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A supplementary regularization procedure is proposed which allows us within the framework 
of the Bogolyubov method to obtain a matrix S ( u, - oo) not containing "surface" divergences 
(for fixed regularization masses M{). The additional counterterms which then appear with 
arbitrary finite coefficients give a contribution only on the surface u and can be separated 
out from the matrix S ( u, - oo) into a unitary operator which is without importance from the 
physical point of view. Some peculiar features of the derivation of the interaction Hamiltonian 
in the Bogolyubov method are also considered. The question of the passage to the limit M{ 
- oo in the matrix S (u, - oo) remains an open one. Independent of its solution, however, the 
proposed procedure allows us in a consistent way to obtain the usual expression for the S ma­
trix, starting from the Tomonaga-Schwinger equation. 

1. INTRODUCTION 

T»E main shortcoming of the usual scheme of the 
Hamiltonian formalism [l] is the impossibility of 
obtaining a finite unitary Dyson matrix S ( u, - oo), 
even in perturbation theory, owing to the fact that 
in addition to the "ultraviolet" divergences there 
also appear peculiar "surface" divergences. [2] 

Because of this it has been proposed [3•4] to turn 
to the construction of the scheme of the Hamilto­
nian formalism on the basis of the axiomatic 
method of Bogolyubov, [ 5] which is the most con­
sistent method in perturbation theory. 

Following this path, and starting from a gener­
alized Schrodinger variational equation, [5] it has 
been possible to obtain the Tomonaga-Schwinger 
equation and the interaction Hamiltonian in the 
expected form (for fixed regularization masses 
Mt). [4] Here also, however, a problem of "sur­
face" divergences arose, and this time it appeared 
already in the derivation of the interaction Hamil­
tonian. 

It was shown in a previous paper [4] that when 
proper account is taken of the symmetry properties of 
the quasi -local operators An introduced in [s] and 
the limiting processes are carried out more ac­
curately, this problem occurs only in the calcula­
tion of the boson self-energy diagram. Since, how­
ever, a diagram of this kind is encountered in all 
renormalizable theories (except the Hearst­
Thirring field), the solution of the problem of 
"surface divergences is as pressing a task as 
before. 

A first attempt [s] in this direction was made 
on the basis of an examination of the usual Hamil­
tonian H( T) in second-order perturbation theory 
foratheorywith L(x)= e:cp 4(x):. Herethere 
were revealed the physical and mathematical 
causes of the appearance of "surface" diverg­
ences, and it was shown that if one understands 
the passage from sufficiently smooth functions 
g( x) [5] describing the "turning on and off of the 
interaction" to the limit of e functions in an im­
proper sense 0 rather than in the usual sense, then 
one can carry out a "surface" regularization of 
the expression for the Hamiltonian H ( T), making 
it finite (for M{ = const). The finite arbitrari­
ness which thus arises is in principle of a "sur­
face" nature, or in other words, the additional 
terms in the Hamiltonian must contribute only 
to the matrix S ( u, - oo ) , but not to the S matrix. 

For a final solution of this problem, however, 
it is necessary to carry out a "surface" regular­
ization of the interaction Hamiltonian in all orders 
of perturbation theory and obtain an expression 
for S ( u, - oo) by solving the Tomonaga-Schwinger 
equation by the method of successive approxima­
tions. A preliminary examination of the problem [7] 

showed that although this way of constructing the 
Dyson matrix in the Bogolyubov method is in prin­
ciple possible, further difficulties appear in its 
practical application. These difficulties are con­
nected both with satisfying the integrability con­
ditions for the resulting finite Hamiltonian and 

1>That is, as a definition of a generalized function on a 
class of functions on which it was not defined originally. 
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with the fact that the interaction Hamiltonian [4] 

in the Bogolyubov method contains terms of every 
order in the coupling constant. This last means 
that in solving the Tomonaga-Schwinger equation 
for S (a, - oo) one gets an expression expanded in 
power series in H(x; a) which does not coincide 
in a given case with the expansion in powers of the 
coupling constant, so that there must be a further 
regrouping of terms in S (a, - oo). 

All of these difficulties lead one to think of ap­
proaching the matter from the other end, so to 
speak, i.e., trying first to get a finite Dyson ma­
trix from the generalized scattering matrix S( g) [5] 

by a formula of the type 

In this case it is not hard to show that there is the 
following connection between the interaction Hamil­
tonian H(x; a) obtained in [4] and the L(x; g) of 
the form (2): 

lim \" L (x; g) dx 
g-?Ocr .) 

0 

\ H (x'; a') dx', 
-00 

and now we are considering the theory for which 

L (x; g) = eg (x) Z4 (g) : <p4 (x) : 

+ ~ lZ3 (g) - l] [-: <p a;.~ : - m2 : <p2 (x) : ] 

(4) 

_ om2 (g) : <p2 (x) : +..;;..: <p2 (x) : _!)~ ~ [Za (g() -) 1], (5) 
"" ax ax g X 

S(o, - oo) = lim S (g) = lim 
g-+00 -='0(T 0 -x') g~00 

{·\ } where Z4(g), Z3(g) are constants which diverge 
T exp 1 ~ L (x; g) dx ' logarithmically for M~ - oo, [5•4] and om 2( g) is 

l 
(1) a constant which diverges quadratically. In par-

where 

L (x; g) =L (x) g (x) + ~ :, ~An (x, x1 ••. Xn-1) g (x) 
n=2 

(2) 

is the effective interaction Lagrangian, [5] and then 
getting from it (for fixed M{) a finite expression 
for H(x; a) by the formula 

H ( . ) . 1\S (::;, - oo) s+ ( ) x, a = t <5:; (x) a, - oo • (3) 

Also the carrying out of the "surface" regulariza­
tion directly in S( g) is even more logical, since 
the matrix S( g) is the fundamental quantity in the 
Bogolyubov method. 

We shall realize this program here for the 
theory with L(x) = e: cp 4(x): and shall show that 
the problem of "surface" divergences in the 
Bogolyubov method can be successfully solved in 
each order of perturbation theory. 

2. ''SURFACE'' REGULARIZATION OF THE DYSON 
MATRIX 

In obtaining the Dyson matrix by Eq. (1) we 
shall naturally be guided by the requirements of 
relativistic covariance and also by unitarity and 
causality, which are automatically assured in the 
Bogolyubov method, and by the requirements of 
finiteness and of correspondence with an S matrix 
given in the entire momentum space. The last re­
quirement means that when we go to the limit 
lim S (a, - co) or take the product S( co, a)S(a, - co) 

a-co 
we must get the usual S matrix. [5] 

We emphasize that as in [3- 7] the passage to the 
limit g - ea in Eq. (1) will be made with fixed Mr. 

ticular, 

Z (a) = l + ..._, [eg (.v)]m B . 
3 o .L.J tn! m 

(6) 
1n=2 

Because of Eq. (4), in the passage to the limit 
g- ea in the argument of the exponential in Eq. 
(1) we encounter the same problem of a "surface" 
divergence for the boson proper-energy diagram 
that was discussed in detail in [4J. Namely, sub­
stituting Eq. (5) in Eq. (4), we get [for simplicity 
we take the surface a to be a plane; e7 = e( T -x0 )) : 

lim ~L (x; g) dx = ~ dxL (x; 1)-+} ~ e~Bm 
g-.0~ -"oo m=2 m. 

xi lim I dx: <p2(x): [gm-I ("r- xO)l' g'(,;- x0). (7) 
g-?6-r J 

It is easy to see that direct passage to the limit in 
the second term in Eq. (7) leads to nonintegrable 
expressions of the type of products of o functions 
of equal arguments. As has been pointed our ear­
lier, [G] the physical reason for the appearance of 
such divergences is essentially the same as that 
for the appearance of "ultraviolet" divergences, 
namely the illegitimate use of the mathematical 
concept of a point in quantum field theory to de­
scribe physical processes. From the mathemat­
ical point of view the situation that arises is a re­
flection of the fact that the quasi-local operators 
An originally introduced in the L(x; g) of the 
form (2) are generalized functions even for fixed 
Mf, and are not defined on a class of functions 
g (X) which includes e functions. 

One can, however, give the limiting expression 
for S (a, - oo) a quite definite meaning if we define 
these An in such a way that they are integrable 
generalized functions on a class of functions g( x) 
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including fi functions. In [ 6] it was shown for the 
example of the second-order diagram that it is 
hard to carry out such a redefinition of the An 
directly, since the An are rather rigidly fixed by 
the general requirements of relativistic covari­
ance, unitarity, and causality. [SJ But one can 
first separate out from the entire limiting expres­
sion in Eq. (7) the first term and make the transi­
tion g - fiT directly in it ( as was done above ) , 
and then give a more detailed treatment to the 
second term. 

Namely, following [6], we introduce the notation 

1 em ~ • fm (x0) = -:;--1 Bm (m- I) dx : (jl" (x) : , 
~ Ill. 

(8) 

where, as is well known, fm ( x0 ) is a sufficiently 
smooth function. Then the "surface" diverging 
term in Eq. (7) takes the form 

gl~r;:: ~ fm (xo) g' (-r- xo) g' (-r- xo) gm-2 (-r- xo). (9) 

To establish the procedure of "surface" regu­
larization let us first consider for auxiliary pur­
poses the problem of defining in Eq. (9) new gen­
eralized functions of a single variable 

Km (-r- x0) =lim gm-2 (-r- x0) (g' (-r- x0))2 
g~o't' 

on a corresponding class of functions fm(x0 ), for 
which we take as an approximation to the function 
fi ( T - x0 ) the concrete expression 

'! T-XO g ( -r - x0) = - arc ctg -- . 
Jl: € 

(10)* 

In this case the passage to the limit g- fiT will 
correspond to the transition E - 0. We shall fur­
ther assume that the function fm (x0 ) is n times 
differentiable and has an n-fold zero at the point 
x 0 = T, i.e., 

(11) 

where f~ (x) is a continuous function. Our prob­
lem is to find out on what subclass of the functions 
of the form (11) the generalized function Km ( T - x0 ) 

is defined, and then to extend this generalized func­
tion, regarded as a linear continuous functional, 
onto the entire class of such functions, making ex­
plicit the arbitrariness that arises in this connec­
tion. 

For this purpose we substitute Eq. (11) in Eq. 
(9); on making the interchange (x0 - T)- x0 we get 

lim -4-\ dx0 (x0tf;:.(x0 + T) 
~-,.o Jt .; 

1['1 t xo]"'-2 s2 

x 2 + J( arc ctg 2 f(xO)" + s']' (12) 

*arc ctg = cot"' 

In Eq. (12) the only nonvanishing contribution is 
that from a range of integration [ -a, a] near the 
point x0 = 0. It is not hard to show that the way of 
estimating integrals of the form (12) reduces to the 
examination of a number of simple integrals for 
small values of m and n, which can be calculated 
explicitly, but because of lack of space we shall 
not do this ( cf. [7]). 

The result is that in the solution of the problem 
of "surface" divergences in the higher orders of 
perturbation theory one encounters a total of two 
different cases. If m is even, the generalized 
function K2k( T- x0 ) is integrable on the subclass 
of continuously differentiable functions f2k ( x0 ) 

having a first-order zero at the point x0 = T, and 
for such functions the expression (9) is identically 
zero. By analogy with [6] we define it on the entire 
class of arbitrary continuously differentiable func­
tions, choosing the special way of extending the 
functional which makes it identically zero. When 
we include the arbitrariness that arises here 
(cf. [6•8J), we have 

(13) 

where a 02k are arbitrary finite constants. We note 
that in the case of spinor electrodynamics, for ex­
ample, this settles everything. 

If, on the other hand, m is odd, then the gener­
alized function K2k+i ( T- x0 ) is integrable on the 
subclass of continuously twice differentiable func­
tions f2k+i (x0 ) which have a second-order zero at 
the point x 0 = T. We can define it to be identically 
zero on the entire class of arbitrary twice differ­
entiable functions, and by general theorems of 
functional analysis ( cf. e.g., [8]) the arbitrari­
ness so introduced is of the form 

where a 02k+i and a 1k are arbitrary finite con­
stants. 

This definition of the generalized functions 
Km ( T- x 0 ) on corresponding classes of functions 
fm ( x0 ) allows us to construct a procedure for the 
"surface" regularization of the matrix S (a, - oo ), 
since it is clear that the expression for S (a, - oo) 
will be finite in the "surface" sense if instead of 
Eq. (9) we consider the expression obtained by 
subtracting from it one (for even m) or two (for 
odd m) terms of its expansion in Maclaurin series 
centered at x0 = T, and adding corresponding terms 
with arbitrary coefficients. 

More explicitly, as the finite expression for 
lim' \ S( g), or in other words as the definition of 

g-eT 
the generalized functions An on a class of func-
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tions g(x) which includes the e functions, it is 
most natural to take the expression 

S ('r,- <X)=-·· lin S(g) = T exp {i lim\[ (x ;g) dx}, 
g-,o" g-a~ .\ 1 

(15) 

where 
~ ~ 

}~~ ~I (x; g) dx = ~ I (x; 1) dx = ~ {L (x; 1) 
-00 -oo 

1 ~ em • iJ<p2 (x) • + -2 .LJ ~, Bmet.om . -a-. m. Xo 
m=2 

(16) 

and the second and third terms in the curly brack­
ets in Eq. (16) embody the additional finite arbi­
trariness which arises in the introduction of the 
"surface" regularization. 

The appearance of a finite arbitrariness in the 
S ( T, - oo) of the form (15) should not especially 
surprise us, because it is a reflection of the addi­
tional arbitrariness in the coefficient functions of 
the Dyson matrix (for a fixed S matrix in the en­
tire momentum space) which was to be expected 
( cf. [9]) because of the presence of an ambiguity 
in the definition of the Heisenberg field A ( x). We 
shall hereafter analyze in detail the physical mean­
ing of the finite "surface" counterterms which 
have appeared and of their contribution to the 
Dyson matrix. 

It must also be pointed out that the expression 
S(g) of the form (15), like the S(g) of the form 
(1), satisfies the requirements of relativistic co­
variance, unitarity, and causality, and also con­
siderations of correspondence with the classical 
theory, but it cannot be used as a generalized 
scattering matrix for smooth functions g(x ), be­
cause for Mf- oo it contains "ultraviolet" di­
vergences. At the same time for g = 1 

S(l)=S(I), (17) 

i.e., the S matrix is still the same. 

3. GENERALIZED GAUGE TRANSFORMATION 
OF THE DYSON MATRIX 

Passing now to the analysis of the role of finite 
"surface" counterterms in the Dyson matrix we 
first call attention to the following fact. The book 
of Bogolyubov and Shirkov[S] already expressed 
the idea that the vacuum "surface" counterterms 
are not important terms of the Hamiltonian H( T) 
and can be removed from it by shifting the time 
phase by an infinite constant. It is true that we 

have shown [4] that just for the vacuum diagrams 
in H( T) the problem of "surface" divergences 
does not arise, so that in this case there is no 
need of such a transformation. For boson self­
energy diagrams also, however, the "surface" 
character of the terms added to L(x; 1) in the 
expression (16) leads to the idea that it may be 
possible to separate them out from S( T, - oo) into 
some unitary factor of no importance from the 
physical point of view, and thus that there may 
exist a generalized gauge transformation allowing 
us to remove such terms from the interaction 
Hamiltonian. In fact, the second and third terms 
in Eq. (16) give contributions to the Dyson matrix 
of the forms 

~ 

\ dx : o<p2 (x) : = (' dx : cp2 (x) : I , (18) 
.\ OXo .\ x•=~ 

-oo 

~ dx : iJ2<p• ~x) : = \ dx : ()~2 (x) :I ' (19) Joo oxo .\ Xo x"=~ 

that is, in other words, contributions only on the 
surface T = const. 

In this case the expression which follows from 
Eq. (15), 

~ 

S ('r,- oo) = T exp{i ~ L (x; 1) dx 
-oo 

(20) 

can be transformed2> by representing the exponen­
tial as the product of two factors, and the factor 
that depends only on points of the surface T = const 
can be brought out from under the sign of the T­
product. An analogous result is also obtained if 
we first bring the second factor out from under 
the sign of the T-product and then integrate over 
x 0, because the necessary condition for this, 
[L(x, T; 1), cp 2(y, T)] = 0, is satisfied. Then 

S {T, - oo) = exp {i \ dx : cp2 (x) : I _ · -} ~ e~ Bmet.om} 
.\ x"-~ m=2 yn 

xis (T,- oo) = exp {iF (-r)} S (T,- oo), (21) 

where 
~ 

S (T, - oo) = T exp {i ~ L (x; 1) dx}. (22) 
-00 

Thus all of the finite "surface" counterterms 
of the matrix S( T, - oo) can be separated out into 
a unitary operator, which becomes unity for T - oo 

2lHere and in what follows we shall for simplicity take all 
the a 1k = 0, but the general case can also be treated. 
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[or drops out from the product S(oo, T )S(T,- oo )], 
i.e., does not change the value of the S matrix. 
The basic part of the expression for the Dyson 
matrix is the same for all theories ( cf. [4]) and 
is of the form (22). Thus the arbitrariness asso­
ciated with the "surface" counterterms is in fact 
just the arbitrariness which is possible in the 
Dyson matrix for a fixed S matrix. 3> 

We note, by the way, that if we had not intro­
duced the apposite redefinition of the nonintegrable 
expressions which arose, it would have been by no 
means obvious whether or not the second term in 
Eq. (7) would vanish in the limit in the S matrix, 
because we should then have had to do with an ex­
pression of the form (18) but with an infinite coef­
ficient. Thus the definition we have developed here 
of the operators An as generalized functions inte­
grable on a class of functions g(x) which includes 
e functions is to some extent dictated by the re­
quirements of internal consistency of the Bogolyu­
bov method. Namely, it is necessary to recall 
that for fixed Mf one must get the same S matrix 
from the matrix S( g) both for g - 1 and for 
g-eT followed by T- oo, 

It is natural that for the Hamiltonian H(x; a) 
of the form (3), starting from an S (a, - oo) of the 
form (21), we get an expression with "surface" 
counterterms which we shall give in the next sec­
tion, but starting from an S (a, - oo) of the form 
(22) we get the formula 

H(x;a) =-L(x; I) (23) 

(on some supplementary assumptions which are 
explained below). In other words, one can always 
carry out a generalized gauge transformation of the 
state vectors, [10• 11 ] .P(a)- exp {-iF( a) }.P(a), 
so as to remove the finite "surface" terms from 
the Dyson matrix and the interaction Hamiltonian 
(without changing the expression for the S matrix), 
and take as the effective Hamiltonian H(x; a) the 
expression (23) common to all theories. 

Furthermore it is not hard to show how the 
presence of a finite "surface" arbitrariness in 
the Dyson matrix affects the connection between 
operators in the Heisenberg and interaction repre­
sentations (beginning with the second order). For 
example, for the field operators we have 

A (x) = s+ (x0 , - oo) <p;n(x) S (x0 , - oo) 

= s+ (x0,- oo) cr;n(x)S (x0 , - oo), (24) 

3lThe fact that the Dyson matrix must be defined by putting 
conditions on it with accuracy up to a unitary operator which 
depends only on points of a surface a has been established 
outside the framework of perturbation theory of B. V. Medvedev 
(private communication). 

where 

cpin (x) = exp {-iF (x0)} <pin (x) exp {iF (x0)}. (25) 

Since 'P'in(x) differs from 'Pin(x) only by a 
unitary transformation, this operator belongs to 
an equivalent representation of the canonical com­
mutation relations. [12] Therefore from the phys­
ical point of view the descriptions of the system 
bymeansoftheoperators 'Pin(x), S(a, -oo) and 
'Pin(x), S (a,- oo) are on precisely the same 
footing. 

4. SOME FEATURES OF THE DERIVATION OF 
THE INTERACTION HAMILTONIAN 

Turning to the derivation of H ( x; a) according 
to Eq. (3) from the expression for S (a, - oo) of 
the form (21), we can easily get instead of Eq. (23) 
the formula 

~ ~ 1 [ ar (x; 1) ] 2 
H (x; a)= -L (x; I) +-2 nk k 

a (a~ 1 ax ) 

={- L (x; I)- ~ ~2 :~ Bmc<om: ( nk :::) :} 

1 m-2 m 

+2 ~ ~ k!(:-k)! BkBm-kG<okG<om-k: <p2 (x) :, (26) 
m=4 k=2 

where nk is the unit vector normal to the surface 
a. The third term in H(x; a), which is necessary 
to satisfy the condition of integrability, appears 
automatically in the Bogolyubov method (just as 
in theories with derivative couplings [3]) because 

in expanding the expression <T (::::;;))o one 

must use a definition of the chronological contrac­
tion (pairing) which contains a quasi-local term. 

However, although the expressions (23) and (26) 
are admissible expressions (for fixed Mf) for the 
interaction Hamiltonian, or in other words, although 
by using them in the solution of the Tomonaga­
Schwinger equation one can obtain the expressions 
S (a, - oo) and S (a, - oo) in the indicated form, 
these expressions (23) and (26) are still not the 
most general. Furthermore the problem that now 
arises is associated not with the problem of "sur­
face" regularization, but with that of satisfying 
the conditions of integrability for the main term 
of the Hamiltonian of the form - L(x; 1 ). 

The point is that unlike the cases considered 
in [3J, an L(x; 1) of the form (5) contains not the 
first derivative, but the second derivative of the 
field functions. For such a Lagrangian one can 
no longer directly obtain the Hamiltonian by the 
method of Matthews, [11• 3] which in its usual form 
is designed only for the case of theories with La­
grangians containing the first derivatives of the 
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fields. As for the conditions of integrability, they 
are formally satisfied for the term of the form 
- L(x; 1) in the Hamiltonian (cf. [3J). 

When, however, we derive H(x; a) by the for­
mula (3), it turns out that besides contributions 
from the quasi -local operators An ( x1 ... Xn) 
themselves there are contributions from expres­
sions of the forms T(An(x1 ... xn)Am(Y1···Ym)), 
T ( An(X1. · · Xn) Am (Y1· · · Ym) Ak( Z1. · · Zk)), and 
so on, where the indices n, m, k, ... run through 
values from 1 to oo and A1(x) = L(x). This oc­
curs for the same reasons that lead [3] to the ap­
pearance in H ( x; a) of terms depending quadrat­
ically on the normals-that is, because in the 
Bogolyubov method one uses definitions of the 
chronological pairings of the form 

i / T (o'<p O~C£\"' = 0 (xo - r o) o'D- lx -u) 
" iJx' OIJ2 // o Y dx' iJy' 

- 8 (yO - XO) ()4D_~~X ~ !/) 
ax" ay' 

+ + ( :;, + -~;,) o (x - y)- m2o (x - y). (27) 

When, now, we go to derive H ( x; a), only the 
first two terms of the expression (27) vanish, and, 
as was indeed to be expected, the quasi-local oper­
ators in them contribute to H ( x; a ) . 

Furthermore, if the question of the passage to 
the limit g- ea in the part of S (a, - oo) corre­
sponding to the terms of the expression (27) which 
simply contain the o function requires no special 
explanation, still the treatment of the limiting proc­
ess in the part of S (a, - oo) corresponding to the 
expression % ( 82/ax2 + a2/i:iy2 ) o(x -y) in Eq. (27) 
also leads to a problem of "surface" divergences. 
Thus it turns out that the quantities not defined on 
a class of functions g(x) which includes e func­
tions, and hence still in need of regularization, 
include not only the operators An but also the 

expression for the pairing (r (~~ ~~))0 in the 

form (27), which follows directly from [5]. The 
"surface" regularization of such expressions can 
be carried out in analogy with the treatment given 
above, and the finite "surface" terms that then 
arise are of the nature already indicated and can 
also be separated out from the Dyson matrix into 
a unitary multiplying factor. 

Besides these additional "surface" terms, how­
ever, the presence of quasi-local operators in ex­
pressions of the type (27) leads to the appearance 
in H ( x; a) of additional terms of the same oper­
ator structure as that of the terms of - L(x; 1 ), 
but with different coefficients, which also depend 

on MI. As an example we write out the additional 
terms of the final Hamiltonian H(x; a) that are 
obtained from S (a, - oo) of the form (22) and con­
tribute to the fourth-order expression for H(x; a). 
These terms are 

. {. aL (x; 1) aL (x; 1) • 
/<..H (x, a) = - . . a<p (x) a (a2<p I ax2) . 

1 . aL (x; 1) 82 [ aL (x; 1) J . m2 [ aL (x; 1) ] 2} 

- 2 . a (a2cp I ax2 ) ax2 a (a2<p I ax2) . + 2 ara'<p I ax2 ) • 

(28) 

In the higher orders in H ( x; a) there will be con­
tributions not only from the terms of Eqs. (23) and 
(28), but also from more complicated combinations 
of larger numbers of factors consisting of deriva­
tives (including higher derivatives) of L(x; 1) 
with respect to cp(x) and a2cp/ax2, which there is 
no use writing out, since it is easy to establish the 
law of their occurrence, by using for the develop­
ment of the T-product formulas of the type 

T (L (x) L (y)) = : L (x) L (y): 

1 c . aL (x) aL (y) . + T D (x - y) . acp (x) a<p (y) . + .... (29) 

Thus we find that even without inclusion of the 
"surface" counterterms H(x; a)~ -L(x; 1) in 
the Bogolyubov method. 

In order to understand what is involved here, 
we recall ( cf. [13•3]) that since the integrability 
condition contains first variational derivatives of 
H(x; a) it determines H(x; a) only up to an arbi­
trary function of the field operators which does 
not depend on the shape of the surface a. Usually 
this function is set equal to zero by considerations 
of simplicity. [13] 

Naturally, in the given case, although L(x; 1) 
satisfies the integrability condition we can add to 
- L(x; 1) a term 6.L(x) satisfying the conditions 

[/<..L (x), L (y; I) I 

= [/<..L (x), /<..L (y)l =0 for x ~y or x =y.)(30) 

It is not hard to see that the expression (28) actually 
satisfies the conditions (30). Thus from the point 
of view of satisfying the integrability condition the 
addition of terms of the form (28) to H(x; a) has 
no effect, and it is necessary to bring in other ar­
guments to make a correct choice of H(x; a), be­
cause there is no justification in this case for using 
considerations of simplicity. 

If we start from considerations of correspond­
ence with the finite (for Mf - oo) S matrix ob­
tained in the Bogolyubov method, [ 5] it is necessary 
to include additional terms of the form (28) in 
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H(x;a) sothatwhenwederive S(a, -oo) (orthe 
S matrix) by solving the Tomonaga-Schwinger 
equation we may be able to proceed to the defini­
tion of pairings of the form (27) adopted in [5] with­
out changing the expression for S(a, - oo). But for 
fixed Mf, as assumed everywhere in this paper, 
we can also use the expression (23) to obtain 
S (a, - oo ). Thus the problem of satisfying the in­
tegrability condition for the effective Lagrangian 
L(x; 1) is of a narrower character in the Bogolyu­
bov method than might at first glance be expected. [3] 

In particular, although the boson proper-energy 
counterterms contain derivatives of the fields they 
actually do not lead to terms in H(x; a) depending 
quadratically on the normals. 

5. DISCUSSION 

Thus within the framework of the Bogolyubov 
method one can carry out in a reasonable way a 
"surface" regularization of the Dyson matrix 
(for fixed Mf), and in perturbation theory one 
can get a finite expression for this matrix for any 
renormalizable theory. Furthermore, as long as 
the MI are finite, we can with equal success give 
the name of Dyson matrix either to the expression 
S (a, - oo) of the form of Eq. (21) or to the 
S (a,- oo) of Eq. (22). 

Meanwhile a question of great interest is 
whether one can carry out the transition Mf - oo 
in the resulting expression for the Dyson matrix. 
It is easy to see that the factor exp {iF( a)} it­
self diverges for Mi - oo, though one can sepa­
rate out from it a finite part of the same operator 
structure. As for the expression for S(a, -oo), 

our preliminary investigation shows that in the 
case of the Hearst-Thirring field and for all dia­
grams of other theories that do not contain boson 
proper-energy insertions the transition Mi- oo 
in S (a, - oo) in all probability is possible and 
leads in every order of perturbation theory to an 
expression which is finite in the ordinary and 
"surface" senses and satisfies the requirements 
of correspondence with the S matrix. 

When we consider the transition Mf - oo in the 

Dyson matrix for a theory with L(x; g) of the 
form (5) our attention is caught by the fact that 
the finite arbitrary constants a 0m have the di­
mensions of mass and that in principle one can 
even set a 0m ~ Mi. Thus there is a possibility 
that for this theory also either S (a, - oo) or 
S (a, - oo) will be finite in every order for Mf 
- oo (for a suitable choice of a 0m ) . Further 
studies are needed, however, for a final solution 
of this problem. Still, apart from this, the re-

sults of this paper (together with [3, 4]) show that 
within the framework of the Bogolyubov method 
one can construct a scheme of the Hamiltonian 
formalism which allows a consistent derivation 
of the usual expression for the S matrix starting 
from the Tomonaga-Schwinger equation (if we go 
to the limit Mf - oo already in the S matrix). 

Another interesting and still unsettled question 
is that of obtaining the Dyson matrix according to 
Eq. (1) with a different order of the passages to 
limits, i.e., first letting Mf - oo, and then g 
- ea. A preliminary examination shows that for 
the Hearst-Thirring field the expression for 
S (a, - oo) does not depend on the order of the 
passages to the limits, but in a theory with L ( x; g) 
of the form (5) new difficulties arise, which have 
not yet been overcome. Another open question is 
whether it is possible to construct a finite Dyson 
matrix outside the framework of perturbation 
theory. Worthy of attention in this connection 
are attempts [14] to approach the derivation of the 
Dyson matrix and the interaction Hamiltonian in 
such a way that no divergent expressions appear 
at any stage. 

Finally, let us touch on a problem posed by 
Haag [12 ] outside the framework of perturbation 
theory-that there may not exist any finite Dyson 
matrix, because it must connect fields in the Heis­
enberg and interaction representations [ cf. Eq. 
(24)] which belong to nonequivalent representa­
tions of the canonical commutation relations. It 
is easy to see that by Eq. (24) the value of the 
commutator 

([A (x, -r), A (y, -r)l) 0 =-- il-1o (x- y), (31) 

where z-1 > 1, does not depend on whether we use 
the matrix S (a, - oo) or S (a, - oo ), so that the 
"surface" arbitrariness we have discussed has 
no effect on the quantity z-1 and leaves the ques­
tion open as to the existence of the Dyson matrix 
in the general case. 

On the other hand, in perturbation theory one 
may be able to construct an expression for the 
Dyson matrix which is finite even for M{ - oo • 
If this is so only for the Hearst-Thirring field, 
then in all probability this case can be regarded 
as an exception, for which Haag's problem does 
not arise. If, however, one manages to construct 
an expression for S (a, - oo) which is finite for 
Mf - oo in every renormalizable theory, then it 
is quite possible that this problem, which arises 
in the framework of the axiomatic method, has no 
meaning in any order of perturbation theory, but 
is connected with problems of the summability of 
the perturbation-theory series. 



1000 A. D. SUKHANOV 

In conclusion I express my sincere gratitude to 
N. N. Bogolyubov and V. S. Vladimirov, who in 
conversations have helped greatly to clear up for 
the writer a number of questions of principle. I 
also express my gratitude to D. V. Shirkov, B. V. 
Medvedev, and D. A. Slavnov for a helpful discus­
sion. 

1 F. J. Dyson, Phys. Rev. 75, 486 (1949). 
2 E. C. G. Stueckelberg, Phys. Rev. 81, 130 

(1951). 
3 A. D. Sukhanov, JETP 41, 1915 (1961), Soviet 

Phys. 14, 1361 (1962). 
4 A. D. Sukhanov, JETP 43, 932 (1962), Soviet 

Phys. 16, 660 (1963). 
5 N. N. Bogolyubov and D. V. Shirkov, Vvedenie 

v teoriyu kvantovannykh polei (Introduction to the 
Theory of Quantized Fields), Gostekhizdat, 1957. 

6 A. D. Sukhanov, DAN SSSR 145, 1042 (1962), 
Soviet Phys. Doklady 7, in press. 

7 A. D. Sukhanov, Candidate's Dissertation, 
V. A. Steklov Mathematics Institute, Academy of 
Sciences, U.S.S.R., 1962. 

8 I. M. Gel'fand and G. E. Shilov, Pros trans tva 
osnovnykh i obobshchennykh funktsii (Spaces of 
Basic and Generalized Functions), Fizmatgiz, 
1958. 

9 D. A. Slavnov and A. D. Sukhanov, JETP 41, 
1940 (1961), Soviet Phys. JETP 14, 1379 (1962). 

10 J. Schwinger, Phys. Rev. 74, 1439 (1948). 
11 P. T. Matthews, Phys. Rev. 76, 1657 (1949). 
12 R. Haag, Kgl. Danske, Videnskab. Selskab, 

Mat.-fys. Medd. 29, No. 12 (1955). 
13 S. Kanesawa and Z. Koba, Progr. Theoret. 

Phys. 4, 297 (1949). 
14 D. A. Slavnov, DAN SSSR 143, 570 (1962), 

Soviet Phys. Doklady 7, 220 (1962). 

Translated by W. H. Furry 
242 


