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Using the method developed earlier, [ 1] we treat the resonance absorption of y quanta by an 
arbitrary impurity nucleus, accompanied by a change in the state of the macroscopic system. 
The relation of the probability for one-quantum excitation to the vibration spectrum of the 
crystal is analyzed. The intensity corresponding to the excitation of localized levels is deter
mined. A detailed analysis is given of the temperature dependence of the Mossbauer effect and 
of one-quantum excitations, taking into account, in particular, the effect of degeneracy. Com
putational results are presented for the case of a host lattice with a simple unit cell, including 
nearest neighbor interactions. A comparison of the theoretical and experimental results is 
given. 

1. INTRODUCTION 

IN an earlier paper [ 1]( to be cited as 1), the authors 
developed a theory describing the Mossbauer effect 
on a nucleus which is different from the nuclei of 
the host lattice. For monatomic lattices with cubic 
symmetry, explicit expressions were given for the 
probability of the effect for any ratio of masses of 
the impurity nucleus and the nuclei of the host lat
tice. 

The present paper is a direct continuation of I. 

of the results for the Mossbauer effect and for one
quantum excitations in a crystal when there is reso
nance absorption (emission) by an impurity nucleus. 
Finally, Sec. 5 gives the results of direct computa
tions based on a model of the crystal lattice which 
includes nearest neighbor interactions of both cen
tral and noncentral type. In this section, a compari
son of the theoretical and experimental results is 
given. 

2. GENERAL FORMULAS 

Let us consider an arbitrary system of harmoni
cally interacting particles, and let one of the par-

It presents, in addition to a detailed analysis of 
resonance absorption ( emission) of y quanta with 
no change in the energy of the macroscopic system, 
a treatment of transitions accompanied by a change ticles undergo resonance absorption ( emission) of 
in the state of the system. The main interest is a y quantum. We shall assume that the vibration 
centered on one-quantum transitions, since the inten- spectrum of the system consists of quasicontinuous 
sity of the corresponding y radiation gives infor- b~nds, whose width D. is much greater than the . 
mation about the nature of the vibrations of the im- Width r of the nuclear resonance level, and of dis-
purity atom and the host lattice. crete frequencies which correspond to localized 

vibrations. There are two problems of primary interest: 
the study of the localized vibrations, caused by the We introduce the reduced displacements l labels 

the particles) 1) radiating impurity itself (qualitative arguments 
about the possibility of obtaining such information 
from the Mossbauer effect were first given by 
Maleev [2]), and the possibility of determining the 
distribution function for the frequencies of an ar
bitrary regular lattice. 

Section 2 gives the general formulas describing 
elastic (Moss bauer effect) and inelastic processes 
in an arbitrary, harmonically interacting system 
of particles when y emission occurs. Both the 
quasicontinuous and discrete spectra are treated, 
over the whole range of temperatures. Section 3 
gives a detailed treatment of the case of an isolated 
impurity nucleus. Section 4 contains a discussion 

195 

(2.1) 

and expand vi ( l) in the dimensionless normal co
ordinates q/3: 

vi(/) = ~ V h S;(l; ~) q~. 
~ w0 

(2.2) 

The quantities si ( l; 13 ), which are the real and 
normalized solutions of the equation 

(2.3) 
I' 

1>Unless otherwise stated, the notation is the same as in I. 
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form a unitary (orthogonal) matrix. Here 

Aik(l, l') = (mtmtT'1'Aik(z, l'), (2.4) 

while Aik ( l, l') is the usual coefficient in the 
quadratic term of the expansion of the potential 
energy of the system in the displacements. 

If, on emission of a y quantum, the nucleus 
l = 0 receives a momentum tik, the probability of 
a transition of the system with a change m13 = nj3 
- n {3 in the occupation numbers can be represented 
as 

W ({m13}) 

= IT I (n13 + m.GI exp [ i YnfmowB kS (0; ~) q13l I n13) 12 , 

{3 (2.5) 

where the dash denotes an average over the initial 
equilibrium state. 

Let us write (2.5) as a product 

w ({m(l}) = WI ({mp}) w2 ({md}), 

where W1 and W2 are the respective transition 
probabilities for the quasicontinuous and the dis
crete spectrum. 

Remembering that the displacement amplitudes 
in the quasicontinuous spectrum are small, we find 
for w1 

WI ({mr}) = e~z· II {(),"p,o+ 2~w:J (kS(O; p)) 2 [(nr + 1) 6mP' I 
p p 

Z' = -"- )~ (kS(O; p))2 (2np + 1). (2.6) 
2mo '"';' wP 

As was pointed out in I, in computing the matrix 
elements in (2.5) for the discrete frequencies one 
must use the exact expression, since the displace
ment amplitude no longer has the factor 1/N112 • We 
shall use the relation obtained by Bloch and Nord
sieck. [ 3] One can show that the series appearing 
in [3] reduce to associated Laguerre polynomials 
LW (x). The general expression for the matrix 
element can then be written as follows: 

(n -1- mlexp [iJ/2xqlln> 

{ 
e~x, 2 (i Vx)"' Vn! 1 (n + m) ! L'; (x), m>O 

- e~x!z (i v x)' In I v (n + m)! In! L~~~ (x), m~O. (2. 7) 

We note that the series appearing in formula (3.24) 
of I and corresponding to md = 0, is precisely the 
same as Llld. 

Using the well-known relation from the theory of 
the Laguerre polynomials ( cf., for example, [ 4] ) 

00 

(1-z) ~ f(n+n~+1) 
n=O 

[L'; (x)] 2 zn 
• 

( z ) (. z'l, ) =exp -2x-- x~mz~mf2 Im 2x-- , 
1-z 1-z lzl<1, 

where Im is a Bessel function of pure imaginary 
argument. Then, averaging the square of (2. 7) over 
the initial state of thermal equilibrium, we find 

II Im _ [" (kS (0; d))2 _ 1 fiwd J . 
X sh 2kT , d d 2m0wd 

Z" = __!!____ ~ (kS (0; d))2 (2nd+ I). 
2m0 d wd 

(2.8)* 

In particular, for the probability of a transition 
which is not accompanied by any change in the 
system, we have from (2.6) and (2.8) 

Wo = wowo = ~L 1' -1 I [" (kS (0; d))2 h-1 nwd J 
I 2 e 0 '> S L.kT ' d -tl!oWd 

Z= Z'--1--Z". (2.9) 

Expression (2.9) coincides with the one found in I, 
if we use for S ( 0, d) the appropriate solution of 
(2.3). 2) 

In studying the inelastic processes which accom
pany resonance absorption or emission of y quanta, 
we shall restrict our treatment to cases where 
R0/tiw0 < 1 ( R0 = n2~ /2m0 is the recoil energy for 
the free nucleus, and w0 is a characteristic fre
quency for the spectrum of the macroscopic system). 
For a range D-E of variation of the y ray energy 
which is restricted to be of order tiw 0, one-phonon 
processes play the dominant role. But the relative 
probability of such processes as a function of D-E 
actually gives the maximum of information about the 
vibration spectrum of the macroscopic system. 

First consider one-phonon processes in the 
quasicontinuous spectrum. For the probability den
sity for emission of a y quantum with energy E in 
the direction K = k/k, we find, using (2.6) ( cf. [ 5]): 

P1 (A£ x) = W R "\;1 (~.s (O; p))2 (n + _i_ ± _i_) 6 (A£+ nw ) 
' 0 ..W nw r 2 2 · r ' 

p p 

(2.10) 

o ~zrr' ["\;lli(kS(O;d))2 _1 _nwd ] , 
W = W 1 W 2 = e I o ..W zm w sh L.kT , ( 2.10 ) 

d (d) 0 d -

*sh =sinh. 
2)The fact that the series in formula (3.25) of I should 

transform into I0 , to within an exponential factor, was first 
pointed out to us by V. I. Peresada. 
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where n' denotes a product for the various discrete 
d 

frequencies, while ~ is a summation over all the 
(d) 

normal modes corresponding to the degenerate dis
crete frequency wd; E0 is the energy of the excited 
state of the nucleus (ID-E I » r ), D-E= E 0 - E. 

In all those cases where the surroundings of the 
radiating nucleus have cubic symmetry, and also 
when measurements are made for three mutually 
perpendicular directions IC ( for three orientations 
of the sample corresponding to cyclic permutation 
of the coordinates), or if one uses a polycrystalline 
sample and can neglect the anisotropy of W (cf.[ 5J), 

one can eliminate the dependence on the direction 
of the polarization vectors in (2.10). Changing 
from summation to integration, we get 

[ - (/I.E ) 1 1 l . 
x n fi +:r±2J' (2.11) 

1/J ( w) is the frequency density function, normalized 
by the condition 

\ Nd J 'iJ (w) dw +"""3fT= I, 

where Nd is the number of localized normal vibra
tions of the system; the integration extends over all 
the quasicontinuous bands; the tilde denotes an aver· 
age over all normal vibrations having the same fre
quency because of the strict degeneracy caused by 
the symmetry of the system. 

If the excited states of the normal oscillators 
which correspond to the discrete frequencies were 
rigorously stationary, the function p' (D-E, IC ), 

which is responsible for the creation or absorption 
of the oscillation quantum tiwd, would be given by 
the expression 

{ nwd} l"• ~ Ro(xS (0; d))2 -I hwd l 
pl (11£, x) = Wexp ± '2.kT 11 ~ -~- sh '2.kT_ 

X { fo [2J Ro (Y.S (0: d))2 sh-1 ;_w_d_J- }-1 
(d) hwd 2kT 

1 f/2 
X Jt (( (1.£ I- liwd)2 + r•;4. 

(2 .12) 

At distances D-E = ± tiwd from the central peak, 
there are satellites having the natural width and 
with an intensity 

{ ' liwd} 1'-, Ro (Y.S (0; d))• -1 liwd J 
exp ::r: "kT II LJ li sh 2kT 

"' _(d) wd 

X {I o [2J Ro (Y.S (0; d))2 sh-1 ~wd ]}-1 
(d) liwd 2kT 

(2.13) 

times less than that of the true Mossbauer line. 
When kT /tiwd « 1, this relation, for the case of 

emission of a vibration quantum, becomes simply 

(2.13') 
(d) 

In real systems, the excited states of the dis
crete normal oscillators are not stationary even at 
T = 0. Because of this the levels will have a finite 
width, and the distribution of intensity with energy 
will differ from (2.12). Taking a Lorentz shape 
with width rd for the first excited oscillator d 
when kT /nwd « 1, we have 

1 _ Ro ~ . 2 1 (f + r J)/2 
p (11£, x) -- W liwd ~ (xS (0, d)) n (/I.E- hwd)2 I (I'+ l'd)"/4 ' 

11£ >O. (2.14) 

Usually llWd » rd » r; then the ratio of the inten
sities of the satellites and the Mossbauer line will 
contain, in addition to (2.13'), a factor r/rd. But 
the ratio of the areas under the curves correspond
ing to the Mossbauer peak and to the satellites will 
again be given by (2.13' ). 

Now let us look at the probability of the true 
Mossbauer effect. Strictly speaking, the quantity 
w0 of (2.9) for T ~ 0 actually determines a lower 
limit for the effect, since it does not take account 
of transitions in which there is a change in state of 
the system but no change in energy. Such transi
tions in the quasicontinuous spectrum give only a 
very small correction, of the order of the ratio 
rID. in the most favorable case (D. is the width of 
the energy band), which was assumed to be small 
from the outset. The same statement applies to 
transitions in which quanta of the discrete and quasi
continuous spectra take part together. 

The problem is somewhat more complex for 
transitions without a change of energy, in which 
only discrete normal vibrations participate. Here 
cases of degeneracy can occur, and consequently, 
when T ~ 0, there should be transitions with simul
taneous emission and absorption of two (or more) 
quanta of oscillations having the same frequency 
but belonging to different normal vibrations. Just 
for this reason, the probability for the Mossbauer 
effect in the general case should be given by (2 .10') 
and not by (2.9). But in most cases (for example, 
for isolated impurity atoms), if we exclude acci
dental degeneracies, the strict degeneracy due to 
symmetry will not be more than threefold for the 
localized vibrations in which a particular atom 
participates. The corresponding polarization vec
tors S ( 0; d) can be taken to be orthogonal. C hoos
ing one of the polarization vectors along k in the 
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case of threefold degeneracy, or along the projec
tion of k on the plane containing the polarization 
vectors in the case of twofold degeneracy ( in the 
first case the direction of the polarization vectors 
is arbitrary, in the second case it is arbitrary in 
the fixed plane), we eliminate entirely the need for 
including transitions between degenerate states. In 
this case (2.9) is a rigorous expression for the 
probability of the Mossbauer effect, not only when 
T = 0, but also for arbitrary T. 

We note that in I we dealt precisely with the 
strict degeneracy of localized levels for an impurity 
atom in a cubic lattice. [The remark on the special 
choice of the directions of the polarization vectors 
is important only for the intermediate formulas 
(3.25) and (3.26) in I.] 

To conclude this section, we consider some 
general results which can be obtained for the prob
ability of the Mossbauer effect, irrespective of the 
specific form of the macroscopic system. 

Let kT ;::, tiwmax· Then 

already small when kT = tiwmax• is dependent on 
the value of m 0 ( and only on m 0). 

In particular, if an impurity atom of mass mj 
replaces an atom of mass m 0 at the j -th site of an 
arbitrary unit cell of the regular lattice, then if 
the force constants are unchanged 

Z = 2kTR0mo ~ ~ (' d3f I Y.Vi (f, ll) I" + J!.r!_ (2 .20) 
n2m1 (2:n:)3 " ~ w2 (f, 11) 6kT ' 

where Vj ( f, a) are complex polarization vectors. 
The first term in (2.20) is precisely the usual ex
pression for the Moss bauer effect on the j -th atom 
of the regular lattice at high temperatures ( cf. [ 5] 

or [s]) and is completely independent of the mass of 
the impurity nucleus. 

When discrete frequencies are present, W in 
(2.10') in the classical limit ( kT;::, tiwmax) gene
rally remains dependent on m 0 through the argu
ment of I0, which in this case has the form 

2kTR0 'V . 2[ 1 (!iwd)2] 
(hwd)" f,j; (xS (0, d)) -I - 24 liT . (2 .21) 

- 2kT [ 1 ( nw~ \2 J 
2n!l + 1 ;:::;: nwiJ 1 + 12 \ 7iT) . (2.15) If the quantity (2.21) is small compared to unity 

Then 

Z = 2kTRo 'V (Y.S (0; ~))2 _, _13:,_ 'V ( S(O· P))2 
n• Li 2 r 6kT Li x ' " · 

for a reasonable range of temperatures and for all 
discrete frequencies, W ~ e-z, just as in the case 

(2.16) where the discrete frequencies are absent. 
!l {l)!l !l 

Since the transformation (2.2) is unitary, 

~ s' (Z; ~) sk (t'; ~) = 1:P61l', 
(3 

(2 .17) 

while the last term in (2.16) is equal simply to 
R0/6kT. 

We multiply both sides of ( 2 .3) by the reciprocal 
matrix [ x-t ( m, l)]ji and sum over l and i: 

S1 (m; ~)fro~ = ~ [A-1 (m, l) 111 s' (l; ~). 
I 

Set m = 0. Multiply both sides of the equation by 
sk ( 0; 13) and sum over 13. Interchanging the order 
of the summations on the right, and using (2.17), we 
finally get 

~ro~2S1(0; ~) Sk(O; ~) = !A-1(0, O)l1k = m0 [A-1(0, O)J1k. 

(3 (2.18) 

Substituting these expressions in (2.16), we ar
rive at the expression 

Z = 2kTR 0mo'fi-2 [A - 1(0; 0) 11k x 1xk + Rr/6kT. (2.19) 

A very important conclusion follows from (2.19) -in 
the absence of discrete frequencies, the probability 
for the Mossbauer effect when kT > nwmax is in
dependent of the mass of the radiating ( or absorb
ing) nucleus, and is determined only by the inter
action matrix. Only a correction term, which is 

In the opposite limiting case, when kT > nwd 

2kT Ro 'V ( S O· d 2 
( /i{J) )2 Li X ( ' ) ) ~ I ' 

d (d) 

(2 .22) 

using the asymptotic form for I0, we get the follow
ing expression: 

W. = IJ' [ 4:n:kT~o ~(xS(O; d))2j"'-'l•. 
d . (nwd)" (d) 

(2.23) 

The result in (2.23) can radically change the 
temperature dependence of the Mossbauer effect: 
when condition (2.22) is satisfied, the falloff of w2 
with temperature when kT > nwd will not be ex
ponential, but rather will follow a power law. The 
dependence will be weakest when there is only one 
discrete frequency (degenerate or nondegenerate) 
and will be ~ 1/..ff. 

3. ISOLATED IMPURITY NUCLEUS IN A REGULAR 
LATTICE 

Now let us consider a regular monatomic lattice 
with arbitrary isolated impurity atoms. 

In I we found the probability for resonance ab
sorption (emission) of a 'Y quantum by an impurity 
atom, without a change in state of the crystal, for 
an arbitrary ratio of the mass m' of the impurity 
atom to the mass m of the atoms of the host lattice, 
and used a simple one-parameter model for the 
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change in the force constants. The model used in 
I for the change in force constants is very conveni
ent for formal analysis, and allows one to obtain re
sults over a wide range of variation of the force 
constants determined by the requirement that the 
potential energy be positive definite [for a cubic 
crystal this interval is ( ( w~)( w02 ) - 1)-1 < 'Y < 1]. 
But this model is too artificial. Among the solutions 
of Eq. (3.5) of I, there is no constant vector corre
sponding to the zero eigenfrequency which occurs 
when the individual atoms are fixed absolutely in 
space. In comparing with experimental data for 
arbitrary m' /m, it is therefore necessary to use 
the results of I only for 'Y = 0, since then the theor) 
is free of the defect which was just mentioned. 

In the most general case, Aik ( rn, rn') can be 
written in the following form: 

B B B A (T0 , Tn•} = A 0 (rn- f 0 •) + yA (r0 , T8 •}, (3.1) 

where yAik ( rn, rn') is a perturbation operator, 
which satisfies the usual unitarity relations and is 
damped rapidly with increasing I rn I and I rn' I 
(the impurity atom is at the coordinate origin. The 
equation for the vibrations is 

m (1 - e6n0) W~ W~ (~) 

= ~ A~k (rn- Tn•) W~· (~) + r ~ Aik (rn, Tn•) W~· (~). 
n' n' (3.2) 

In order to be able to visualize the final results, 
we restrict ourselves to the case where the ratio 
m' /m is arbitrary but the change in the force con
stants is small, and find the solution to terms 
linear in 'Y. 

Let us write si(n; {3) = ~ wh(f3) in the fol
lowing form: 

S; (n; ~) = S~ (n; ~) + ySf (n; ~). (3.3) 

Here 80 ( n; {3) is a normalized solution of (3 .2) 
for 'Y = 0. In accordance with the results of the 
preceding section, we shall be interested only in 
quantities of the form si ( 0; {3) sk ( 0; {3)' which, in 
the linear approximation in y, are expressed as 

si (O; ~) sk (O; ~) = s~ (O; ~) s~ (O; ~) 

-+ r rs~ (O; ~) s~ (O; ~) -+ s~ (O; ~) si (O; ~) J. ( 3 .4) 

From the form of (3.4) it follows that for our pur
poses it is sufficient to consider only those normal 
vibrations {3 in which the displacement of the im
purity atom is different from zero when 'Y = 0. 

In the regular lattice, each eigenvalue w~ ( f, a) 
is degenerate, and the multiplicity () is determined 
by the number of vectors f which are connected 
with one another by the transformations of the point 

symmetry group of the crystal (the star of the ir
reducible representation). Let us denote the set 
of values w~ ( f, a) belonging to the same star and 
some a, by w~p· where the subscript p labels the 
frequencies in increasing order. 

For simplicity, let us restrict our treatment to 
crystals with symmetry not lower than rhombic. 
Then in the presence of the impurity atom ( 'Y = 0) 

three frequencies split off from each level p, and 
only for these frequencies is si ( 0; {3) ;e 0. In place 
of the index {3, we shall use the double index T, p, 
where T runs through the values 1, 2, 3. In ac
cordance with the results found in I, we get 

s; ( . ) _. L'J, ·k 1 "" [ 2 i (f, cr) ek (t, ct) 
o n, -r, p - •P h N .LJ ew,P 2 2 (f 

f,a: w,P- wo , ct) 

+ ! {Vl- e- 1) bik] cos fr0 , (3.5} 

where jT are unit vectors along the principal axes 
of symmetry of the crystal, while LTP = a ln w~p/ 8€ 
is determined from the solution of the equation 

2 
1 = ew,P ~ e' (f, ct) e' (f, cr) 

N t, a: w~P - w~ (f, cr) 
(3 .6) 

(no summation over T). From (3.2), using standard 
perturbation theory, we find for Sf ( 0; T, p) 

. ""' A ' , . s~ (O; "'· p) = .LJ 2 •r. • r2 s~ (O; "'', p'), 
.,-'p' w.,.P-w•'p' 

(3. 7) 

where 

n, n' 
(3.8) 

Let us consider one-phonon excitations. For the 
quasicontinuous spectrum, according to (2.10) and 
using (3.5) and (3.6), we have 

p1 (t'!o..E,x)jW =p~(~E,x)jW +rr~(~E,x)/W; (3.9) 

p~(~E, x)fW = 2R'(1- e) n,-2 ~ (xj,)2 g (w2) 

(3.10) 

P~ (LiE, x)/W =4R' (l ~e) li,-2 g (w2) ~, (xj,)(xj.,.,) Vf .,.(w2) 

"tl't' 

(3.11) 

Here g ( w2 ) is the distribution function for the 
squares of the frequences of the regular lattice; 

(3.12) 
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where 

A,,,. (w2 , w' 2) =Jim 3Nit-1 A,p,<'P', 
N-oo 

(3.13') 

We note that from now on, for cubic lattices, we 
shall choose the set of vectors j 7 mentioned above, 
where one of them is along K. This automatically 
eliminates the problem of transitions between levels 
belonging to the same p. Similarly, in the case of 
uniaxial crystals we should choose one of the polari
zation vectors in the plane perpendicular to the 
symmetry axis to be along the projection of the 
vector K onto this plane. 

Now let us treat p' for the discrete part of the 
spectrum, for which, in accordance with (2.13) and 
(2 .14), we determine the value of si ( 0; d) sk ( O; d). 
We shall restrict ourselves to low temperatures, 
for which the condition kT/nwd « 1 is satisfied. 
Then for each level d ::.o T (it assumed that in the 
absence of degeneracy the level spacing is larger 
than their width) we have ( D.E > 0) 

p~(L'l£, x) fW = R'(I- e) (xj,)2 (liw0 ,t1 Lv, * 
(f + r 0 ,)/2 (3.14) 

where we have introduced the notation Ln7 

= a ln wb7 /ac We give the value of pi( D.E, K) 

corresponding to the case of cubic symmetry of 
the host: 

PHL'lE,x)fW 

1 (f + r 0 )/2 

X n (/'>.£- hw0 )2 + (f + r vJ'/4 ' 

L'lE>O; 

j, = X, Lv = a In wyae. (3.14') 

Now we determine the probability W0 (2.9) for 
the Moss bauer effect. Using (3 .4), we write Z in 
the form 

Z = R' ~ (liw,pt1 (xS0 (0; 't', p)) 2 [2n (w,p) + 1] 

+ 2yR' ~ (liw,pt1 (xS0 (0; 't', p)) (xS1 (0; 't',p)) [2n (w,p) 
<P 

+II= Zo +rZ1. 

For y = 0, 

wo = exp {- R' (1 -e) ~ (xj~)\~ L,P [2n (w,p) + ll} 
-rp -..p .1 

where 6, includes a summation over the discrete 
TP 

frequencies. 
After changing from summation over the quasi

continuous spectrum to an integration, we have 
3 

wo = e-zp=tl o [R' (I -e) ( . )2 (II )-1 L h-1 hwo,l • Xh Wo, D< S 2kT ·' ' 

Z = Z'+Z", 

Z' = R'(1 -e)~ (xj,)2 

·"'~max 

x ~ (llw)-1 g (w2) f, (w2) (2n (w) + 1) dw2 , 

(I 

Z" = R' (I -e) "S (xj,)2 (nw0 .. :)-1 L 0 ,(2n (w0 ,) + 1). (3.15') 
, 

These expressions are the same as those found in 
I. For y >" 0, we give only the value of Z1 corre
sponding to kT > nw0 max= 

Z1=-2kTR'(I-e)n-2xixkN-2~ ~ 
f J ex. f' 1 a.' 

where 

i (f, ct) A1~. 1 ,~, ek (f', ct') 

w~ (f, ct) w~ (f', ct') 

(3.16) 

Ata, f'a' = m-1 :z; ~Ats (r0 , f 0 •) e1 (f, a) es (f', a') 
n n' 

(3.17) 

4. DISCUSSION OF RESULTS 

Let us examine the results obtained in the pre
ceding sections and in I. For simplicity we consider 
only the case of y = 0. 

All the formulas given depend essentially on the 
quantity 

It appears that one can give a simple normali
zation condition for this quantity. In the complete 
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system of eigenfunctions for the vibrational prob
lem with an impurity atom, the functions (3 .5) differ 
from zero only for n = 0. If we make use of the 
completeness relation, 

_2; S1 (0; ~) Sk (0; ~) = (1 - e) _2;L,P j~ j~ = elk. 
~ ~ 

Using the fact that in crystals with higher sym
metry than rhombic j 7 can be chosen along the 
principal axes of symmetry of the crystal independ
ently of p, we find 

'! = 1, 2, 3. ( 4.1) 
p 

To each T there corresponds no more than one 
discrete frequency. Thus in the general case, using 
(3.13) and changing from summation to integration 
over the quasicontinuous spectrum, we have 

oog max 

(1 -e) ~ dw2g (w2) f, (w2) + (1 - e) LD, = 1. (4.2) 

In the cubic case, the three equations are identical 
(fT =f). 

We note that it follows from (4.2) that one can 
determine Ln7 not from the dependence of wf>7 

on E, but from an integral over fT" 
Let us consider the probability for the Moss

bauer effect. For T = 0 it follows from (3.15) that 
W0 depends on the average of the quantity 1/ w 

over the quasicontinuous and discrete spectra, 
where the statistical weight is the quantity (j 7 ·K)2 

X ( 1 -E) Lrp. 
Consider the case of a light radiator. As the 

ratio m' /m decreases (starting from some criti
cal value Ec > 0, at which the discrete frequency 
wn7 appears ) , there is a continuous rise of 
( 1 - E) Ln 7 , and at the same time a decrease of 
the total amplitude of oscillation of the impurity 
atom in the quasicontinuous spectrum. One can 
show, for example, that in a cubic crystal, to terms 
of order ( 1 - E )2, the relation 

holds. Thus with increasing E, the quantity 
( 1 -E) Ln7 approaches unity, while the impurity 
atom begins to vibrate mainly at the discrete fre
quencies. Since the frequency density function is 
localized in the region of high discrete frequencies, 
this is a most favorable situation for obtaining a 
minimum (for given R' ) value of Z and at the 
same time a maximum probability for the Moss
bauer effect. 

Noting that for small 1 - E, 

(w~n e' e') = (3Nt1 _2; w~" (f, a) e' (f, a) e' (f, a), (4.3) 
f. 0: 

we have for wg 

( 4.4) 

In general the effect is definitely anisotropic; 
from the value of w0 in a single crystal for three 
values of K which do not lie in a plane, one can get 
the values of wn 7 . 

For a cubic crystal, (4.4) simplifies andre
duces to 

o { R' (1 -e)'/, [ 3 (w~>- <w~> 2 ]} 
W2 = exp - "' / " 'I I-- ;T (1 -e) <w'o2>2 , ",wo> ' 

(4.4') 

which agrees with I. 
The appearance in the exponent of the small factor 

( 1 - E )112 = ( m' /m )112 is very important for obtain
ing an observable Mossbauer effect on relatively 
light impurity nuclei. The value in ( 4.4) is a limit, 
and wg can increase for given R' only if the force 
constants change. We note that ( 1/ w0 ) > ( w~ t112 

and thus, compared to the regular lattice, there is 
an additional increase in the effect. 

Now let us consider an inelastic transition with 
excitation of a discrete frequency. To each fre
quency wn 7 there will correspond the appearance 
in the resonance absorption ( emission) intensity 
curve of a sharp peak, displaced from the Mossbauer 
peak by ~E = nwn7 . According to (2.13), the ratio 
of the areas under these peaks will be 

R' (1 -e) (nwD,)-1 (j" x)2 LLJ,. ( 4.5) 

Consequently, for sufficiently small m' /m, this 
ratio will be simply R' (nwn7 )-1 (j 7 ·K)2, and in a 
cubic crystal, R' /nwn, But this quantity, though in 
most cases less than unity, can be comparable to 
unity. Thus the integral intensity in each satellite 
may be comparable with the corresponding quantity 
for the Mossbauer line. 

For the experimental verification of such a tran
sition, the differential intensity given by (3.14) is 
important. It is easy to see that when the integral 
intensity is large, the value of the width rn7 will 
be the decisive factor. 
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We have made a calculation of the width of the 
excited level of a localized normal oscillator in 
crystals which results from anharmonicity. [ 7J We 
treated crystals with cubic symmetry and included 
nearest neighbor interactions. We found that even 
under favorable energetic conditions, the width for 
the decay of a quantum of the localized vibration into 
two excitations of the quasicontinuous spectrum was 
10-2 of tiwn when kT « tiwomax· For wn· close to 
2w0 max• and all the more for wn > 2w0 max• the 
value of rn due to anharmonicity is even lower. 
Thus, at low temperatures the differential intensity 
corresponding to an inelastic transition with excita
tion of a discrete frequency, which depends on the 
ratio r /rn. will apparently be at least two orders 
of magnitude stronger than the intensity for one
phonon transitions in the quasicontinuous spectrum, 
which is determined by r /tiw 0 max· We note that if 
the source and absorber are identical, under certain 
circumstances one can increase the effect signifi
cantly by making the peaks for one-phonon emission 
and absorption coincide. 

When m' /m > 1 - Ec, there are no discrete fre
quencies, and the second term on the left of (4.2) 
vanishes. As m' /m increases there is a continual 
redistribution of f 7 ( w2 ) into the region of lower 
frequencies. The picture becomes particularly 
clear for m' /m » 1. Then f 7 becomes a 6 function 
localized in the low-frequency region. 

As an example, let us consider the case of cubic 
symmetry, and take for f the corresponding value 
from (3 .13) ( g7 = g). It is easy to see that when 
IE I»1(E < 0), thedenominatorin(3.13)hasasharp, 
narrow minimum at wV w~ max ~ 1/ IE I . Using the 
fact that in this range g ( w2) = d W / w~ max• after 
making some transformations we arrive at the fol
lowing approximate expression: 

<x-1 >'1• /.. w~ 
f (x);:::::; :rtd J e J'/, (x- Xo)• + }.2 ' X = -(1)-;~,-m__::a_x_ ' 

(4.6) 

where 

x 0 = 1/ja!(x-1), A=:rtdflal'i•(x;-1)'1•. (4.7) 

Thus the impurity atom oscillates primarily in a 
comparatively narrow range offrequencies, the cen
ter of this region on the w2 scale being displaced to
ward lower frequencies by an amount proportional 
to IE 1-1• Such a localization of f obviously leads to 
a reduction in the probability for the Mossbauer ef
fect as compared to that for a regular crystal with 
the frequency spectrum of the host but with atoms 
of mass m'. 

The limiting value of w0 in a cubic crystal, which 
is easily found using (4.6) [ cf. (5.17) in I ], 

clearly shows this effect. On the other hand, it fol
lows from (4.8) that as the mass of the radiating 
atom increases while the mass of the lattice atoms 
is kept fixed, Z drops continuously, though only as 
1/ -fffii. 

We note that the probability for the Mossbauer 
effect in the regular lattice is related to the moment 
(1/w0), the limiting value for m' /m « 1 is deter
mined by ( wD while the limit for m' /m » 1 is de
termined by ( w[}). Thus in these three cases the 
value of W0 gives three different moments of the 
spectrum of the ideal lattice. 

Now let us consider one-phonon transitions in 
the quasicontinuous spectrum. According to (3.9'), 
the determination of p' ( ~E, IC) for IC along the 
principal axes of the crystal enables us to determine 

(4.9) 

as a function of frequency. 
Knowledge of cp 7 ( w2 ) enables a complete deter

mination of the nature of the vibrations of the im
purity atom. 

But the question of greatest interest is the pos
sibility of determining from cp 7 the frequency dis
tribution function g ( w2 ) for the ideal lattice. Con
sider the case of cubic symmetry. From (3.13) it 
follows that f is related to the parameters of the 
host only through g ( w2 ). Thus there is a functional 
relation between cp and g, and consequently there 
is a possibility of determining g ( w2 ) from the re
sults of measurements of one-phonon processes in 
the resonance absorption ( emission) of y quanta by 
impurity nuclei. [In the anisotropic case it is neces
sary to make measurements for three values of IC [ 5] 

and to determine each g7 ( w2 ) independently.] 
It is interesting to note that, in accordance with 

(4.6), when m' /m » 1 the probability for one-phonon 
excitations has a marked resonance character for 
w = Vx0 w0 max• which is very attractive for experi
mental observation. 

We note that when the force constants change the 
problem of reconstructing the frequency distribution 
function is much more complicated. But if there is 
a considerable difference between m' and m, one 
can in most cases neglect the change in the force 
constants. The comparison with experiment in the 
next Section is an indirect confirmation of this. We 
should especially state that all the complications · 
which enter in the problem of experimentally deter
mining g ( w2 ) for the case of regular crystals [ 5 •8] 

are completely applicable for the case where im-
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purities are present. We shall not spend time on 
this problem. 

Now let us go on to the treatment of the tempera
ture dependence. Let kT > nwn 7 (in the absence of 
discrete frequencies kT > nwomax) so that (2.15) 
is valid. One can prove rigorously that for any 
vibration frequency spectrum the relation 

(4.10) 

is valid. 
We then have from (3.15) 

W0 = exp { - 2kTR' (1 -e) n,-w-1 ~ w;;-2 (f, a) 
f,a 

2 
3 [ 2kTR'(1-e)(.,.L)• J 

X (xe(f, a)) - R'j6kT} II fo (liwo,)" · Lo, 
"t"=l 

(4.11) 

in complete agreement with (2.19) and (2.20). 
For a host with cubic symmetry 

(4.11') 

We note again the complete disappearance of the 
dependence on mass of the radiating nucleus for the 
main term in (4.11) and (4.11') when there are no 
discrete frequencies [ R' ( 1 - E) = n2k2 /2m]. 

For a heavy radiator (no discrete frequencies) 
the classical limit (4.11) is reached at much lower 
temperatures. In fact when IE I » 1 the impurity 
atom vibrates in a narrow range of frequencies 
around w = w0 max/ IE 1112 ( x-1 t 112 [ cf. ( 4. 7)]. Con
sequently it is sufficient to have 

kT > liwo maxi I e ['1• <x- 1 > •;, (4.12) 

(since ( x-1 ) > 1). Thus for a heavy radiator the 
drop in the effect with temperature occurs much 
more abruptly than for an ideal lattice. 

We note that in a cubic crystal when m' /m » 1, 
because f has the form (4.6), we can immediately 
obtain an approximate expression for w0 which is 
valid for any temperature: 

{ R' < 1 >'/, •; - } W0 = exp -r; w~ [e['(2n0+ 1) , (4.13) 

where llo is determined for Wo = -IXo Womax· 
If discrete frequencies appear, so that the im

purity atom vibrates mainly at these discrete fre
quencies, the temperature dependence is sharply 
reduced. With increasing temperature the factors 
in the form of Bessel functions in (4.11) begin to 
increase. 

When m' /m « 1, ( 1 - E) Ln7 f::; 1, and the argu
ment of I0 is determined by the ratio 2kTR' /( nwn 7 ) 2 • 

If this ratio is small because R' /nwn7 « 1, I0 can 
be replaced by unity. But if 2kTR' /(nwn 7 )2 » 1, 

0 _ -z· 3 [ 4rtkT R' (1- e) ('~i.Y L ]-'/, 
W - e II (liwv,Y o, . 

't"=l 

(4.14) 

Thus in place of the exponential, W~ gives a 
factor with a 1/T312 dependence. In a uniaxial crys
tal (3 .15) will contain the product of only two Bessel 
functions, and the factor multiplying e-z' in (4.14) 
will be ~ 1/T. Finally, for a cubic crystal only one 
Bessel function remains, and the factor in ( 4 .14) is 
~ 1/T112 • In this last case, using (4.10) [cf. (4.11' ), 
we have 

W 0 = exp {- 2~R'((:2)- : 2 Lo) 
0 D 

R' [ 1 } i r 4rtkT R' (1 -e) J -•;, 
--6kT 1+2(1-eJLo] !L (liwo)" Lo . 

(4.15) 

Using (4.3) one can easily show that for small 1 - E 

the relation 

2 1 [ (w~>- (w~>2 ] Lolwo = -- 1-2 (1- e):--"..-~.:.... 
(w~) (w~) 2 

(4.16) 

is valid. 

5. LATTICE WITH NEAREST NEIGHBOR INTER
ACTIONS BETWEEN ATOMS. COMPARISON 
WITH EXPERIMENT. 

Let us consider a crystal with a simple unit cell, 
including nearest neighbor interactions of both the 
central and noncentral type. Such a model has been 
used many times for the general analysis of vibra
tions of monatomic and diatomic cubic lattices, [ 9] 

and also for determining the probability of the Moss
bauer effect. [ 1o] This model was generalized in [1i] 

to the case of rhombic and tetragonal symmetry. If 
one uses the results of this work, for all three vi
bration branches, whose polarization directions are 
fixed and coincide with the principal axes, we have 
expressions for the dispersion law and the partial 
frequency distribution function (3.13') 

2 3 

w~ (f, a) = m ~ A.ail (I -cos cpp), <JJil = fa[l, 
13=1 

00 3 3 ~ 

g"' (x) =~~cos [(2x -1) pliT J0 (A.a13[~ A.ay] p)dp. 
0 13=1 y=l 

I (5,1) 
Here 

2 4 3 

Woa max = m ~ Aa.(l· 

13=1 
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The coef~icients A. a{3 are related to the matrix 
elements A~k ( r 0 ) as follows: 

ik ik ik A0 (a,) = A0 (-a,) = - 'Ai,o , 

where as ( s = 1, 2, 3) denote the latti?e basis 
vectors. All other matrix elements A~k ( rn), ex
cept 

3 

A~k (0) = - 2 ~ A~k (a,), 
S=l 

are equal to zero. The function ga ( x) is normal
ized by the condition 

1 
r· 
~g" (x) dx = 1. 
0 

The probability of the Mossbauer effect for an iso
lated impurity atom in a crystal will be determined 
by (3 .15') with T = a. The discrete frequencies are 
determined from three independent equations 

1 

~ g" (x') dx' 
xe , = I, 

• X-X 
x> I, (5.2) 

0 

after which \Ve immediately find a lnxna/ a E: 

1 

aJnxDrL =~[x e\ g"(x)dx -l]-1· 
as e D<> .) (xD<>-x)2 (5.3) 

0 

Using (5.1) -(5.3), we have made numerical com
putations of the probability for the Mossbauer ef
fect in the case of cubic symmetry, assuming that 
all the constants for the central interaction are the 
same, {3 1, and all those for the noncentral interac
tion are the same, {3 2 (i.e., {3 1 = A.11 = .:\22 = .:\33; {32 
= A.a[3 for a ¢. {3). To find xn from ( 5 .2) we used 
tables of this integral which were published in [t2]. 

Figure 1 shows the dependence of Z on E for 
T = 0 over a wide range of variation of the ratio 
m' /m ( W0 = e-z, E = 1 - m' /m). The ordinate is 
Ztiw0 max/R' ( R' = n2k2 /2m' ) . The dashed curve 
is Z'tiw 0 max/R' for E > E c• when the spectrum 
contains a discrete frequency. 

From the shape of the curve it follows that, for 
fixed R', Z increases continually with increasing 
m' /m, where for - E > 1 the dependence rapidly 

FIG. 1 

ZhWomaz/R' 
4 

becomes a square root dependence. For E > Ec 
the value of Z' drops rapidly to very low values 
and w0 is practically determined by Z". All these 
results are in complete agreement with the general 
analysis given in the preceding section. 

Figure 2 shows the temperature dependence of 
Ztiw0 max/R' for different values of m' /m. The 
curves of Fig. 2 show very clearly the results pre
dicted from general arguments, that there is a sharp 
drop in the probability for the Mossbauer effect with 
temperature when m' /m » 1, and that there is an 
equally marked drop in the temperature dependence 
when m' /m « 1. (When R' /tiw0 max « 1, the Bes
sel function 10 in (3 .15) can be replaced by unity. 
Then Z determines W0 even for m' /m < 1 - Ec.) 

The early transition to the classical limit and 
the vanishing of the dependence on the mass of the 
radiator is shown clearly in Fig. 3, where curves of 

FIG. 2. Dependence of 
Zi'rw0 max/R' on temperature. 
Curves 1-7 correspond to 
the following values of rn/m: 
9; 2; 1; 0.67; 0.6; 0.4; 0.2. 
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FIG. 3. Dependence 
of ZliwomaxfR on tern
perature. Curves 1-7 
correspond to the follow
ing values of rn' /m: 9; 
2; 1; 0.67; 0.6; 0.4; 0.2. 

B 

5 

K Tjliwamaz 

the temperature dependence are drawn, but the ordi
nate is Ztiw0 max/R, where R = ti2k2 /2m is the re
coil energy calculated using the mass of the free 
nucleus of the host. 
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Now let us compare these results with experi
ment. There are at present three experimental 
papers in which measurements are reported of the 
probability for the Mossbauer effect on an impurity 
nucleus in a crystal, with a sizable difference be
tween m' and m. 3) [ 13- 15] 

1. Shirley, Kaplan, and Axel [ 13] measured the 
effect on Au197 nuclei introduced into relatively 
light lattices of Fe, Co and Ni at 4o K. With such 
a large mass difference ( m' /m ,..., 4) the change in 
the force constants can be neglected and the proba
bility for the effect should be described by the for
mulas given above. We have made a computation of 
Z = Z' for Fe and Ni, which have cubic symmetry, 
using (5.2). To determine the ratio of the constants 
for the central and noncentral interactions, ~ = f3tf{3 2 

we used tabulated values of the elastic moduli, since 
~ = c11/c44 • For Fe and Ni it turned out that ~ ~ 2. 

The results of the computation are given as the 
ratio of Z/R' to ZFe,N/RFe,Ni for the ideal host 
lattice. The values found were: 

The experimental results lead to values of 1. 96 
and 1. 73, respectively for these quantities ( e/®eff• 
in the notation of[13J). 

2. Heberle, Parks, and Schiffer [ 15] report meas
urements of the temperature dependence of the ef
feet for Fe57 embedded in a beryllium lattice. The 
large mass difference ( m' /m ~ 6.3) permits the 
use of the limiting formulas. Unfortunately, Be has 
a hexagonal lattice. But when Z is small, the poly
crystalline state of the sample gives rise to an 
averaging of the polarization vectors. Thus we can 
approximately use formula 14.13). Let us compute 
( w02 ). Averaging the reciprocal of the square of 
the frequency over a Debye spectrum, we find 
( w02 ) = 3/ wi max· We note that a very similar 
value is obtained if one uses the model with nearest 
neighbor interaction and ~ = 1. Determining x0 

from ( 4. 7) and computing no, we finally get 
( 1iw 0max/k = 1000o K) 

W0 (295° .I\)/W0 (80° .1\) = 0.88, 

W0 (425° K)/W0 (80° .K) = 0.81. 

These results are in good agreement with the 
preliminary experimental data. 

The Mossbauer effect for a light impurity nu
cleus ( Fe57 ) in a heavy lattice (In) was first meas-

3>0ne of the authors (Yu. K.) thanks W. Marshall for send
a preprint of [ts]. 

ured by Craig, Taylor, and Nagle. [ 14] The authors 
observed an anomalously slow falloff of the proba
bility of the effect with temperature over a wide 
range of temperatures for this host matrix from 1 
to 300° K (@In ~ 120° K). This result is obviously 
in good agreement with the general predictions of 
the theory ( cf. I and the preceding section). Un
fortunately no precise numerical results were 
quoted in this paper, and an indication of the approx
imate value of the drop in the effect over this tern
perature interval is given only in a footnote. We 
have therefore limited ourselves to relatively rough 
estimates of the effect for this case. 

At T = 3 ooa K, for this matrix, even when dis
crete frequencies are present, one definitely reaches 
the classical temperature limit. If as an approxi
mation we neglect the deviation of the In lattice from 
cubic, then we can determine w0 using (4.11' ). Since 
1 - E ~ 0.5, we can use (4.16) to determine w}jLn. 
The moments which appear in (4.11') and (4.16) can 
be computed on either the nearest neighbor model 
or the Debye model. 

The result for the ratio w0 ( 300° K)/W0 ( oo K) 
was 0.34. This value is definitely below the reduc
tion of the probability for the effect over this tem
perature interval which was given in [ 14] by 50%. 
When the experimental data are obtained more ac
curately, we propose to make a detailed computation, 
based on the actual crystal structure of In. One will 
then be able to answer the question whether there is 
an effect of a change in the force constants for such 
a small change in the mass ( m' /m ~ 0.5). 

The authors are indebted toM. V. Kazarnovskil 
for valuable discussions. 
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