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Within the framework of the dispersion method, a rigorous treatment is given of final state 
interactions in direct nuclear reactions. An exact solution is obtained for the singular inte
gral equation which arises in this problem; numerical computations using the exact solution 
reduce to a single quadrature. A comparison of the exact solution with the first iteration is 
used to give a qualitative explanation of the success of the distorted wave method in describ
ing direct processes. 

l. The dispersion theory of direct reactions, for
mulated in a paper of Shapiro, [1] allows quite rigo
rous inclusion of the interaction of a particle with 
the nucleus in the initial and final states. In the 
present paper we show that when such interactions 
are included, the amplitude for the direct process 
satisfies a certain integral equation which relates 
the amplitude for the reaction to the amplitudes 
for elastic scattering of the incident and emergent 
particles. This equation is based on unitarity and 
analyticity. It is convenient to represent the am
plitude corresponding to inclusion of final state 
interaction by means of diagrams (Fig. 1). Since 
there are a large number of vertices correspond
ing to elastic scattering of the particle by the nu
cleus ( strong interaction ) , one cannot stop at the 
few terms shown in Fig. 1. The solution of the in
tegral equation represents a summation of an in
finite number of terms. 
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FIG. 1. Diagrams corresponding to final state interaction. 

2. The integral equation for the partial ampli
tude of the direct reaction A + x - B + y, includ
ing final state interaction, 1> can be written in the 
form 

00 

M (E) = M (E) + -1 \' M (£') h* (£') dE' (1) 
o n j E' - E - ilJ ' 

E, 

1lSimultaneous inclusion of both initial and final state 
interactions does not cause any difficulties in principle, but 
to be specific we have limited ourselves to final state inter
actions. 

where E is the kinetic energy of the emerging par
ticle in the ems, M0( E) is the partial amplitude 
for the direct interaction omitting final state inter
action (the first term in Fig. 1), h(E) =eio(E) 
sin o ( E ) , and o is the partial phase for scattering 
of the emergent particle by the final nucleus. 

We consider the wide class of reactions in which 
there is no anomalous threshold in the energy vari
able, so that E 0 = 0. The integral equation (1) was 
obtained from the dispersion relation without sub
tractions; these have to be made if tbe amplitude 
does not fall off sufficiently rapidly with energy. 
Including the subtractions does not complicate the 
computations. The integral equation in the form (1) 
is rigorously correct if we neglect effects associ
ated with the spin of the final nucleus, since the 
elastic scattering amplitude is then diagonal in the 
orbital angular momentum l. 

Singular integral equations of the type (1) and 
their solutions have been studied in detail in the 
monograph of Muskhelishvili, [2] and the equation 
in just the form of (1) has also been treated by 
Omnes. The solution of (1) has the form 

00 

M (E) = M 0 (E) + p+(£) \ Mo (£') h* (£') dE', 
n .\ p (£')(£'-E-i11) 

0 

p± (E) = p (E) exp {± i6* (E)}, 

p (E) = exp {-£-~_E_o P ~ ---,(,-;;£-c-' -~~*"o)('-;-f£.,!-;'l,-_-£"'):- dE'}. (2) 

The solution (2) is a particular solution of the in
homogeneous equation (1), to which one can add 
the general solution of the homogeneous equation. 
But it is easy to see that the solution (2) is the 
only one which vanishes for M0 - 0. This solu-
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tion coincides with the iteration series and goes 
over into M0(E) for h ......... 0. . 

Direct computations using formulas (2) are 
quite complicated. But the solution can be sim
plified considerably if we approximate the phase 
as a function of energy by the expression 

tan 6* (£) = YEQ(E)/ P(E), (3) 

where Q(E) and P(E) are arbitrary polynomials. 
This expression is a generalization of the effective 
range approximation. For nucleon-nucleon S-scat
tering, Q = const, P(E) = -1/a + r 0E. When the 
scattering is determined by one resonance level, 
we have tano(E) = -r/2(E-Er), where r is 
the level width, proportional to fE. This expres
sion is valid when there are no inelastic channels; 
including inelastic channels somewhat changes the 
appearance of the formula, but it again corresponds 
to formula (3). Apparently formula (3) can be used 
in practice for any case of scattering of a particle 
by a nucleus. We note that formula (3) does not in
clude the term in the phase which corresponds to 
potential scattering and which does not change p ( E ) . 

From formula (3) we get p ( E ) in the form ( simi
lar computations were done by Galanin and Grashin 
[4]) 

p (£) = const. Xrl v E- Et; I kDl -v E- Et • (4) 

where Ek: are the roots of the equation P(E) 
-i IE Q(E) = 0, Ek are the roots of P(E) 
+ i IE Q( E ) = 0, on the sheet where Im IE > 0. 
Going to the limit T'f ......... 0 in (2), we get 

M (E) = e•o*(E) [ M 0 (E) cos 6*(£) 

00 

-+- __!:_ p \' p (£) M0 (£')sin 6* (£') dE'] , (5 ) 
' Jt .\ p (£') E' - E 

0 

where p ( E ) for the case of the model (3) is given 
by (4). Thus the problem is reduced to one quad
rature. 

3. The distorted wave method is widely used at 
present to describe direct nuclear reactions. Since 
the distorted wave method and the dispersion 
method of this paper solve essentially the same 
problem, it is desirable to understand the connec
tion between the two methods. In studying the ex
pressions for the reaction amplitude, one notes a 
relation between the direct reaction amplitude in 
the distorted wave method and the approximate 
solution of (1) corresponding to the first iteration. 
Unfortunately it is difficult to trace this connection 
all the way. It is nevertheless worthwhile to under-

stand what conclusions follow if these expressions 
are assumed to be equivalent. For this purpose we 
compare the exact solution of Eq. (1) with the first 
iteration: 

M1 (£) = M 0 (E)e-i5*(E) [cos(\*(£)+ 2i sin b*(E)] 

1 r Mo (E') e-iS*(E')J sin 6*(£') I + n p .\ E'- E dE . (6) 
0 

It is natural to compare the solutions of (5) and (6) 
for the two limiting cases, using the model (3): 
1) P(E)-:+ o (o ......... 7r/2) and 2) Q(E) ......... o (o ......... 0). 

In the first case the exaet solution and the first 
iteration are very different. For example, for scat
tering through a single resonance level, neglecting 
inelastic channels, formula (5) gives the physically 
obvious result M ( Er) ~ 0, where M1 ( Er) 
~ 2M0( Er) (where Er is the resonance energy). 

In the second case, where tan o* ~ sin o* « 1, 
the solutions of (5) and (6) eoincide to first order 
in sino*: 

M (E)~ M1 (E)~ M 0 (£) [ 1 + i sin 6*(E)l 
00 

+ __1_ p \' M 0 (£')sin 6*(£') dE' 
Jt .\ E'- E . 

0 

(7) 

This is easily seen by comparing (5) and (6) 
directly for small o*. Thus a sufficient condition 
for the validity of (6) is the inequality 

sin b* < 1, i.e., h* (E)< 1. (8) 

4. The treatment given above permits one to 
understand qualitatively the success of the method 
of distorted waves in describing direct processes. 
In fact, direct nuclear reactions are preferentially 
peripheral (cf., for example, [SJ). The region of 
the nuclear surface with radius R corresponds to 
values l ~ kR, for which it is known, for example 
from studies of the optical model for neutrons, that 
I tan ozl < 1 (Fig. 2). If in addition, values of E' 
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FIG. 2. Schematic dependence of itan ozl on l, determined 
from the optical model description of scattering of neutrons by 
nucleiJ•] Solid curve for Cu and 14 MeV neutrons, the dashed 
curve for In and 14 MeV neutrons, the dot-dash curve for Sn 
and 3.2 MeV neutrons. The farthest left value of l in each 
case corresponds to l = 0. The value of l 0 is ~ kR. 
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which are much greater than E do not give a large 
contribution to the integral in formula (5), this in
equality can also be used in the integrand. 

As we see from Fig. 2, condition (8) is satisfied 
for l ~ 10 ( Z0 ~ kR). But it may break down for 
l < 10 and even for l = 10 - 1. For example, in the 
case of Sn (E = 3.2 MeV, 10 = 3 ), for Z1 = 1, 
I tan ol = 3.44. Thus one can understand why the 
distorted wave method, which in general gives a 
good description of direct processes, in some 
cases gives poor agreement with experiment ( cf., 
for example, C7J), especially at large angles, where 
the results are most sensitive to changes in the 
partial reaction amplitudes. In those cases where 
the agreement is poor, they change the parameters 
of the optical model, but still use a potential which 
describes the elastic scattering poorly. This pro
cedure is hard to justify. 

The dispersion method treated here does not 
have the difficulties of the distorted wave hlethod, 
and should be applied to treat specific nuclear 
reactions. 

In conclusion we should like to thank Prof. I. S. 
Shapiro for continued interest and valuable dis
cussions. 

1 I. S. Shapiro, JETP 41, 1616 {1961), Soviet 
Phys. JETP 14, 1148 (1962); Nuclear Phys. 28, 244 
(1961). 

2 N. I. Muskhelishvili, Singulyarnye integralnye 
uravneniya (Singular Integral Equations), Goste
khizdat, 1946; translation, P. Noordhoff, Groningen, 
1953. 

3 R. Omnes, Nuovo cimento 8, 316 (1958). 
4 A. D. Galanin and A. F. Grashin, JETP 41, 633 

(1961), Soviet Phys. JETP 14, 454 {1962). 
5 Austern, Butler, and McManus, Phys. Rev. 92, 

350 {1953). 
6 Luk'yanov, Orlov, and Turovtsev, JETP 35, 

750 {1958), Soviet Phys. JETP 8, 521 (1959); 
Nuclear Phys. 8, 325 (1958); JETP 41, 1634 (1961), 
Soviet Phys. JETP 14, 1161 (1962); Nuclear Phys. 
35, 71 {1962). 

7 H. E. Gove, Proc. Rutherford Jubilee Int. Conf., 
Manchester, London, 1961, pp. 437-461. 

Translated by M. Hamermesh 
367 


