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Inelastic scattering of fast charged particles (protons) by translucent nuclei with concomitant 
excitation of the first collective levels is considered in the diffraction approximation. Com
parison of the results of the calculation with the experimental data permits one to estimate 
the radius and nonsphericity parameter of the nucleus and also the parameter of the imagi
nary part of the optical potential. 

1. INTRODUCTION 

ScATTERING of nucleons by nuclei i~ accompa
nied by excitation of collective nuclear states, 
owing to direct interaction. In this connection, we 
consider the scattering of charged particles, say 
protons, by a translucent nucleus, when the nuclear 
interaction is described by the optical potential 

V (r) = - V0 (I + i\,) n (r). (1) 

To calculate the scattering cross section we 
use, as is customary, the adiabatic approximation, 
which is applicable if kR~E/E « 1, where ~E is 
the energy of the excited level, k the wave number 
of the incident particle, and R is radius of the nu
cleus. The solution of the scattering problem re
duces then to the determination of the amplitude 
f( &"l, w) of particle scattering by the stationary 
nucleus, with Q = ( (), rp ) determining the scatter
ing direction and w = (~. cp) determining the ori
entation of the symmetry axis of the nucleus. Then, 
for example, the differential cross section for scat
tering with excitation of the rotational levels of an 
even nucleus with momentum A. is determined by 
the expression 

aA(8) = 2J I< y~[L (w) f (Q, w) Yoo) r2 • (2) 
[L 

The amplitude f( &"l, w) of scattering by a sta
tionary nucleus can be calculated by diffraction 
theory [t, 2], where the interaction energy is con
sidered everywhere to be small compared with 
the energy: I V(r) I «E. As applied to nuclei, with 
sufficiently strong absorption, the condition under 
which the diffraction approximation is applicable 
turns out to be weaker, since it pertains only to 
the Coulomb field of the nucleus. In this case it 
has the form kR » TJ, where TJ = ZZ'e2/tiv is the 
Coulomb parameter. 

Using these approximations, let us calculate the 
angular distributions of charged particles (protons) 
scattered by translucent nuclei with excitation of 
the first collective levels 2+ and a- of the nucleus 
(single-phonon excitations). 

2. SCATTERING AMPLITUDE 

In the diffraction approximation the scattering 
amplitude in the region of small angles () < 1 has 
the form 

00 

f (Q, w) = ;~ ~ dp e-fk'p exp {- 1/u ~ [V (r) + U (r)l dz}. 
-oo (3) 

U ( r) is the energy of the electric interaction and 
k' is the wave vector of the scattered particle. For 
simplicity we assume that the nuclear charge dis
tribution coincides with the density distribution 
n ( r) (1). The electrical interaction energy is then 
determined by the expression 

U (r) = 3ZZ'e2 \ n (r') dr' = ZZ'e2m (r). (4) 
4:rtR" .) I r-r' I 

Here the function n(r) depends on the non
sphericity parameters O!A_, which enter in the 
equation for the nuclear surface (in the proper 
reference frame): 

R (a)= R (I+ 2Jo:~.P~. (!l')). 
).. 

Taking R to be unity and going over in integrals 
(3) and (4) to the dimensionless variables p and 
z, we obtain 

oo 2n 

(5) 

f (Q, w) = i~~2~ pdp~ drp'e-lapcos~' fS(p, o:). (6) 
0 0 

Here a= kRe and the function ft(p, a), which de
pends on the parameters aA,, is defined as 
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00 00 

fS (p, a) = exp [ ~ ~ n(r) dz - i1] \ m(r) dz J, (7) 
-oo -x 

where the complex parameter is 

s = ~ (l + n) kR = 61 + i£. · (8) 

Let us expand the amplitude f( Q, w) in powers 
of the, small nonsphericity parameters a~"' and 
confine ourselves to the linear approximation, 
which corresponds to the consideration of single
phonon excitations. The smallness parameters of 
this expansion are aA,kR8 « 1 [3]. In our case we 
can disregard the diffuseness of the nuclear sur
face, assuming that the density distribution in the 
nucleus is expressed by a stepwise e function 

n (r) = 0 (R (a) I R - r). (9) 

Then after several calculations analogous to those 
in [3] we obtain the following expression for the 
amplitude of inelastic scattering with excitation 
of one phonon ( A.IJ ) : 

• ctAkR2 

<YAp. (ro) f (Q, ro) Yo0 ) = 21.. +i F,_p.(a); 

1 --
p,_p.(a) =V4:n:~pdpJp.(ap) [s YAp.(V1-p•,o) 

o Vi- P' 

- 21] QAp. (p) ] ( l + v I - p2 )i211 

x exP[i (s- 211 4 ~P·) Vl- p2] 

00 

- V 4:rt 21] ~ dpJp.(ap) Q>.p.(P) pHi21l, (10) 
1 

Here QA,IJ(p) is an irrational function, which is 
expressed in terms of the normalized spherical 
function YA.IJ(x, 0 ): 

00 

QAIJ. (p) = ~ dz YAp. ( +, o) mh{r); 
0 

3 {'\ r<1 
m;. (r) = 2f.. + 1 ,-A-1, r > 1 . 

The amplitude (10) vanishes when the sum A.+ 1J 

is odd. 

(11) 

In the expression (10) for the inelastic scatter
ing amplitude it is convenient to separate the part 
FEA.!J corresponding to the amplitude of the elec
trical Coulomb excitation [ 4]: 

(12) 

As shown in [3], the amplitude FEA.!J is expressed 
by the last integral in (10), provided it is comple
mented to the integral with respect to dp from 

zero to infinity, which can be evaluated. Thus we 
obtain 

F ( - ' r (1 +iT)) ( a )A-2-i21l 
EAp. a) -- )p.±AC>.p.1] f (A.- iT)) -2 ' (13) 

where 
- 1 

_3V4:n:('y ( 0)(1 2)i./2-1d 
C;.l" - 2/.. + 1 J AIJ. X, - X X. 

Going over in the first integral of (10) to a new 
integration variable x = >/ 1 - p2 , we obtain the 
following expression for the so-called nuclear 
part of the amplitude (12): 

1 

Fn;.p. (a)= V4:n: ~dx JIJ. (a VI- X 2) [£Y;.p. (x, 0) 

- 21]X Q;.1, (VI - x2) I (I + x)l211 exp [ ix ( £ - 211 3 ~,xz) J 

Here 
a 

<l>;.p. (a, 1]) = ai.-2-i21l ~ dx J P. (x) xt-i,+i2~.,, 
0 

(14) 

and it is convenient in the computations to repre
sent the function q,M (a, 1J) in the form [3] 

00 

IDn (a, 1]) = :2} (15) 
m=o 

When 1J = 0 formulas (10) and (14) describe the 
scattering of neutrons [5, 6]: 

1 

F;.p. (a)= £ V4:n: ~dx JP. (a VI- x2) Y;.1, (x, 0) ei'<x. (16) 
0 

It is also easy to see that if 

(17) 

the expressions (10), (14), and (16) go over into 
formulas [3, 7 ,s] that describe inelastic scattering 
by a black nucleus. Indeed, evaluating the first 
integral of (14) by parts and assuming at the same 
time dv = exp ( i~x) dx, we obtain, taking (17) into 
account, 

Fn;.!J. (a)= iV4:n: Y;.!J. (0, 0) J~'- (a) + <\.t±).fA1,21]¢;.p. (a, 'fl), 

(18) 

which corresponds to formula (19) of [3]. 

3. ANGULAR DISTRIBUTIONS AND COMPARISON 
WITH EXPERIMENTAL DATA 

According to (2) and (10), the differential cross 
sections A. for scattering with excitation of one 
photon can be represented in the form 



EXCITATION OF COLLECTIVE STATES OF NUCLEI 231 

(19) 

where the function 

s~. (a) = ~ 1 F Af' (a) 12 (20) 
1-' 

does not depend on the deformation parameters 
a)t. In accordance with (12), sA,( a) can be repre
sented in the form of a sum of a Coulomb part, a 
nuclear part, and an interference term: 

s~. (a) = sn (a) + Sni. (a) + Snn (a), 

where, for example 

- '' 2 - 2rJ2a2 
S£3 (a) - Li IF £31-' (a) I - :15 (4 -i- TJ") (1 + TJ'J 

1-' 

(21) 

etc [3]. A comparison of the results of the calcu
lation with the experimental data by means of for
mula (19) enables us to estimate the parameters 
a 2 and a 3, which can correspond to stable defor
mation of the nucleus or to the amplitude of the 
zero-point oscillations near the equilibrium 
shape [9J. 

Using (12)-(16), (18), and (20) we calculated 
the angular distributions of the protons and neu
trons with energy E = 40 MeV, scattered with 
excitation of first levels 2+, 3- of the nuclei Mg24, 

Ni 58, and Gd156 (Figs. 1-3). The absolute value 
of the function SA_(a), and particularly its form, 
depend quite strongly on the parameter !;; of the 
imaginary part of the optical potential. However, 
in accordance with the criterion (17), even when 
Im ~ 2::: 2 the angular distributions SA_ (a) are 
close to the distributions corresponding to scat
tering by a black nucleus. The calculations 
merely confirm the important role of the Coulomb 
effects: the angular distributions S)t (a) of the 
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FIG. 1. The functions s 2(a) and s 3(a), with a~ kR8 de
scribing the angular distributions of the protons inelastically 
scattered by the nucleus Ni58(Ep ~ 40 MeV, TJ = 0. 70, ,f1 = 6.5). 
These calculations were made for V0 ~ E, R = 4.6 x 10"13 ern, 
and various values of the parameter ( of the imaginary part of 
the potential: curve 1- ( ~ 0.10; 2- ( = 0.25; 3- ,f2 -> oo. 

The lower curves correspond to scattering by a black nucleus. 

-I 

FIG. 2. The functions Sf..( a), Snf..(a), SEt..( a), A~ 2 and 3, 
describing the angular distribution of protons inelastically 
scattered by Gd156(Ep ~ 40 MeV, ,f1 = 9.8, ( = 0.10; "'= 1.60). 
The calculation was made for V0 ~ E, R ~ 7.0 x 10"13 ern. An
gular distributions Sf..(a) of inelastically scattered neutrons (n) 
are plotted for comparison. 

FIG. 3. Differential cross section a2(8) 
and a 3(8) of inelastic scattering of protons 
(E ~ 40 MeV) on Mg24(a) and Ni58(b) with 
excitation of the first collective levels. The 
circles denote Hintz's experimental data. 
The calculations (solid curves) have been 
made for V0 ~ E, ( ~ 0.10; R(Mg24) = 3. 7 
X 10-13 (curve 1) and R(Mg24 ) = 4.3 X 10"13 

ern (curve 2); R(Ni' 8 ) = 5.0 x 10-13 (curve 1) 
and R(Ni58) = 5.3 x 10-13 ern (curve 2). Com
parison of the theoretical and experimental 
data yields the nonsphericity parameters 

~~~z~o---4~0---5+-u~~e· 

a 

1 o~-"---::zo::---"--4+o,---,8"' o~~z+o;:--~4"=o--'--;;o 

b 

~ ~ 0.19-0.24 for Mg'4 and ~ = 0.09-0.11, 
a 3 ~ 0.07-0.09 for Ni'8 • 
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protons and neutrons differ quite strongly in the 
region of the first diffraction maximum. 

A comparison of the calculations with Hintz's 
experimental data (private communication) on 
the inelastic scattering of protons E = 40 MeV on 
Mg24 and Ni58 indicates that the nuclei are quite 
transparent to protons at this energy (Fig. 3). The 
best agreement between the calculated data and 
the experimental data is obtained for 1; ~ 0.1. 
Comparison by means of formula (19) gives an 
estimate of the deformation parameter of Mg24, 

namely a 2 = 0.19-0.24, which coincides with the 
results obtained in the analysis [3] of the experi
mental data by Watters [10] on the scattering of 
a particles by Mg24• An analogous analysis for 
Ni58 yields a2 = 0.09-0.11 and a 3 = 0.07-0.09. 

The author is grateful to V. K. Saul'ev and M. 
M. Egorova, and also to P. Naur for programming 
and operating the computer. The author is grate
ful to B. T. Gellikman, 0. Winther, and G. E. 
Brown for a discussion of the work. 

1 L. D. Landau and E. M. Lifshitz, Kvantovaya 
mekhanika (Quantum Mechanics), Gostekhizdat, 
1948, p. 184 (Engl. Transl., Pergamon, 1958). 

2 A. I. Akhiezer and A. G. Sitenko, JETP 32, 
794 (1957), Soviet Phys. JETP 5, 652 (1957). 

3 S. I. Drozdov, JETP 36, 1875 (1959), Soviet 
Phys. JETP 9, 1335 (1959). 

4 Alder, Bohr, Huus, Mottelson, and Winther, 
Revs. Modern Phys. 28, 432 (1956). 

5 E. V. Inopin, JETP 30, 210 (1956), Soviet 
Phys. JETP 3, 134 (1956). 

6 G. Corman, Phys. Rev. 125, 359 (1962). 
7 E. V. Inopin, JETP 31, 901 (1956), Soviet Phys. 

JETP 4, 764 (1957). 
8 J. S. Blair, Phys. Rev. 115, 928 (1959). 
9 S. I. Drozdov, JETP 34, 1288 (1958), Soviet 

Phys. JETP 7, 889 (1959). 
10 H. J. Watters, Phys. Rev. 103, 1763 (1956). 

Translated by J. G. Adashko 
57 


