ~" d!j.;~ m' (COS()>.,), 

(L) . 
where dM,o (cos J.a) = PLM (cos J.a) for m' = 0 
is [a, a] the associated Legendre polynomial. 

We shall regard the particle a as a compound 
particle consisting of two particles 3 and 4, which 
are in their c.m.s. in a state with definite energy 

Pnc. I 

s' = ( p3 + p4 ) 2 and with definite values of angular 
momentum l' of their relative motion and projec­
tion m' of the momentum on the direction na. 
Then (1) will be the amplitude of the five-point 
diagram of Fig. 2 corresponding to the production 
of particles 3 and 4 in the indicated state. The am­
plitude Mk' ;l" ,m" for the production of particles 
3 and 4 in Fig. 2, in a state with definite momenta, 
i.e., with definite value of the momentum k' of 
their relative motion in their c.m.s., will be a 
linear combination i) of the quantities in (1): 

Mk'; l"m" = ~ (2!' + 1) D~?~ (n') Mt'm'; l"m" , (2) 
l'm' 

where n' is the direction of k' in the c.m. s. of 
the particles 3 and 4 (all particle-group c.m. 
systems of this type will be designated by a prime 
or by a double prime). 

FIG. 2 

We can consider in exactly the same way the 
case of a six-point diagram (the amplitudes for 
the transition of three particles into three par­
ticles). For this purpose we consider the par­
ticle {3 on Fig. 1, as well as a, as being a com­
pound particle consisting of particles 5 and 6, 
which are (in their c.m.s.) in a state with en-

::2 ergy s' = (p5 + p6 )2 and with values l" and m" 
0 
·,.... )f the angular momentum and its projection on the 

l)In exactly the same way as the wave function t/Jk• of 
particles 3 and 4, corresponding to a definite k' in their 
c.m.s., is[•] a linear combination of the functions t/Jt•m· cor­
responding to definite l', m': 

Wk• = 2J (2 /' + 1) D~?u In'\ lf'· ,. 
l'rn' 
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direction n13. In analogy with (2), the amplitude of 
the six-point diagram of Fig. 3, corresponding to 
a definite value k" of the momentum of the par­
ticles 5 and 6 in their c.m.s. (k" = P5 = -p6) 
will be a linear combination of the quantities 
Mk';l"m": 

Mk', k" = ~ (2l" -1- 1) D:;;:J, o (n") Mk'; t"m"• (3) 
l"m" 

where n" is the direction of k" in the c.m.s. of 
particles 5 and 6. 

Denoting the partial amplitude of the four-point 
diagram (Fig. 4) by 

J..L(t) = m~)o (t; ma2, m42), 

and that of the five-point diagram (Fig. 2) by 

cpf~· (t; s') = tf:.~o (t; s', m52) 

(we recall that the spins of all particles on Figs. 

X' J 6 2x: 
s' ~ 5 s• 

J 4 

FIG. 3 FIG. 4 

4 and 2 are assumed equal to zero ) , and choosing 
the z axis of the coordinate system along na in 
such a way that 

we obtain from (1), (2), and (3) the following ex­
pansions for the amplitudes Mn of four-, five-, 
and six-point diagrams (n = 4, 5, 6 ): 

Mn (s;k) r= ~ (2L -1- 1) d~~. (z) x~~>m'm"; (4) 
L,m', m" 

xt! m'm" = bm",oe;m·~ ~ (2l' -1- 1) Pt',m' (z3') <J>i;>m, (t; s'), 
l' 

x~! m'm" = /(m'~'-m"~") ~ (2!' + 1) (21" +1) 
l', l" 

(5) 

The arrangement of the momenta of the par­
ticles in the c.m. s. of the reaction is shown in 
Figs. 5 and 6 respectively for the case of the five­
and six-point diagrams of Figs. 2 and 3. These 
figures indicate the angles whose cosines are de­
noted in (5) by z, z3, and z5 (as already men­
tioned, a prime or two primes denotes that the 
corresponding angles are in the c.m. s. of particles 

Ps 

FIG. 5 FIG. 6 

3 and 4 or 5 and 6 ) . We denote by cp the angle in 
Fig. 5 between the planes of the vectors p3, Pa. 
and p5, Pa• and by cp' and cp" the angles in Fig. 6 
between the plane Pa. P{3 and the planes Pa. p3 
and P{3• p5, respectively. 

We note that the transition from the c.m.s. of 
the reaction to the c.m.s. of particles 3 and 4 (in 
both cases-Fig. 5 and Fig. 6) is by means of a 
Lorentz transformation in the direction na, with 
v/c = Pa/Ea, where 

e, = v p~ + s' = } t-'/, (t + s' - mv 
is the energy of particles 3 and 4 in the c.m.s. of 
the reaction. It yields 

~~-~-2- '~~-! -,2 
P3 v - Z3 - P3 v - Z3 , 

Here 

The angle cp = cp' does not change under this 
transformation. 

The invariant s = (pi- p2 )2 is connected in all 
cases of Figs. 4, 2, and 3 with the cosine z by the 
relation s = mj + m~ - 2EiE2 + 2pip2z, where E1o 
E2 and Pi• P2 are the energies and momenta of 
particles 1 and 2 in the c.m.s.; they depend on t 
(in the case of Fig. 4 ), on t and s' (for Fig. 2 ), 
or on t, s', and s" (for Fig. 3). 

The expansion (1)-(5) can be extended in trivial 
fashion to the case when the spins of all particles 
differ from zero. Writing these down for arbitrary 
spin values and considering any particle in (4) and 
(5) as a system of two or several particles [4, 5], as 
also considering its spin as the total angular mo­
mentum of the internal motion of these particles, 
we can readily obtain expansions which are quite 
analogous to (4) and (5) for amplitudes of many­
point diagrams with arbitrary particles and with 
an arbitrary number of lines. 
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The unitarity conditions for the helical partial 
amplitudes A.L, <PL;m' and fL;m'm 11 have a very 
simple appearance. We write them out for the 
particularly simple case when the energy t lies 
below the three-particle production threshold [G,?J 

(i.e., in the unphysical region): 

= 2ip (t) fllf;~. (t+; s') cpf;~. (t_; s"); (6) 

here 4 = t ± iT, T > 0, T- 0, t is real, and s' 
and S 11 can have arbitrary complex values, 

p (t) = 2t-'1•plf, (t) = c''· [t2 - 2t (m~ + m~) 

In the appendix at the end of the article we 
write down for reference the next three-particle 
term in the unitarity condition. It has the form 
of an infinite sum over the momenta li and mi 
of one pair of particles (out of the three). The 
appendix gives also in somewhat different form 
a derivation for the same expansions of the form 
(4) and (5), based on the expansion[4•5J of the 
eigenfunctions of the initial and final many-particle 
states corresponding to definite values of particle 
momenta, over states with definite values of an­
gular momenta and helicities. 

2. ASYMPTOTIC VALUES OF MANY -POINT 
AMPLITUDES 

Expansions (4) and (5) enable us to construct, 
on the basis of the method of Regge [1] and Gribov [2], 

an asymptotic expression for the many-point dia­
grams in Figs. 2 and 3 in the physical region of the 
channel in which the incoming particles are 1 and 
2, and those produced are 3, 4, and 5 (in the case 
of Fig. 2) or 3, 4, 5, and 6 (in the case of Fig. 3 ). 
Let us consider first the case when s - oo for 
some value t (initially unphysical ) and for fixed 
values of s' and S 11 • 

From the relation between z and s it follows 
that in this case z = s/2p1p2 - oo • The functions 
d~)m 11 ( z ) in (4) are determined for arbitrary com­
plex L by the relation [S] 

d!:;J,m• (z) = A~~ m• (z! 1 t (; + ~)(m'-m")/2 
F ( I L , L ' , + 1 z- 1) X m- , -m- , m -m , z+ 1 , 

where 2> 
(L) im'-m" [ r (L + m' + 1) r (L- m" -.f-1) ]'/, 

Am•,m•= (m'-m")! r(L-m'+1)r(L+m"-+-1) ' 

it being assumed that a cut is drawn in the com­
plex z plane from - oo to + 1 and that the phases 
of the quantity z ± 1 are equal to zero for real z 
> 1. Under this condition, the values of d~)mll on 
both sides of the cut are determined from the re­
lation 

(7) 
where z± = x ±iT, with x real and positive. 

When z - oo we have for d~) m 11 ( z) a simple 
' asymptotic expression 

L 
d!:;J,m•(z) = CL,m'CL,m{~-), 

-m' [ r (2L + 1) ]'/, 
CL,m•= t r(L+m'+1Jr(L-m'+1) . (8) 

To investigate the asymptotic value of the sum (4) 
as z - oo we separate from (4) the parts M<+> 
and M<->, corresponding to summation over only 
even or only odd L ( Mn = Mi;> + Mi;1 )- We intro­
duce two functions x<Ln, + >, II and x<Ln,- >, II of the ;m m ;mm 
complex variable L as an analytic continuation in 
the region of the complex L of the functions 
x~!m'mll defined in (5) for integer even or odd L 

' 
(as in the case of the elastic scattering ampli-
tude [2], we exclude in this case the dependence of 
the type { -1 )L of the functions x~[m'm 11 on L, 

a dependence which is not analytic as L - 00 ). 

The part M~> of the sum (4) can be written [1] 

in the form 
()() 

Mn(+) (z+) = ~ 1 (' 2L + 1 (L) 
.LJ 4T .l dL sin Ut [dm·. m" (z+) 

m', m"=-oo C 

( l)m"d(L) ( z )J X(n, +) + - m', -m" - + L; m',m", (9) 

where the contour C encircles in the positive direc­
tion the semi-.axis of the real values of L [inasmuch 

(L) _ m'-m 11 (L) 
as dm -m~~(-z+) = (-1) d-m' m"(-z+), 

' ' the second term in the brackets can also be writ-

ten in the form (-l)m'd~~' m~~<-z+ )]. Using 
' (7) we can verify that the residues of the integrand 

2)This definition is correct only when m' ::::_ m". The val­
ues of d~~) m" for m' < m" are determined by the equation 
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vanish for all integer L (they also vanish for all 
m 1 and m 11 for which I m 1 1 > L or I m 11 1 > L), and 
coincide for even L with the terms of the sum (4). 
The quantity Mf> can be written in a form which 
is perfectly analogous to (9), with the function 
x'f;;;{~m~~ in place of x'f::d~m~~ and with a minus 
sign in the square brackets of (9). 

It is important for what follows to determine 
the analytic properties of the functions xY:::11mll 
(i.e., in accordance with (5), the partial ampli­
tudes cp L;m1 and fL;m 1m 11 ) in the complex L 
plane. According to (4) [ and by virtue of the or-
thogonality of the functions d( L,> 11 ( z )] , x<Ln? 1 11 m ,Ill ,m m 
and Mn are related by the formUla 

1 

X~7)m'm" = + ~ Mn(Z, S;k)d)/;.~ m" (z) dz. 
-1 

Substituting here the dispersion relation for the 
many-point amplitude Mn with respect to the 
variable z (i.e., with respect to s) 

00 

Mn (z, S;k) = ~ ~ 
M(1) (z' s. ) 

n ' tk dz' 
z'-z 

C, (s;k) 

M(2) (z' s. ) 
n • lk dz' 

z'+z 
(10) 

(where sik are the remaining variables, on which 
Mn depends, as it does also on z (or s), and the 
integration contours begin with some complex 
points C1 ( ~k) and C2 ( Sik) and then go on the 
real axis for large z 1 ) we obtain 

00 

x<z; ;;,\, m" = ~ \ M~1l (z') Qt,/;.l, m" (z') dz' 
c, 

00 

± ~ ~ M~2) (z') ( -1 )m" Qt,/;), -m" (z') dz', . (11) 
c, 

where 
1 (L) . 

(L) , _ 1 \ dm', m" (z) dz 
Qm',m"(z)-z.) z'-z 

-1 

is an analytic function defined in perfect analogy 
with the Legendre polynomial of the second kind 
(with which it coincides when m 1 = m 11 = 0 ), while 
M~1 > and M:;> are the absorptive parts of the 
many-point Mn. 

Part of the integrals (12), corresponding to in­
tegration over the complex contours from C1 or 
C2 to a certain point (near z = 1) on the real 
axis, is known to be non-analytic in L near large 
complex L (when L- ± ioo the contribution of 
this part can increase exponentially because the 

function Q~) mii(Z 1 ) increases for complex val­
ues of Z 1 ). The corresponding part of the inte­
gral (10) determines the so-called anomalous 
terms in the dispersion relation for Mn. Inasmuch 
as these terms are determined by integrals over 
contours that are not infinite but of finite length, 
they decrease like 1/z as z - oo and are cer­
tainly of no importance in the asymptotic expres­
sion for Mn. Therefore the contribution to Mn 
and to x<n,±) from these terms can be disre-L;m1 ,m11 

garded. As a result, the analysis of the analytical 
properties of the right half of (11) in the L plane 
can be made in perfect analogy with what was done 
by Gribov [2] for the case of the partial amplitudes 
A.L(t) of four-point diagrams. 3> It follows then 
from (11) that the part of x<Ln_> 1 11 which is es-

,m ,m 
sential for the asymptotic value of Mn is (a) an 
analytic function of L in the right half plane and 
(b) decreases rapidly as L- oo. Therefore the 
contour of integration C in (9) can be deformed 
into a contour parallel to the imaginary axis. 

The asymptotic expression for the integral (9), 
corresponding to z - oo , is determined after 
transforming the contour of the extreme right 
singularity in L of the function x't;:;j~m"· If this 
singularity is the pole ' 

n R<~ " 
-2 (2L -\- 1) x<n. +l ~ m • -m as L ...... a, (12) 

L; m'm" ~ L- Ct 

the position a of which does not depend on m 1 

and m", then it follows from (8) and (9) that as 
z-oo we have 

M~+l (z+) = (f f /" ~ C"· m'C",m"R~:P. m"• (13) 
m'. m" 

where Ia = i -cot (7ra/2 ). 
The asymptotic value of the part M~~\ will have 

exactly the same form, but with different values of 
~~ m" and a. We shall henceforth, for the sake 
of b~ing definite (and to simplify the exposition) 
assume that Re a has the largest value in the term 
Mt> (vacuum pole). Therefore as z- oo we can 
neglect the part Mt> and Mn(z) ~ M~+>(z ). 

Solving the unitarity conditions (6) with respect 
to the amplitudes 

( ) <I') ( ') tU' t") (t s', s"), "-L f+, (j)L;m' f+, S , L;'m•m" +; 

we can readily verify that they all (and conse­
quently, in accordance with (5), also xY:.~~ 11) 

actually have a common pole 4> of the type <Yb. 
3lThe author is grateful to V. N. Gribov for many valuable 

remarks concerning this part of the work. 
4lAt a value L = a(t) for which 1- 2ip(t)AL(L) = 0. 
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In addition (as shown by an analysis of (6) in 
perfect analogy with that carried out by Gribov 
and Pomeranchuk[9]) the residues of all the am­
plitudes factor out; when L---. a(t) 
:rt . u2 {t) 

T (2L + 1) 'AL (t) = L _a (t) , 

~ (2L + 1) (!') (t- ') ~ u (I) vl'm' (1, s') 
2 cpL;m''S~ L-a(l)' 

:rt (2L f(l', !") . ' " ~ vl'm' (t, s') vl"m" (I, s") 
2 + 1) L; m'm" (f, S ' S) ~ L-a (I) ' (14) 

where u(t) is real and the vz'm'(t, s') are gener­
ally speaking complex. 

We note that, as follows from the invariance of 
the theory under space reflections, the amplitudes 

(l') 
<PL;m" and consequently also vz'm'• should not 

change when m' is replaced by - m' [see relation 
(43) on page 417 of the article by Jacob and WickC3]] 

Substituting (14) in (5) and determining the values 
of ~~ -m"• we obtain from (13) the following 
asymptotic values of the many-point diagrams (4) 
as s---. oo: 

M6 ~ G (t, k') G (t, k") I (t) s!J.<I), (15) 

where* 

I (t) = i - ctg ( ; a (t)) , 

G (t, k') = l2p 2 (t, s')l-"(1) ~ (2/' + 1) 
l', m' 

(16) 

The amplitudes (15) have the form of a contri­
bution of the pole diagrams of Fig. 7, in which the 
factor I(t) sa(t) corresponds to the virtual par­
ticle (the "reggion"), g(t) to the triple node, 
and G(t, k') to the quadruple one. The difference 
from the ordinary pole diagrams with scalar par­
ticles in the intermediate state is connected with 
the fact that the conservation laws relate the pro­
jection m' of the "reggion" spin with the azi­
muthal angle cp of the vector k' (on Figs. 5 or 6 ). 
As a result, the vertex G -the four-point diagram 

FIG. 7 

*ctg =cot. 

(16)-depends not only on the two variables ( s' 
and s 23 for diagrams 7b and c ) and the mass t of 
the "reggion", but also on the "extra" variable, 
the angle cp. This angle is measured from the di­
rection p5 (for Fig. 5 ), i.e., it is connected with 
the momentum configuration at the other vertex in 
diagrams of the type 7b and c. 

All the results can be readily extended to the 
case of the many-point diagram of Fig. 8a, namely 
the amplitude of the process in which two groups 
of n' and n" particles (two showers) are pro­
duced. The asymptotic value of this amplitude for 
s ---. oo and for fixed s', s", and t will have a 
form (Fig. 8b) which is perfectly analogous to (15): 

Mn = Gn' (t, ~') Gn" (t, ~") /(t) s"(l>, (15') 

where n = n' + n" + 2 is the total number of vertex 
lines of Fig. 8a, and ~' and ~" are variables char­
acterizing the states of the particles in both groups 
(showers) in their c.m.s. (these include, of course, 
also the squares of the total energies s' and s" of 
the particles of each group ) . 

)(' 
n~s' n~s" 

a 

FIG. 8 

Formulas (15) and (15') determine the asymptotic 
behavior as s- oo of "almost" elastic or shower 
processes, for which the small-angle scattering of 
fast particles in the c.m.s. of the reaction is ac­
companied by an excitation of their internal state. 
As a result of the excitation, the squares of the 
particle masses become equal to s' and s"; the 
particles disintegrate and produce showers (which 
are the narrower, the smaller the ratio s' /s for 
one shower and s" /s for the other). "Quasi­
elastic" processes are usually defined [tO] as dif­
ferent elastic collisions, in which the almost elas­
tic (small-angle) scattering of the particles is 
accompanied by the production of one or more 
slow particles in the c.m.s. of the reaction. In 
"quasielastic" and many other-truly inelastic­
processes, quantities of the type s' and s" in­
crease with increasing s (but do not remain con­
stant as s---. oo ). 

Let us determine the form of this type of asym­
ptotic expression for the amplitudes M5, M6, and 
Mn. We start with the case of the five-point M5 
(Fig. 2). We consider first a case where for fixed 
values of t and s' we have not only s- 00 , but 
also s23 - 00 • From Fig. 5 and from the formulas 
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for the Lorentz transformation indicated in Sec. 1, 
it follows that 

where all the quantities pertain to the t-channel 
(and are functions of t and s', see Sec. 1 ). There­
fore when s 23 - oo we have z3 ~ ~ s' /t s23 /2P2P3 

-00 

We are interested in the physical region of the 
channel, in which the incoming particles on Fig. 2 
are particles 4 and 5, and the produced particles 
are 1, 2, and 3. In this region (or near it) the in­
variant s35 should be a quantity of the same order 
as s45, s, and s23 • Determining s 35 with the aid of 
Fig. 5, we can readily note that this can occur only 
if the azimuthal angle cp has a fixed unphysical 
(pure imaginary ) value, such that 

In the region s- oo, M5 is determined by (15), 
and we can obtain from (16) the asymptotic value 
of G(t, k') corresponding to s 23 - oo, i.e., z3 
- oo. For this purpose we transform the sum (16) 
into a Sommerfeld-Watson integral of the form (9), 
and assume that the extreme right singularity of 
Vl'm' in the l' plane is a pole. Near this pole, the 
function vz'm'(t, s') can be obtained with the aid 
of the unitarity conditions in the s' -channel in a 
form perfectly analogous to (14): 

:rt 1 1 u (s') wl'm' (t, s') 
T (2/ + I)vl'm' (f, s) = l' _ C£ (s') , 

where both u( s') and a( s') are the same func­
tions as in (14) (we assume for simplicity that the 
conservation laws allow the existence of a vacuum 
pole a( s') in the s' channel, too). 

We then obtain from (16) as z3 - oo 

G (f, k1
) = g (s') r (s 1

, f) fa.· s~~. 

where a = a( s') and 

r-; )a.(s') 
r (sl, t) = (2p2)-a. <ll (V :.. ~ 

t 2p •. 

00 

X 2J Va.•m• (t, S 1
) Ca_'m' Ca.m•eim'c;., 

m'=-oo 

with a= a(t ), while for eicp it is necessary to 
substitute here the value indicated above. 

We then obtain from (15) for the amplitude M5 

M 5 = g(sa4) y(sa4• f) g(f) I (s34) s~3 <s,.) I (f) s"- <t>, 

which corresponds to the pole diagram of Fig. 9 
with two "reggions." For the s-channel (in which 
the incoming particles are 1 and 2 ) the analogous 

3 s13 2 s 1 

~3~ 
~ J 

FIG. 9 

, r !I t 
zf-H,z ' 

t =s2 
z \t .... L.~ .. L .... ff!' Sz;·····1····T···"'\'6 

J 4 5 
S:" s4> 

J 4 j 6 s3" s.s s56 
a b 

FIG. 10 

asymptotic expression has the form (Fig. lOa): 

M 5 = g(t') y(t', t) g(f) I (t') s'"- <I') /(f) s~5 <I> (17) 

and corresponds to the case when we have s- oo, 

s' - oo , and s 45 - oo for small fixed values of t 
and t' = s 23 • 

In exactly the same way we can obtain the asymptotic 
form of the six-point amplitude M6 (see Fig. 3) 

corresponding to the case when for s - oo the in­
variants t = s 12 , s23, and s 16 are fixed and small, 
while s 34 - oo, s45 - oo, and s 56 - oo. Accord­
ing to Fig. lOb we obtain in this case for M6 

In analogy with (17), the many-point amplitude 
Mn, which is the amplitude for the production of 
two showers with n' and n" particles and a group 
of v particles with low energy in the c.m.s., will 
correspond to the diagram of Fig. 11 and to a value 

Mn= Gn· (t 1 , S1 ) fv (t', '1'], t") Gn" (t", £")·I (t') s'a. <l'l ·I (t") s"a. <1">. 

Here n = n' + n" + v + 2, and 11 are variables char.­
acterizing the state of the group of v particles in 
their c.m.s., the remaining notation being clear 
from Fig. 11. 

We hope to study in the future the asymptotic 
values of the cross sections of various inelastic 
processes. There are many interesting questions 
here, such as the most probable momentum con­
figurations of the particles produced in the inelas­
tic processes, and the dependence on s of the total 

n" 
y 

'---S-,.1 --.J '---s.,." __. 

FIG. 11 
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probabilities of production of a given number of 
particles as s - oo • 

We consider below only the simplest conse­
quences, for almost-elastic or ''shower'' type 
o-f processes. 

3. ASYMPTOTIC CROSS SECTIONS OF ALMOST­
ELASTIC, ''SHOWER'' PROCESSES 

From (15) and (15') we can draw several con­
clusions, which can be verified experimentally. 

1. The s and t dependence of the differential 
cross sections of processes of the ''shower'' type 
as s - oo is determined by the same Regge pole 5> 

as the dependence of the cross sections for elastic 
scattering: 

da4 (12 __. 34) = g4 (t) s2[a(l)-tJ dt, 

da5 (12 ___, 345) = g 2 (t) 1 G (t, k') j 2 s2[a(i)-1) dt d-r', (18) 

da6 (12 ---. 3456) 

=I G (t, k') 121 G (t, k") l2s2[a(l)-1] dt d-r' dT'\ ... ; 

dan (12 __. n' + n") 

=I Gn· (t, £') 12 I Gn" (t, £") 12 s21a(I)-1Jdt d£' d£"- (18') 

Here 

dT" is defined analogously; the factor 

II (t) 12 = I + ctg2 (:rtY. (t)/2), 

which is of no importance to what follows, is left 
out everywhere. 

The value of a ( t ) decreases with increasing 
( -t ), and when (- t) is small a(t) - 1 ~ ta0, 
where a0 = ( da/dt )t=o is positive and of the order 
of 1/M2 if M is of the order of the particle mass. 

If s - oo for fixed s' and s", then 

(- t) .= 1/ 2 s(l -cos 'fr,) =• s'fr~/4, 
where J.a is deflection of the summary momentum 
Pa of the group of produced particles (in an acute 
cone in the c.m.s. of the reaction, a cone which is 
the more acute the larger s' /s) from the initial 
direction. Therefore the factor 

(s/M 2) 21 '(t)-tl= exp [+a~ s 1't~ !n (s/M 2)], 

together with the cross sections (18) and (18'), 
decreases rapidly with increasing J.a; the only 
probable values of Ja are of the order 
MN s ln ( s/M2) . Substituting this factor in (18) 
and (18'), we conclude that differential cross sec-

5'Naturally, underthe condition that this is pennitted by 
the laws of conservation of isotopic spin, parity, strangeness, 
etc. 

tions for the production of one or two groups of 
particles with given total masses (energies) s' 
and s", integratedover Jh, (i.e., overt), de­
crease when s - oo like 1/ln ( s/M2 ), i.e., like 
the cross sections for elastic scattering [2]. 

2. It follows from (18) and (18') that when 
s - oo the distribution over k' of the particles 
produced in the shower (for example, of particles 
3 and 4 in Figs. 7b and c) does not depend on the 
manner in which this group was produced (on the 
particle causing it). In particular, the mass spec­
trum of the produced particles is determined by 
the function 

r (!" s') = ~k'_ ('1 G (t ! ') l2dn~ I , r-- \I , < , , I s' • "';r 

and depends on the momentum transfer t, and not 
on the kind and the number of particles entering 
into the second vertex of Figs. 7b and c ) . 

3. In the region s- oo the cross sections for 
the almost-elastic "shower" type of process are 
interrelated by a whole set of equations of the type 
derived by Gribov, Pomeranchuk[9J, and Gell-Mann 
[H] for processes with two particles in the final 
state ( some of these relations are mentioned in 
the article by Gribov, Ioffe, Rudik, and Pomeran­
chuk [12] ). All the cross sections contained in 
these relations can be directly measured for in­
elastic processes. 

Let us consider, for example, pion production 
in 1rN and NN collisions. The corresponding 
cross sections (12a and b) will be denoted by 
a7r(t, k') and O"N(t, k') (their dependence on s 
is not indicated, it being implied that the value of 
s is the same everywhere). Let 0"1fN(t) and 
O"NN ( t) be the differential cross sections for 1rN 
and NN scattering (Figs. 12d and e), and let 
aN( t; k', k") be the cross section of the process N 
+ N-- (N + 1r)' + (N + 1r)" (Fig. 12c). Writing all 
these cross sections, in accordance with Fig. 12, 
in the form (15) we obtain, as s - oo, the follow­
ing relations between them: 

' crnN (t) ' 
0, (f, k) = crNN (t) GN (f, k ). 

ONN (f) GN (t; k', k") = GN (f, k') GN (t, k"). 

These relations, as well as many others for re­
actions with different particles, can be directly 
checked by experiment. 

r: ~ ~-! ~: L~ , , r~----, ,,--··,\ , r 
Nn trNn NNnnNN r:t.N N 

a b c d e 

FIG. 12 
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APPENDIX 

EXPANSION IN STATES WITH DEFINITE MO­
MENT A AND HELICITIES 

We present another method[5J, different from 
that considered in Sec. 1, for constructing expan­
sions (4) and (5). We write the amplitudes M4, M5, 

and M6 in the form 

M4 =~ (Pa If/ P0)• 

M5 = (p,k' If! P0>· M" = (PXITIP0k"), (a) 

where T is the T-matrix and I Pj3 ), I Pj3k" ), and 
IPa), IPak') [with (Pa I= (ipa))*, (Pak' I 
= (I Pak') )*] are the initial and final states of the 
system of two or three particles (on Figs. 4, 2, and 
3 ), corresponding to definite values of their mo­
menta. A system of three particles (for example, 
the three particles 2, 3, and 4 in the final state on 
Figs. 2 and 3) is characterized by a summary mo­
mentum Pa = p3 + p4 of two particles (in the c.m.s. 
of the three particles, i.e., Pa = -p2 ) and a mo­
mentum k' of relative motion of the same two par­
ticles in their c.m.s. 

We denote the eigenstate of the system of two 
particles (for example, particles a and 2 in 
Fig. 1 ), in the case when the spin of one of them 
differs from zero, by I Pa;Z'm' ); here l' is the 
spin of particle a and m' is its projection on 
Pa· When l' = m' = 0, the state I Pa;Z'm') will be 
denoted by I Pa ). Precisely similar symbols are 
used to describe the initial states (p/3 = p5 + p6 

and k" = P5 = -p6 ). According to Jacob and 
Wick[5J 

1 p·l' '' '\.',l2-L · 1D(L> ( )IL" l' '' i a, m / =-: ,.;:....J v T M,m' fl.:~. Jvl; m /, (b) 
LM 

where I LM;Z'm') is the state of particles 2 and 
a, corresponding to definite l' and m' and to 
definite values of the total momentum L of these 
particles and its projection M on the z axis (the 
direction of which is chosen arbitrarily). 

As in Sec. 1, we consider the particle a to be 
compound and consist of "spinless" particles 3 
and 4. Then I Pa;Z'm') describes a state of the 
particles 2, 3, and 4 such that particles 3 and 4 
in their c.m.s. are in a state with definitive values 
of angular momentum l' of their relative motion, 

and its projection m' on Pa· The state I Pa;k') 
will, in analogy with (b), be a linear combination 
of the functions I Pa;Z'm' ): 

I Po:; k') = ~ (2l' + 1) Dlf.?o (n') I p"'; l'm'> (c) 
l'm' 

(for convenience in normalization we write in (c) 
2Z' + 1 in place of -./ 2Z' + 1 ). 

Putting in (b) Z' = m' = 0, or substituting (b) in 
(c), we obtain the following expansions for the ei­
genfunctions of the final states in (a): 

V.-- (L) I Po:) = ~ 2L + 1DM,o (na) I LM), 
LM 

I k'> = "" Poc, LJ 
LM,l'm' 

X (2l' + 1) D~~m (no:) Dl:,'),o (n') ILM, l'm'). 

Writing down the wave functions of the initial 
states in (a) in the same form, substituting in (a), 
and recognizing that the T-matrix is diagonal in 
L, we obtain 

M4 = ~ (2L + 1) D~~~ (noc) D~~o. (n13) 'AL (t), 
LM 

J-1 5 = ~ (2L + 1) (2l' + 1) D~~~~ (noc) 
LM,l'm' 

X D~~o (n13) Dl:,'.>.~ (n') q{~, (t; s'), 

LM,l'm',l"m" 

X D (l')* (n') vw> (n") t(l'. t"> (t· m',o m",o L;m'm" , s', s"), 

where 

X (L, l'' l") = (2L + 1) (2l' + 1) (21" + 1), 

'AL(t) = (LM It I LM), 

cpf;~, (t; s') = (LM, l' m' IT ILM), 

tl:;;;;~\, (t; s', s") = (LM, l'm' IT I LM, l"m"> 

are the partial many-point amplitudes. Choosing 
the z axis along n (i.e., putting niJ',>m,(na) 
= oM,m' ), we obtain directly the expansions (4) 
and (5). 

(d). 

(e) 

The expansions (b), (c), and (d) can be general­
ized in trivial fashion to the case when the spins 
of all the particles differ from zero. Then, for 
example, the eigenfunction I Pa;kX:;ZX:, mx) of the 
system of three particles 2, 3, and x, where Zx 
is the spin of the X particle and mx is its pro­
jection on the direction kx of its momentum in 
the c.m. system of particles 3 and x, can be 
written in perfect analogy with (d): 
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--- (L) (l;) ' (() , 
1 Pa; k~; (m~) = ' 1 V-2L + 1 (2l' + 1) DM, m' (na) cpL· m' (t+, S;+) cp/ m' (t_; s1_), 

LJ ' i ' I LM,I'm' 

X D (t') • (n') ILM· l'm'· l' m' ). 
m', mx x ' ' x x 

Regarding x as consisting of two particles 
4 and 5, we obtain in analogy with (d) the following 
expansion for the eigenstate I Paikx, q') of the 
system of four particles 2, 3, 4, and 5 (q' is the 
momentum of particles 4 and 5 in their c.m.s. ): 

I Pa• k~. q') = 
X (L, l', () (L) (I') ') 
-~===- D M. m' (na) D m' m' (nx 

LM, l'm'. l~m~ 
V2L+1 . X 

X v<,;;),o (n') ILM; l'm'; l~m~>· 

Using this equation, we readily obtain expansions 
perfectly similar to (e) and (4), (5) for amplitudes 
of six-, seven-, and eight-point diagrams (Figs. 
13a, b, c): 

M~ = <Pa• k~, q'! T I P!l), M7 = <Po: 'k~, q' If I P13, k"), 
Ms = <Po:, k~, q' I f I P13, k:, q") · 

, , X' X ,,x ,,, •' '" 6 ,, 

a b c 

FIG. 13 

It is clear that expansions can be obtained in this 
manner for the amplitudes of arbitrary multi-point 
diagrams. 

In conclusion let us dwell briefly on the unitarity 
conditions for the helical partial amplitudes. They 
can be obtained from the unitarity conditions for 
M4, M5, and M6 and from the expansions (e), or 
else directly, using eigenfunctions of the type 
I LM, l'm' ), I LM) and calculating different ma­
trix elements from the operator equation T - T + 
= iTT+. When taking two-particle states into ac­
count, the values given in the right half of (6) 
arise. When three-particles states are taken into 
account, it is necessary to add to the right half of 
(6) terms of the type 

(vi~-m,)' , 
. \ ' 2k, ' 

2ip(t) 2J (2!1 + 1) j B (t, s,) V,. ds;, 
, , (m,+m,)' s, 

li' mi 

which correspond to the diagrams of Figs. 14a, 
b, and c. In accordance with these diagrams, the 
respective values of B for the first, second, and 
third lines of equations (6) are 

(/'' /;) I ' (/;) ' 

f L· m' m' (t+, s ' 5t+) filL· m' (t_, s,_), 
' ' I ' i 

(l', I;) , (1:, I") , 

f L; m', m'. (f+' S', St+) f L; m:, m" (f_, s,_, s"), 
l l 

2~, 

3~~~ 
s[, tf, ml 

2\cf-yl 
Jd~"5 l'sl 4 I I 1 , Jt ,l,, m, 

b 

a 

FIG. 14 
c 

where si± = si ± iT. Here, as in (6), s' and s" 
can have arbitrary complex values. 

Note added in proof (December 8, 1962). Cook and Lee["], 
in articles published after this paper was completed, also ob­
tained expressions in the form ( 4) and (5), and unitarity condi­
tions as written out in (6) and in the appendix. 

1 T. Regge, Nuovo cimento 14, 951 (1959). 
2 V. N. Gribov, JETP 41, 1962 and 667 (1961), 

Soviet Phys. JETP 14, 1395 and 478 (1962). 
3 M. Jacob and G. C. Wick, Ann. of Phys. 7, 404 

(1959). 
4 A. J. MacFarlane, Revs. Modern Phys. 34, 41 

(1962). 
5 G. C. Wick, Ann. of Phys. 18, 65 (1962). 
6 R. E. Cutcosky, J. Math. Phys. 1, 429 (1960). 
1 Ball, Fraser, and Nauenberg, Preprint, 1962; 

Phys. Rev. Lett. 8, 343 (1962). 
8 M. E. Rose, Elementary Theory of Angular 

Momentum, N. Y. 1957. 
sv. N. Gribov and I. Ya. Pomeranchuk, JETP 

42, 1141 (1962), Soviet Phys. JETP 15, 788 (1962); 
Phys. Rev. Lett. 8, 343 (1962). 

10 D. R. 0. Marrison, Aix-en-Provence Intl. Conf. 
on Elementary Particles, 1961. 

11M. Gell-Mann, Phys. Rev. Lett. 8, 6 (1962). 
12 Gribov, Joffe, Pomeranchuk, and Rudik, JETP 

42, 1419 (1962), Soviet Phys. JETP 15, 984 (1962). 
13 L. F. Cook, Jr. and B. W. Lee, Phys. Rev. 127, 

283 and 298 (1962). 

Translated by J. G. Adashko 
58 


