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A method is proposed for theoretical investigation of current fluctuations in a semiconductor 
close to a stationary non-equilibrium state produced by a strong electric field. Current fluc­
tuations are studied by this method in atomic semiconductors where the interaction between 
the current carriers and acoustic phonons is important. It has been found that the fluctuations 
in the low-frequency range are proportional to the square root of the electric field. The spec­
tral density of longitudinal (along the direction of the electric field) fluctuations of the current 
exhibits an appreciable dispersion (dependence on the frequency w) in the radio frequency 
range. The spectral density of transverse current fluctuations is not dispersive in the low 
frequency region. In the high-frequency region, the fluctuations are proportional to the % 
power of the field and inversely proportional to the square of the frequency. 

THE problem of current fluctuations in a semicon­
ductor in a state of thermodynamic equilibrium was 
first studied by Nyquist in 1928 [1] (see also [2J). 
Subsequently it has been shown that the results of 
Nyquist are a special case of a very general theo­
rem on the connection of fluctuations of physical 
quantities with the dissipative properties of the 
system in the case of external influences upon it. 
This connection was established by Callen and 
Welton. [3] This theorem makes it possible, for 
example, to reduce the problem of current fluctu­
ations in a system in a state of thermodynamic 
equilibrium to the problem of the calculation of 
the conductivity tensor of such a system (with 
account of its dispersion). 

There are no theorems of such a type applic­
able to a system in a strongly non-equilibrium 
state (for example, a semiconductor in a strong 
electric field). To the contrary, it can be estab­
lished that, in contrast with the case of the equi­
librium state, the current fluctuations in such a 
system are not connected by some exact general 
relation with its reaction to the effect of a weak 
electromagnetic field of variable frequency. There­
fore, the fluctuations in such systems require spe­
cial consideration for each case. Here we shall 
consider one such case-current fluctuations in a 
semiconductor located in a strong electric field, 
which produces appreciable deviations from the 
equilibrium electron distribution accompanied as 
a rule by departures from Ohm's law. 1 > 

l) A series of theoretical researches (see the review of 
Lax,[•] where there is an extensive bibliography) have been 

The experimental study of these fluctuations 
makes it possible to obtain a series of interesting 
facts concerning the semiconductor itself and also 
the character of the non-equilibrium state near 
which the fluctuations are taking place. For ex­
ample, one can determine the mean energy of the 
conduction electrons. The latter is especially in­
teresting in those extraordinary cases in which 
Ohm's law is satisfied in spite of the fact that the 
electron distribution departs considerably from 
equilibrium with the lattice temperature. Such a 
situation can take place in ionic semiconductors. 
[B,s] It is then possible to establish the mean en­
ergy of the electrons only by indirect evidence, 
inasmuch as under such conditions the conductiv­
ity does not depend on the electric field while, for 
example, the current fluctuations can increase 
sharply with increase in the field. 

1. GENERAL CONSIDERATIONS 

Let the electronic 2> system be characterized 
by a one-particle distribution function Fp. ~here 
p is the quasi-momentum of the electrons. Fp is 
determined from the kinetic equation 

concerned with problems of fluctuations close to the station­
ary state for various cases. Note should also be made of 
recent researches[s.•] which have been devoted to fluctuations 
in a non-equilibrium plasma, and to the study of fluctuations 
in semiconductors in a strong electric field in the limiting 
case of low frequencies.E7 ] 

2l:In what follows, for definiteness, we shall be speaking 
of electrons in the conduction band, although our discussions 
apply in equal measure to holes in the valence band. 
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1 1 a~ A~ 

e (E +- vH]);;-F =-SF, 
C up (1) * 

where S is the collision operator, e the electron 
charge, v its velocity, E and H the intensities of 
the electric and magnetic fields, respectively, and 
c the velocity of light. For simplicity we consider 
in what follows a case (which is the most interest­
ing from the experimental viewpoint) in which the 
effects associated with the Fermi degeneracy of 
the electrons are negligibly small. Then § is a 
linear operator. 

It is assumed that the electric field E does not 
depend on time, i.e., that the external conditions 
are stationary. The electrons give up the energy 
obtained from the field E to various scatterers 
(for example, phonons ). We assume that the state 
of the scatterers can be regarded as unchanging 
during a sufficiently long interval of time. Only in 
this case can Eq. (1) have a solution which is time­
independent, i.e., a stationary state can actually be 
establishe~. Then, by knowing the stationary dis­
~ibution F, we can find the mean current density 
J, the relation of which to E is generally nonlinear. 

At each instant of time t, the electron distribu­
tion _!unction (together with the current density 
J ~ J + oJ) fluctuates, taking on some value F P 
= Fp + oFp(t). As a result of these fluctuations, 
the correlators of the type oJi( r, t + r) oJk ( r', t) 
are shown to be different from zero. They also 
characterize the current fluctuations in the sys­
tem. The bar here denotes an averaging over all 
instants of time for a fixed value of r. The argu­
ment t over which the averaging takes place will 
frequently be omitted. 

In final analysis, we are interested in the prob­
lem of the fluctuations of the total current flowing 
in the circuit. Therefore, we can neglect the spa­
tial correlations of current fluctuations which take 
place at very small distances [ cf. [!O]] and assume 
that OJi(r, t+r)oJk(r', t) "'o3(r-r'). It is then 
appropriate to introduce the notation 

00 

{)J;(<) {)fk = ~ ({)Ji {)Jk)we-'"'"dro. (2) 
~oo 

Conversely, 
00 

({)J,{)Jk)w= in ~ d<e'"'~M,(<)M~e. (2a) 
-oo 

If the stationary state is a stable one (which is 
assumed), then 6Ji ( r) 6Jk falls off sufficiently 

*[vH] = v x H 

rapidly at large T and the integral of (2a) con­
verges. 

Our purpose is to derive an equation of the 
kinetic type with the help of which one can con­
sider current fluctuations close to a stationary 
state. For this purpose, we assume that at the 
instant of time t the electron distribution func­
tion of the k-th component of the current vector 
differs from the mean value by a quantity oJk 
(as a result of fluctuations ) . Then, even at the 
next moment, the distribution function will differ 
from its stationary value. This difference is 
connected with two circumstances. First, the 
system must during some instant of time "main­
tain a memory" of the fluctuation which took place, 
by assumption, at the timet. Second, new fluctua­
tions will take place in it, the occurrence of which 
is a random process. 

We assume that the change with time of the distri­
bution function in which we are interested is as­
sociated with only the first circumstance. For this 
case, it is sufficient to study the correlator in 
terms of which (2) is directly expressed, 

00 

6Fp (t + <) {)Jk (t) = ~ e-'""(6Fp{)Jk)wdro, (3) 
~oo 

as a function of r. Actually, as a result of the av­
eraging over t, the effect of the second circum­
stance will be eliminated, since it is a random 
phenomenon. 3> As a net result, for example at 
T > 0, the expression (3) must describe a diffusion 
of the fluctuations which had a certain definite 
value at r = 0. 4 > This process can be studied with 
the aid of a kinetic equation which is valid for 
T > 0: 

:-r: 6Fp (<) {)Jk + e (E + + [vHl) :P 6Fp (-r) {)Jk 

= -~Spp•6Fp•(<)6Jk, (4) 
p' 

where Spp' are the matrix elements of the colli­
sion operator. We also introduce the quantity 

00 

rZ (ro) = 2~ ~ d-re'"'' 6F p < -r) M k· (5) 
0 

3)Actually, this is an assumption on the absence oftime 
correlation between random forces acting on an electron sys­
tem in a stationary state. 

4)We note that the correlator (3) can be represented in the 
form 

f>FP (-r:}f>Jk = e ~ v~, f>FP (-r) MP' = e ~ v~, FP (-r) FP,- FP ]k. 
p' p' 

Correlators of the type oFp(7)oFp' for systems in stationary 
states were considered by Lax[•] (compare also with [u]). 



1254 V. L. GUREVICH 

Multiplying (4) by eiwt and integrating, we find 
that it satisfies the following equation: 

-iror: (ro) + e (E + ~ [vHl)~r:(ro) 

+~Spp'r!·(ro) = 2~6Fpi!JJk. (6) 
p' 

In order to compute the average oFpoJk, we rep­
resent it in the form 5) 

bF p 6J k = e ~ bF p bF p" v:•. 
p" 

Inasmuch as we neglect every interaction be­
tween the electron~, we have FpFp" = FpFp" if 
p;.; p", and F~ = Fp. 

p=f=p" 
p=p". 

(7) 

(8) 

Here we shall everywhere neglect F p in com pari­
son with unity. Ultimately Eq. (6) takes the form 

k 
k ( 1 [ 1) a k ~ k evp --irorp+e E+c vH (JIP+~Spp'lp•=~2-Fp. P • n 

p (9) 

Furthermore, 

00 

(bJ;i!JJk)w = 2~ ~ e'"'' bJ;(t + •) i)Jk(t) d't 
-00 

00 

1 ~ . =~ ez"'" 
2n: • 

0 

e-"'" 6J k ( •) 6J; d•. 

(10) 

Finally, we then get 

(bJ;bJk)oo =2e ~[v~r~ (ro) + v~r~(-ro)l (11) 
p 

(the factor 2 is connected with summation over the 
spins). 

The following much simpler formula is valid for 
the diagonal elements of this tensor: 

(lla) 
p 

It is interesting to compare Eq. (9) with that 
which determines the correction g~( w )e -iwt to 
the stationary distribution function in the action 
on the system of a variable electric field S'k 
= S'~e-iwt. For unit amplitude of S'~, it takes 
the form 

• k ( 1 l) a k - 1rogp + e E + c [vH apgP 

=- ~Spp•g;.- e ap . 
p' apk 

(12) 

S)The normalization volume which actually appears in this 
case and in a number of succeeding expressions and which is 
eliminated on going from summation over p to integration will 
be set equal to unity for simplicity. 

The tensor Aik which appears in the linear rela­
tions 

j; =Au~&k (12a) 

( j is the alternating-current density), is 

p 

When the system of electrons in the absence of the 
variable field CB is in equilibrium, Fp is a Boltz­
mann distribution. Then 

ai k a"F vk __ 

apk = vp as= - -;-Fp. 
where T is the temperature (in energy units) 
and E is the energy of the electron. In this ( sim­
plest) case we obtain the well-known rela~ion 

(bJ; bh)w = (T/2n:) IAtk (ro) + A~;(ro)l. (13) 

In the general case of an arbitrary stationary 
non-equilibrium state, the inhomogeneities of Eqs. 
(9) and (12) do not differ at all by a constant factor 
and the general relations of the type (13) are not 
present. 

Evidently one can consider fluctuations of other 
physical quantities in this way. For example, the 
contribution of fluctuations of the energy flux den­
sity of purely electronic origin to the spectral den­
sity is 

(bQ; bQk)w= 2e ~ep [v~"ljl~(ro) + v;"ljl~ (-ro)l, 
p 

where 1/J~( w ) is determined from the equation 

k ( ) ( E 1 [ 1 \ a k .._,, k - iro"ljlp (l) + e + -c vH I a"'P (ro) + ~ Spp•"\jlp• 
I p p' 

In this connection let us make one remark. It 
would have been possible from the very beginning 
to consider not the correlators oFp( T )6Jk or 

oFp( r)6Qk but the correlator oFp( r)oFp' as was 

done in C4J. Obviously oFp(T)OFp' is a more uni­
versal function, since one can consider not only 
the current but also a series of other physical 
quantities in terms of it. Nevertheless, in the 
majority of cases one finds it more convenient to 
deal with functions of the form oFp( T )oJk for the 
following reason. All these correlators satisfy 
integro-differential kinetic equations of the type 
(9), the left sides of which are identical while the 
right sides ( which contain the inhomogeneity) 
differ. Solution of a kinetic equation of the type 
(9) is as a rule accomplished in analytical form 
only under the simplest assumptions both relative 
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to the collision operator and relative to the form 
of the right-hand side containing the inhomogeneity. 
Thus, in a number of cases, it is possible to solve 
the kinetic equation with the right-hand side having 
the form of a product of the velocity of the electron 
by a function depending only on its energy. How­
ever, in most of these cases, it is impossible to 
find the Green's function of the operator on the 
right side of the equation, i.e., it is impossible to 
find a solution of an equation of the type (9) the 
right side of which is proportional to o3( p- p0 ) 

(p0 takes on all values). 
A similar situation is encountered in the calcu­

lation of the conductivity in a weak electric field 
~k. If the Green's function of the operator on the 
left side of an equation of the type (9) were known, 
then one could compute by means of it not only the 
differential conductivity but any linear kinetic co­
efficient generally. However, the usual problem 
in such a general arrangement is insoluble; for 
the calculation of the conductivity one must solve 
an equation of the type (9) with a right-hand side 
of special form. 

We shall pause on the question of the limits of 
applicability of the use of the approach used here. 
On the one hand, they must include the usual cri­
teria of applicability of the kinetic equation n/teE' 
« 1, where Te is the relaxation time and E the 
mean energy of the electron in the field E. On the 
other hand, Eq. (4), being classical, is suitable for 
a description of the behavior of the system only 
after time intervals T > n/E'. Therefore, Eq. (11) 
is valid in the frequency range w « E'/n. 

For w .<. E'/n a quantum mechanical analysis is 
necessary. In this case, it is natural in the calcu­
lation of the correlator 6Ji ( T )oJk to use a tech­
nique similar to that applied by Callen and WeltonC3J 
in the analysis of fluctuations close to an equilib­
rium state. To be precise, it is necessary to av­
erage the operator 

(where oJi = Ji- Ji, J is the current density op­
erator) with the help of the density matrix of the 
system found in a stationary state. It can be shown 
that for low frequencies ( w « E/n) such a proce­
dure gives the same result as a solution of Eq. (9). 
For high frequencies, an expression is obtained 
for the quantum fluctuations. However, consider­
ation of the latter problem goes beyond the frame­
work of the present paper. 

Finally, we emphasize that here and below the 
collision operator S is regarded as independent 
of the electric field E and the magnetic field H. 

So far as the dependence on E is concerned, there 
is a well-known series of cases on the one hand 
where the departure from Ohm's law is large while 
the electric field has no effect on the collision op­
erator. [8•9•12 ] On the other hand the extremely in­
teresting problem of the investigation of the sta­
tionary state has apparently not been solved to 
date even in any single case where H = 0 and where 
such an effect is substantial. Therefore, there is no 
sense in investigating fluctuations in similar cases 
while the stationary state itself is unknown. So far 
as the dependence on H is concerned, it, as is well 
known, C13 ,aJ begins to play a role for nn/€ ~ 1, 
where Q = eH/mc, m is the effective mass of the 
conduction electron. In this case, the present 
analysis is inapplicable. 
2. CURRENT FLUCTUATIONS IN ATOMIC SEMI­

CONDUCTORS 

Let us consider by this method one concrete 
example of fluctuations close to a stationary state 
-current fluctuations in an atomic semiconductor 
in a strong electric field for H = 0. The stationary 
state of such a system has been studied in the work 
of Davydov. [12 ] Following [12 ] , we assume that 
the conduction electrons are scattered by acoustic 
phonons which are in equilibrium, and that the 
electron and phonon dispersion laws are isotropic 
and have respectively the following forms: 

Ep = p2/2m, wq = wq, 

where m is the effective mass of the electrons, 
w is the velocity of the longitudinal sound vibra­
tions, q is their wave vector. 

For this case, Eq. (9) takes on the following 
form: 

- iwr~ + eE+r~ + 2: :SI cq \2 
p q 

X {r: (Nq + 1) I'> (ep-liq - Ep + liwq) 

+ r;N qf> ( Ep+llq - Ep - fiwq} 

- r:-llqN q {) ( Ep-llq - Ep + liwq} 

- r~+llq (Nq + 1) {) (ep+nq - ep - liwq)} = eu:Fp/2n. 
(14) 

Here 

\ Cq \2 = E'f}iq/2V0pw, (15) 

where Eo is a constant of the deformation poten­
tial, p is the density of the crystal, and V0 is the 
normalized volume (we set V 0 = 1 ) . 

In the work of Davydov [12 ] on the solution of 
Eq. (14), the following circumstance was used. 
Collisions of electrons with phonons are almost 
elastic. As a result, relaxation in the momenta 
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takes place far more rapidly than relaxation in 
the energy. As a consequence of this, the sym­
metric (relative to an exchange of p for - p) 
part of the distribution function, even in the pres­
ence of an electric field, depends only on the en­
ergy of the electron Ep . For EE = T 1/ 2 eEl x 
( 6mw2 )-1/2 » T (which is also assumed in the 
following) it depends essentially on the electric 
field, and is equal to 

(16) 

C _ (2:n:1i)• r (5/ 4) n (17) 
- 2 2''•:n:2 (me E) 'I• ' 

n is the concentration of conduction electrons. The 
antisymmetric part f(p) (which generates a con­
stant current J) is equal to 

Here 

(24) 

(25) 

In the calculation of the first term on the right 
side of (23), the function Sxk(Ep) can be expanded 
in a series in a small parameter proportional to 
nwq. As a result, we get 

~ d3po(e - Ep) Sxk(ep) = : 8 {a (e) [ xk (e) + T : 8 xk (e)]}, 

(26) 
f ( ) = -l eEp iJFo 

p p OE ' (18) where 
p 

where 

l = :n;1i4pw• 

E~m2T 
(19) 

is the mean free path of the conduction electron. 
Obviously, f(p) « F0(Ep) (naturally, it is as­
sumed that T » mw2 ). 

By analogy with [12], we seek a solution of (14) 
in the form 

(20) 

where xk( Ep) is the symmetric part of the func­
tion y~ which can be regarded as depending only 
on the energy, while yk( p) « xk( Ep) is the anti­
symmetric (current) part. We shall asume (and 
below shall check on the validity of such an as­
sumption) that yk( p) has the form 

yk (p) = pyk!p, (21) 

where the vector yk depends only on the energy 
Ep. 

The course of the subsequent calculations is 
essentially the same as in =12 ]. Therefore, we 
only express the fundamental idea in a few words. 
We suAbstitute (20) in (14). The action of the oper­
ator S in (14) on a function of the form (21) re­
duces, as is well known, [BJ simply to multiplica­
tion by 1/Te = v/l. As a result, by separating the 
antisymmetric part, we obtain the equation 

v e--/t. axk 
- iwy" + -- rl = ;:--- F 0 (ep) - e£vz - (22) 

I - 2rt P 02P 

(the electric field E is directed along the z axis ) . 
Inasmuch as xk depends only on E, it is most 

convenient to obtain a second equation for this func­
tion by multiplying (14) by 6 ( € - Ep) and by inte­
grating over d3p, as was done by Kazarinov and 
Skobov. ~ 15 ] This gives 

a (e)= (2~)" ~d3 p ~d3 q I Cq 12 0 (e- ep) o {ep- ep+liq) 

Finally, the second term on the left side of (23) 
easily reduces to the form 

(27) 

e£ :E ~ d3pvzyk(p) 0(8- 8p)• (28) 

Let us first consider the case when wl/v « 1 
(where v is the mean electron velocity, of the 
order of -./ E E /m ) . One can then neglect the first 
component on the left side of (22). Then by find­
ing yk( p) from this equation, we get 

\' z k a 4mel S:n:eElm oxk jvy (p)6(e-ep)dp = - 3-eF0 (e)Okz--3-eTe, 

(29) 

where Okz is the Kronecker symbol. As a result, 
Eq. (23) takes the following form: 

- iW'rs ( 2: r Xk (e) + 8£ : 8 ( 8 !:k) 

+ 8~ : 8 [e2 (xk+Td::)J =8£ :~~F0 (e), (30) 

where 

-rs = (T/2 y2 mw2) l (mles)'1•. 

We note two important circumstances. First, 
the inhomogeneity of this equation is proportional 
to Okz· This means that xk = 0 in the current 
fluctuations in a direction perpendicular to E, 
and it suffices for its consideration to solve only 
Eq. (22) for the function yk( p). In the second case, 
in consideration of the fluctuations in the direction 
of E a new parameter with the dimensions of time 
appears in the theory. This parameter T s char­
acterizes the relaxation time of the symmetric 



CURRENT FLUCTUATIONS IN SEMICONDUCTORS 1257 

part of the distribution. This time is very large 
and its presence indicates significant dispersion 
(dependence on w ) of the function ( OJi) w even 
in the radio frequency region. We note that for 
w "' 1/ Ts, dispersion of the same origin should 
be observed even for the quantity Azz(w), de­
termined with the aid of relation (12a). 6> 

Furthermore, once again we delineate two lim­
iting cases: 1) WTs » 1 and 2) WTs « 1. In the 
first case, we can generally neglect the second 
component on the right side of (22) in comparison 
with the first. Then 

yk (p) = (ZC/2rt) nk exp {- e2/2e~}, (31) 

where nk = Pk/p. We then find 

4r (5/4) ne•t'f, (eE)'Izr'!, (32) 
(M;Mk)w = -,1-- 'I 'I f>;k, 

3 'rt2 m •w ' 

i.e., the fluctuations are proportional to E112• 

Let us consider the second case, WTs » 1. 
Then the first component on the right side of (30) 
can be discarded. The remaining equation can be 
integrated once with respect to E, keeping it in 
mind that the second component on the right side 
of (23) is proportional to the current fluctuation 
of the electrons with given energy, and therefore 
should tend to zero as E - oo [compare with [12]]. 

This gives 
2 00 

dxk ( Te ) s k 6kz "E \ F ( d T 1 +--;;- + 2 X =- 2rt£ ~ .l 0 'I]) 'll· 
c E'£ s E c ~ 

(33) 

If we neglect TE/ Ek in comparison with unity, 
then the solution of this equation has the form 

(34) 

where the integral over 1J must be taken in the 
sense of the principal value. The constant of inte­
gration Eo must be determined from the condition 
of constancy of the electron concentration in spa­
tially homogeneous fluctuations. It has the form 

~ d8 81/2e-<'/2<~ ~ ~ e ~'/2<~ r d~e -l;'/2E~ d~ = 0. (35) 
0 £ 0 ~ 

We then easily find that Eo = EE ../ 2x0 , where 
x0 is a number of the order of unity, satisfying 
the equation 
00 00 co ::::0 00 

~ ex' d;~ ~ e-Y' dy = ~ r (f)~ dx x'l·e-x' ~ d: eY' ~ e-•'. (36) 
Xc X 0 X y 

6lQbviously, dispersion of such an origin in the range of 
comparatively low frequencies should take place not only in 
the case considered here, but also generally for "hot" elec­
trons (in this case also for H f- 0), if they undergo nearly 
elastic collisions. 

Substituting (34) in (22) and integrating, we get, 
finally, 

(37) 

where 
CO X CO 

D = 2 ~ e-x• dx ~ d: eY' ~ e-z' dz. (38) 
0 Xo Y 

Thus, in the given case, ( oJi >w and ( oJ~ >w 
are also proportional to E 112; however, the con­
stants of proportionality are different for the two 
quantities. This result was obtained in a different 
way in the paper of Price. [?] 

We now proceed to the case wl/v » 1. With the 
help of a contribution similar to those made above, 
we find that in this range of frequencies 

(39) 

It is interesting to compare the quantity 
(6JiOJk)w with the tensor Aik which figures in 
Eq. (13). For example, if WTs « 1, then Aik 
= 8Ji/8Ek· But, in accord with Davydov, [12 ] 

- _ 4f (5/ 4) (e2£ 212w2 )'I• E; 
J; - -.--I '/ ne --T- -E ' 

3 'rt' m 
(40) 

Hence 

. _ 4f (5/4) ( e212w2 )'/• ( • _ E;Ek) 
A,k - ,, ,1 ne TE" 6,k ZE• · 3·'rt' m 

(41) 

The components of the tensors (oJiOJk)w and 
Aik are connected by the relations 

(M;)w = ~ (! f' eEAxx, (<V;),. = (! r (1- D) eEAzz· 
(42) 

These indicate that for hot electrons a relation of 
the type (13) remains in force for the order of 
magnitude, if only we replace T in it by the mean 
energy of the electron in a strong electric field. 
However, it is important to note that the tensors 
( 6Ji 6Jk) and Aik are not proportional to each 
other: the ratios of their various components have 
in general different values. 

It is interesting to compare the results of these 
calculations with the results of the work of Bunkin. 
[ 5] In one case, one can carry out a direct com­
parison, inasmuch as the case of fluctuations in a 
weakly ionized plasma in a strong electric field 
was also considered in [5]; one can extend the re­
sults of Davydov [12 ] which apply to semiconductors, 
and consequently our results, to this case by means 
of a simple change in notation. The results of the 
two cases, pertaining to transverse fluctuations, 
are identical, while those pertaining to longitudinal 
fluctuations differ. In particular, a conclusion on 
the isotropy of the ratio ( 6JiOJk)w/ Aik is made 
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in [5], whereas it is found to be anisotropic from 
(42). 

It appears to us that the reason for the above­
mentioned divergence lies in the following. The 
effect of velocity fluctuations on the current only 
was considered in [5]; that is, in practice, the 
fluctuations of the antisymmetric part of the dis­
tribution function. In the case of thermodynamic 
equilibrium, fluctuations of the symmetric part of 
the distribution function do not generate current 
fluctuations. However, in the stationary state 
which arises under the action of a constant electric 
field, a constant current flows which depends on 
the form of the symmetric part of the distribution 
function; therefore fluctuations of the latter can 
create additional fluctuations in the longitudinal 
current. In other words, when the electron current 
depends on the electron temperature, the fluctua­
tions of the longitudinal current are determined 
not only by the fluctuations of the longitudinal 
electron velocity, but also by the fluctuations of 
the electron temperature. 7> 

In conclusion, we shall analyze the important 
problem as to the measure in which the theory 
just set forth is applicable to a classical atomic 
semiconductor of the type of germanium and sili­
con. The electron and phonon spectra in such 
semiconductors are much more complicated than 
the very simple model which served as the basis 
of the Davydov theory. [12 J Moreover, electrons 
in these semiconductors can interact not only with 
acoustic, but also with optical phonons, and the 
effect of this interaction on the electrical conduc­
tivity of the semiconductor in a strong electric 
field has been observed experimentally. [!4] 

However, for sufficiently low temperatures and 
not very strong electric fields, where one can as­
sume that the optical phonons are practically un­
excited, the qualitative conclusions of the Davydov 
theory, and consequently of ours, must remain in 
force. In particular, even in this case, one can 
represent the electron distribution function Fp 
(owing to the small inelasticity of the electron­
phonon collisions ) in the form of a sum of a sym­
metric part F0( Ep), which depends only on the 
energy of the electron, and an antisymmetric part 
f(p ). 

?)Obviously, the concept of electron temperature is not 
precise in the given case and it is used only for a qualitative 
explanation of the additional reason for the fluctuations. As 
has been made known to the author, the problem of the effect 
of fluctuations of the electron temperature (for the case in 
which such a concept can have strict meaning) on current 
fluctuations in semiconductors has also been considered by 
Sh. M. Kogan. 

A similar statement applies to y~ = xk( Ep} 
+ yk( p). Then formulas of the type (32) have the 
sense of estimates, yielding the correct order of 
magnitude of the current fluctuations and their de­
pendence on E. The conclusion as to the presence 
of dispersion associated with the time Ts also re­
mains in force. However, the numerical coeffi­
cients entering into the various formulas ( among 
which is the quantity x0 ) apparently must be 
changed. 

Quite recently, there appeared the first experi­
mental work of Erlbach and GunnC17J in which the 
fluctuations of the transverse current in an elec­
tric field in electronic germanium were studied. It 
was discovered that the ratio ( oJi )w I Axx is pro­
portional to E in the low frequency region. This 
result is in agreement with the conclusions of the 
given theory, which takes into account only scatter­
ing of electrons by long wavelength acoustical pho­
nons in the limits of a single energy minimum. It 
would be extremely interesting in further experi­
ments to choose the geometry of the experiment 
and the range of measured frequencies in such a 
fashion as to observe dispersion associated with 
the presence of the time Ts. 

However, it must be noted that, as was empha­
sized in [11], the law J "' E112 is rather inaccu­
rately obeyed in strong fields. It is possible that 
this is connected with the effect of other scattering 
mechanisms (optical phonons, interlinear transi­
tions), although the authors [!1] assume their role 
to be negligibly small. And perhaps the following 
circumstance plays a role here. 

As has recently become known, [18] in a suffi­
ciently strong electric field, where J/ne > w, the 
state with the distribution function (16)-(18) can 
be shown to be unstable relative to the generation 
of sound vibrations. Then, strictly speaking, the 
actual stationary state must be determined with 
account of the given effect of generation. For this 
purpose, it is necessary to substitute in the kinetic 
equation (1) as a phonon distribution function Nq 
not the equilibrium Planck distribution, but a non­
equilibrium function determined from a solution 
of its own kinetic equation. Such a problem has 
not been solved to date, although the numerical 
determination of J (E) with account of the given 
fact is of great interest. 

In conclusion, I express my gratitude to A. L. 
Efros for very interesting discussions. 
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1097 Eq. (1) 

Correction 

The article contains an erroneous statement that weak 
ferromagnetism cannot exist in any cubic crystal (with 
collinear or weakly noncollinear antiferromagnetic struc­
ture. This was found to be true only for crystal classes 
T and Th, and for others weak ferromagnetism will ap­
pear in antiferromagnets with magnetic structure type 
3 + 4-, and only due to invariants of third and higher 
orders in the antiferromagnetism vector L. Consequently 
a line (14) should be added to the table on p. 1100: 

14 I 207-230 I Cubic I 3 +, 4- I MxLx ( L} - L~) 

+ MyLy( Li - L5d + MzLz ( L~- L}) I VI 

The Cartesian axes are directed here parallel to the 
fourfold symmetry axes. • 
The tensors g(i) and g<2) for this (sixth) group of weakly 
ferromagnetic structures will be identically equal and 
isotropic: 

(1) (2) 
gaf3 = gaf3 = goaf3 

At the end of the article there are incorrect expressions 
pertaining to Kp,3 decay. The correct formula can be 
easily obtained from the main formula of the article by 
putti~g gs = gT = 0. The tangent of the angle between the 
I m I curve and the cos e axis will be ~ f3e if gvdgvt 
= -0.5 and ~ 0 if gv2/gv1 = 4.5 and f3e "" 1, so that in 
fact the difference in the angle correlations between these 
cases is even somewhat stronger than indicated in the 
article. 

The horizontal parts of curves 2 and 3 in Fig. 2 should be 
drawn with solid lines (they correspond to the asymptotic 
calculated values of the ionization losses, i.e., to the re­
gion in which the theory describes the relation between 
g/g0 and the particle energy exactly). 

When account is taken of thermoelectric processes it is 
necessary to add in the first curly bracket of (24) the 
term 

A= 3v~ Hyc ( etxz - Ctzx )/2 

and in Eq. (31) the term A/9. 

The combinations V1 ± V2, A 1 ± A 2, and I1 ± I2 should be 
divided by !2. 

Reads G/-./2, should read G/2 

An error has crept into Eq. (30). The right half of this 
formula is actually equal to 
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16 5 Gurevich (cont.) As a result, the corrected equation ( 33) assumes the form 

( 33) 

Suitable corrections must be made in (34) and (35) by re­
placing exp ( -t2/2Ek) by ( 1 - 2t2/Ek) exp ( -t2/2£k ). 
As a result, relations (36) and (38), which determine the 
numerical constants x0 and D, assume the form 

00 X 00 

.• (' d \ 
~ dxx' 1'e-x' J f .\ dz (1 - 4z2) e-z' = 0, (36) 
0 Xo Y 

00 X 00 

\ (' d (' D = 2 J e-x' J : eY' .l dzc-z' (1- 4z2). (38) 
0 X 0 Y 
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