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We have evaluated the single-particle Green's function of a spatially infinite fermion system 
with two-body interactions consisting of an attraction U of radius b and a strong repulsion V 
of radius a, with b »a and U « V. We expand the self-energy part Z: in terms of two pa
rameters ap 1/ 3 and 1/bp1/ 3 in the intermediate range of densities p (b 3p » 1 and a 3p « 1 ). 
We take into account all diagrams which give a contribution to Z: which is not less than the 
contribution from the gas-approximation term which is quadratic in a. We obtain the single
particle excitation spectrum, an expression for the effective mass at the Fermi surface, the 
chemical potential, and the sound velocity. We have considered the influence of a self-com
pressed state of the system on the chemical potential and on the sound propagation velocity. 
We consider nuclear matter as an example of such a two-parameter system; and determine 
in this example the average energy per nucleon, the quasi-particle effective mass, and the 
symmetry energy. 

1. INTRODUCTION 

IN order that one can apply perturbation theory 
to a study of many-particle Fermi-systems, it is 
necessary that there exist a small parameter 
which is determined by the magnitude of au, the 
interaction radius a, and the state of the system 
-its density p (or the Fermi momentum Po). Up 
to the present two limiting cases were mainly con
sidered: the gas approximation and the high-density 
approximation. These are valid, respectively, when 
p0a « 1 and "Ua2 is arbitrary and when ( p0a) - 1 

« 1 and "Ua2 < 1. However, in most many-particle 
systems occurring in nature, both fermion and 
boson systems, the interaction radius a is large 
i.e., (p 113a)- 1 « 1. Whereas at large distances 
relatively weak attractive forces operate, at small 
distances huge repulsive forces operate, causing 
the compressibility of the liquid to be small. It 
turns out that "Ua2 » 1, and although (p0a)-1 « 1, 
it is impossible to apply perturbation theory with 
theparameter (p0a)-1• 

There are systems (for instance, nuclear mat
ter) where it is possible to split the two-particle 
interaction potential au into two parts' u ( u < 0 ) 
and V ( V > 0) with action radii b and a such that 
ap0 « 1 and Va2 » 1, (bp0 )-1 « 1 and Ub2 < 1. 
The possibility then arises for a microscopic 
study of a number of systems by means of a per
turbation theory involving two parameters. A pre-

vious paper by the present author [1] 1> was de
voted to considering such a system. In that paper 
we evaluated the average energy per particle, Eav. 
and we obtained an equation of state, i.e., the de
pendence of the pressure on the density. Since the 
repulsive energy increases with increasing den
sity faster than the attractive energy, the pres
sure at a certain density is determined, as in the 
case of a gas of non-interacting particles, by the 
kinetic energy. 

We considered especially the case where the 
pressure was equal to zero and 82Eav/Bp2 > 0: 
self-compressed systems. A study of the depend
ence of Eav on p shows that if p0a « 1 and 
( bp0 ) - 1 « 1 and if the forces are Wigner forces, 
it is impossible to satisfy all the requirements 
for self-compression: Eav < 0, 8Eav /op == 0, and 
a2Eav/Bp2 > 0. The occurrence of Majorana forces 
increases-as we show in detail in the present 
paper-the repulsive energy, and also enables us 
to obtain a negative Eav· Self-compression turns 
out to be possible in the systems considered only 
when there are present a strong repulsion and 
long-range exchange forces and the equilibrium 
density depends then strongly on the range of the 
repulsive forces. 

In the present paper we continue the study of 
such a system and evaluate the single-particle 

!)Henceforth quoted as I. 
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Green's function. It is well known l 2J that the 
poles of the analytical continuation of the Green's 
function determine the single-particle excitation 
spectrum and the damping of the quasi-particles, 
and that the point where the imaginary part of the 
self-energy part~ vanishes determines the chem
ical potential of the system. A knowledge of the 
chemical potential enables us to determine the 
low-frequency sound velocity. Of special interest 
is an elucidation of the influence of exchange 
forces on ~, in particular upon the magnitude 
of the quasi-particle effective mass at the Fermi 
surface, the magnitude of the damping, and so on. 

It is clear that it has only sense to speak about 
single-particle excitations under such circum
stances that the imaginary part of ~, the damp
ing, is sufficiently small compared with the real 
part of ~, and thus we are mainly interested in 
the Green's function at the Fermi surface, as will 
become clear from what follows. 

We do not consider poles in ~, which Migdal [3] 

has shown to correspond to the possibility of the 
occurrence of bound pairs such as Cooper pairs 
since the problem of the superfluidity of the sys
tems considered will be studied elsewhere. 

2. CHOICE OF DIAGRAMS 

As in our previous paper, we shall use a dia
gram technique the details of which can be found 
in [2•4•5]; the features peculiar to the two-param
eter problem were noted in I. Since Va2 » 1 and 
Poll « 1, we shall sum, as far as the short-range 
potential is concerned, in the gas approximation, 
with the shaded square denoting Veff, the sum of 
the ladder diagrams in V (for details see Fig. 2 
of I). An ordinary wavy line indicates the long
range potential U, and a double wavy line Ueff• 
the sum of all diagrams, where the maximum 
number (equal to the order) of particles is con
nected in each order of perturbation theory in U 
(see Fig. 3 in I). 

When evaluating and choosing the diagrams we 
shall aim to perform the calculations up to and 
including terms of order "' ( p0, a )2• The single
particle Green's function of non-interacting par
ticles was determined in (I.2): 

G0 1 (p) = p.- p2/2 +i&O (p); 

6(p)=(1-2n)={ 1, IPI>Po. (1) 
P -1, IP I< Po 

If we take into account the fact that the scatter
ing amplitudes of hard spheres do not depend 
strongly on the momenta and the fact, noted in I, 
that the integration over intermediate states oc-

curs over momenta which are not more than a 
few times p0, we can replace V eff by 47ra in all 
mixed diagrams. 

We need first take into account all irreducible 
diagrams of Fig. 1. Were it necessary to take 
into account terms "'a3, the main difficulty would 
lie in the appreciable increase in the number of 
mixed diagrams. Diagrams such as the one of 
Fig. 2 can lead to an appreciable contribution only 
at the Fermi surface, because of the long range 
of the potential U. However, for p ~Po the con
tribution from Fig. 2 is small. This enables us 
to drop the diagram of Fig. 2 and similar dia
grams where one of the wavy lines U is replaced 
by the square V eff, which is equal to 47ra (for 
instance, Fig. 3 ). The contribution from diagrams 
such as the one of Fig. 4 i's at least p 0b times 
smaller than that from diagram s of Fig. 1 which 
is taken into account (see I, where estimates are 
given). 

In Fig. 1 we have thus given all basic types of 
irreducible diagrams, since the remaining dia
grams give contributions which are either p0b or 
1/p0a times smaller and need not be considered. 
Taking them into account does not affect qualita
tively the results obtained in the present paper. 

To take all diagrams into account one must 
consider apart from those of Fig. 1 several self-
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energy parts, i.e., one must evaluate the diagrams 
of Fig. 1 using not the free-particle Green's func
tion (1), but (1.3) 

It is, however, clear that ~I(P) must not contain 
terms ~ a since they are taken into account sepa
rately. 

3. SINGLE-PARTICLE EXCITATION SPECTRUM: 
CALCULATION OF THE SELF-ENERGY 
PART 1: 

The single-particle excitation spectrum E at 
the Fermi surface is determined using the rela
tion 

8 = A + Po (p -Po)/ 1-leff• (3) 

where A. is the chemical potential, J.leff the effec
tive quasi-particle mass at the Fermi surface, and 

2 

'A = ;~+~(Po), 1 1 a:E I --1 __]__ __ 
J.Lelf - I Po ap P=Po· 

We need thus know the self-energy part ~ at the 
Fermi surface with an accuracy of ~ p- Po in 
order to determine the spectrum. 

We first of all evaluate the contribution to ~ of 
all irreducible diagrams of Fig. 1 taking into ac
count that the two-particle interaction is a non
exchange, central one. 

1. One verifies easily that ~a(P) = U( 0 )p, 
p = PV31T2. 

2. The contribution from diagram 1b is equal 
to 

~b (p) = - ~ U (q) np-q (g~)a • (4) 

The expansion of ~b ( p) near p ~ Po up to terms 
~ p gives 

2Po 

~b (p) = ~b (Po)- Po4--;;/ ~ U (q) (I - t 2 ) qdq, (5) 
0 Po 

2Po 

~b (Po) = - 4~2 ~ U (q) (I - 2;J q2 dq. (6) 
0 

3. The situation is much more complicated when 
we want to determine the contribution of the diagram 
of Fig. 1e. We evaluate the real part, Re ~e using 
the fact that the single-particle excitations are de
termined in two different ways: in terms of the 
variational derivative of the total energy density [s] 

with respect of the occupation numbers, and in 
terms of the Green's function poles, and these two 
definitions are clearly the same2>, i.e., 

2)Karpman[ 7 ] has rigorously shown the equivalence of 
these definitions for the vicinity of the Fermi surface. 

Re ~e (p) = i) (Ecorr. p)/iSnp. (7) 

Ecorr is the correlation energy per particle which 
was evaluated in [sJ and in I. Furthermore, p is 
the momentum of a real particle or hole, i.e., there 
exists an unambiguous connection between p and 
Pe the fourth momentum component. 

We have thus 

- 1 \ dq U2 ( ) 
e corr. - - 2np J q (2n)3 q 

+oo oo 

X ~ ds ~ (-n1)n (Qq (s)tun-2 (q), 0 < q <Do 

-.co n=2 

+oo 

x ~ exp {itsq -It I[~ q2 + qt]}dt. 
-co 

Taking the variation of Qq ( s ) with respect to 
np, we find 

llQ (s) +;:o 1 ]} ---in;- = (1 - np+q) ~ exp {itsq- It I [ 2 q2 + qp dt 
-00 

+oo 

(8) 

(9) 

- np-q ~ exp {itsq -It I [ -+q2 + QP]}dt. (10) 
-co 

Integrating in (10) over t and the direction of q 
and taking as the upper limit Po we find then near 
the Fermi surface the expression 

Po 00 

+ 4~2 (Po-P)~ qdq ~ (- l)n (Qq (0)(-1Un (q) 
o n=2 

Po +oo 

- 4~3 Po (Po-P) ~ q3 dq ~ ds 
0 -00 

co 

(11) 

Po +oo 

Re ~.(Po) =- 8~3 ~ q3 dq ~ ds 
0 -00 

x ~(-It (Qq (s)(-lun (q) _2_1_. 
"-l p + s2 
n=2 0 

(12) 

Summing over n we find 3l 

3 >We note that le(p0) = a(€corrp)/ap which is reduced to 
the calculation of a[Qq(s)]/ap. The upper limit of integra
tion over q in €carr is usually equal to p 0 , but when taking 
the variation with respect to p one need not take this de
pendence into account, since the limitation of the integrals 
over q by the limit Po is not one of principle, but is con
nected with the fact that the upper limit and, in general, the 
large q region does not contribute to the integral because 
U(q) decreases steeply. 
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1 ~" U2 (q) Qq (0) 
Re ~. (p) = Re ~e (Po) + 4n2 (Po~ P) ~ q dq 1 -+ u (q) Q (0) 

~ q 

Po +co 
1 \ \ ds U2 (q) Qq (s) 

~ 1,ns Po (Po~ P) ~ q3 dq J 
o -co 

1 + U (q) Qq (s) ' (p~ + s2j2 

(13) 

Po +co 2 

R ~ ( ) ~ ~ _!:__ \ 3d \ _d~s ~ U (q) Qq (s) (14) 
e e Po ~ Sn" i q q _t, p~ + s2 1 + U (q) Qq (s) ' 

where in zeroth approximation in q 

Qq(s) ~~ P~ (1-- ~arctg!!.<!__), Qq(O) = P~ (1 ~ ~). 
w Po s n 12p0 

(15) * 
4. Galitski'i [4] has evaluated the Green's func

tion in the gas approximation. However, to find 
the contribution from the diagrams c and d we 
must take into account the self-energy part ~I. 
We use here the same approximation as in I, i.e., 
the approximation of ~I by the quadratic expres
sion ~I= a+ p2/2J.L1-p2/2. One can then show4> 

that the effective repulsive potential will be not 
4rra, but 4rra/ J.L1. In first approximation we have 
thus a renormalization of the effective repulsive 
interaction. 

5. When evaluating ~ f,h,r ,g we must treat with 
care the fact that since U is a long-range poten
tial the small-q region gives the main contribu
tion. The point is that upon integration over the 
intermediate states there occur sufficiently high 
powers of q ( q 2, q 3 ) to swamp the large magni
tude of U(q) at small q. We must thus evaluate 
~ f,h,r ,g accurately without restricting ourselves 
to small q. In the approximation considered 
where the short range part is replaced by 4rra/ J.Li 
the matrix elements of f and g differ only in the 
numerical coefficient which arises from the sum
mation over the spin states and in the sign, but 
the matrix elements of f and h are the same. 
We have then 

Re (~r + ~g + ~h + ~,) 

= 8n~ p \ np, ( 1 - nP __ ql ( 1 ~np,+q) + np-qnp,+q ( 1 ~ np) 
~~ ~ q(p~p~)~q2 +r.-r"/2 

x U(q) 
dp,dq 
(2n) 6 ' 

(16) 

where P is the principal value symbol. 
Moreover, we must take into account reducible 

diagrams; to do this we must in the denominator 
add ~I: 

*arctg = tan -t. 

4 )A detailed consideration of the influence of ~I on the 
scattering amplitude and the effective potential is given in 
another paper. 

p.- (p- Q)2/2- ~I (p- Q) + pi/2 +~/(pi) 

-(PI + Q) 2/2 -~I (PI+ q). (17) 

If we consider the real part we get with the accu
racy used here 

Pe - p2/2 ~ ~I (p) = 0. (18) 

We note that the integrand [apart from U(q)q2] 
is a smooth function of q near q = 0 even for real 
particles, and the region where it changes appre
ciably turns out to be larger than p0• If U( q )q2 

does not have a steep maximum near q = 0 and 
varies sufficiently little between 0 and Po (for 
instance, the Yukawa potential) one can take ~I 
into account by introducing an effective mass Jli• 

and Re ~ is determined from Eq. (16) with a in
stead of a//-11. If, however, the potential U(q)q2 

has a steep maximum for q « p0, then we are in
terested not in the average effective mass 1-lt in 
the interval 0 to p0, but in /-1 2, the effective mass 
at the Fermi surface. 

Performing the calculation for the real part 
Re ~ and real particles we get after rather pro
tracted calculations an extremely complicated 
expression. Since the diagrams f ... r of Fig. 1 
considered here do not contribute to 1-li we need 
find their magnitude only near the Fermi surface, 
namely, for (p-p0 )/p0 « 1 and it is necessary 
only to retain terms with (p0 - p )/p0 of at most 
the first degree. We then get5> 

a 2t 2ap~ ":' 
Re~(p0)= 2n3 (ln2~1) j q3U(q)dq~ ::\:r" ~ U(q)dq 

2P., (19) 

or, if U ( q )q2 has a steep maximum for small q 
we must replace in the first term a by a/-12 I 1-lt· 
In deriving (19) we used the fact that we can ex
pand ( x- a) ln I x- a I under the integral sign in 

a 
the expression J (x- a) ln I x- a I dx, assuming 

0 

that x/ a « 1. In the same approximation 

2Po 

Re ~ (p) = Re ~(Po) -i- Po;;; P ap0 \ q dq U(q) (I~ q'") 
0 .)p(l 

co 

+ (Po--~ P) aPo2 
\ dq U (q). 

,jJ{ • 
(20) 

~P .. 

For the U ( q) mentioned above we must replace a 
in the second term by a/-12 I /-11· 

SlAt first glance it looks as if we can neglect the second 
integral; this is, however, not the case. In fact, the contribu
tions from the first and the second integral are of the same 
order of magnitude. 
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We noted above that the contributions of the di
agrams f and h of Fig. 1 are the same. However, 
if we understand them in the sense of Hugenholtz [9] 

( t denotes a particle and ~ a hole) the contribu
tions are different and their difference is especially 
important for long-range potentials. For instance, 
if p > Po the contribution from the term with np-q 
in (16) is small, while for p < Po the contribution 
from the term with 1 - np-q is small. On the 
Fermi surface the contributions from these terms 
are approximately the same. In Hugenholtz' nota
tion the term with np--q corresponds to the dia
grams h and r and the one with 1 - np-q to f 
and g. 

In the Brueckner theory the contribution from 
the diagrams h and r was called the "rearrange
ment energy." It is clear that the determination 
of the single-particle excitations in terms of the 
diagrams f and g only [to, 1l] is completely incor
rect and this explains the anomalously large value 
of the rearrangement energy obtained by a number 
of authors. It is possible that an incorrect defini
tion of the single-particle energy does not matter 
in the calculation of the ground-state energy but 
it is completely inadmissible when determining 
the single-particle excitation spectrum, the damp
ing of the excitations, and so on. 

6. We now calculate the remaining diagrams 
such as s. We start from the fact that Ueff(q) 
decreases so fast with increasing q that the main 
contribution comes from the region where q « Po
This enables us to use the method of calculation 
applied in subsection 3 of the present section. We 
note that Re ~ s can be found in the same way as 
in subsection 3, since all diagrams of the kind f 
and r with a double wavy line and also several 
other ones (Fig. 5) are obtained from (7) if we 
replace in Ecorr given by (8) one of the U( q) 
by 47ra. Moreover, since diagrams with one or
dinary wavy line are taken into account in Fig. 
1f. _. r, the summation in (8) must start from 
n = 3. Repeating all calculations which led from 
(8) to (13) and (14) we find 

Po 

- 2~ (Po - P) ~ qdq 
0 

a 
--\- ;-) , Po (Po-P) 

-Jt-

2U3 (q) Q~ (0) + 3U2 (q) Q2 (0) 

[1 + u (q) Qq (0)]2 

Po +oc ds 2U3 (q) Q~ (s) +- 3U2 (q) Q2 (s) 

X ~ q3dq _\c (p~ + s2)2 11 -:-U (q) Qq (s)p ' (21) 

a Po ,-::xl ds 2U3 (q) Q~ (s) + :lU' (q)Q2 (s) 

Re ~'(Po) = 4n' ~ q3dq ~ou -P6 .. s2 [1 +- U (q) Qq (s)J2 (22) 

FIG. 5 

To take into account the contribution from the re
ducible diagrams in the approximation used in 
this paper we see easily that we must in (13), (14), 
(21), and (22) replace Q by Q' = JJ.zQ and in (21) 
and (22) replace a by a/ J.l.t· 

4. THE SINGLE-PARTICLE EXCITATION SPEC
TRUM: THE EFFECTIVE MASS ON THE 
FERMI SURFACE, THE CHEMICAL POTEN
TIAL 

In the preceding section we obtained an expres
sion for the Green's function self-energy part ~ 
which depended on the effective masses J.l.t and JJ.z; 
these we shall now determine. We have noted al
ready that terms proportional to a need not be 
taken into account in the Green's functions when 
evaluating ~ ( p) with the accuracy considered 
here. The best accuracy in determining JJ.z is 
obtained as follows: we evaluate the diagrams b 
and e of Fig. 1 assuming some value of J.l-2 and 
we find ~I( p, JJ.2), which we use to determine JJ.2, 
and so on, until self-consistency is reached. 
Having thus determined ~I we can approximate 
~I by the best quadratic expression over a wide 
range of p from 0 to Po and thus determine J.l.t· 
A self-consistent determination of J.l.t and J.l.z 
from ~ ( p ) and not from ~I leads to exceeding 
the accuracy of the calculation, even if we forget 
the very large complications. 

Let us consider a mixture of attractive forces, 
a Wigner force W and a Majorana force M 
( W + M = 1), where we shall assume for the sake 
of simplicity that their radial dependence is the 
same. As an example we give the results of the 
calculations for a Yukawa-type long-range poten
tial 

un 
[/ -=-= - c-·.,,- or 

'Vr 

We find the expression for JJ.z in the vicinity of 
the Fermi surface from 

If U is such that it is sufficient to restrict our
selves to ~a and ~b. then the whole of the long-
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range part of the potential is taken into account by 
the self-consistent field in which the system with 
two-body repulsions is situated. We have from (5) 
and (13) 

2Po 

_1:_ = 1 I ,, ( 2i :- 1) { ('. u. ( ) (1- L) d 
flz 1 .Ll 4Jt 2Po \ q ' q 2 2 q 

i~o. 1 0 Po 

Po 2 ' 
- \' d vi (q)Qq (O) 

) q q 1 + v Q' (0) 
0 l q 

2 . ' 
I Po ~ 3d ·~ ds vi (q) Qq (s) } --- q q 
' :rt · (p~+s2)2 1+Vi(q)Q~(s)' 

Uo = (W- M/2) U, U1 = -MU/2. (23) 

We have already noted that in the evaluation of 
~f...g the integration over the intermediate states 
leads to the occurrence of fairly high powers of 
q ( q2, q3 ). The contribution of the second order 
to the correlation self-energy part must thus be 
taken into account exactly by means of (20) and 
not in the Gell-Mann-Brueckner approximation 
in which Eq. (15) was obtained. 

As an example we give the results of the calcu
lation which are valid both when UQ « 1 and when 
UQ » 1, restricting ourselves to terms ~ u2 in 
the last integral6> 

TJ = Polv, U~o = (W - M/2) U0/vnp 0 , 

2Po oo 

- 1- = -1 - __.; \. qdqU (q) (1 _1___)- .aP_o I' dqU (q) 
!1 eft !12 :TI J 3p2 3n3 J 

0 ° 2~ 

- 2!1::TI2 ~ (- 1 )i (2i + 1) 
i=O, 1 

Po +oo 

x \ q3 dq \ ds [ 1 - ~ b (s)J 
J J (p2 + s2) 2 Poq2 
0 -00 0 

2V~ (q) Q'; (s) + 3VJ (q) Q';(s) 8 p~a2 
X , -~5 ,(71n2-1)-. [1 + V; (q) Qq (s)]2 Jt !11 

(26) 

A study of 1/ 1-Leff enables us to estimate whether 
there are exchange forces present in the system 
and how large they are. In any case, if 1/ 1-Leff is 
appreciably larger than unity there are certainly 
exchange forces present. As before, we give as 
an example the results of our calculations for the 
case UQ » 1, limiting ourselves in the last inte
gral to terms ~ u2: 

1 1 4~V0" ( 1 ) ~ 
lletf = Tz - ~ In 2TI - 2 + [l1rl ~ (- 1/ (2i + I) 

i~o. 1 

X {2U~; In 11 + 4U~tl]2f.L 2 J - U~; - ~ U~7Jn 1J} 

8 ~2 
- -15 2 (7ln 2 - 1) - , 

Jl fll 
(27) 

where t = Poa, u0" = U0/v7rPo· 
We now determine the chemical potential, which 

is well known to be equal to the quasi-particle en
ergy for p = p0 [ 2J and equal to the energy of split
ting off one particle, and which can thus be meas
ured experimentally. From [4] and (6), (14), (19), 

(24) and (22) we find 

When W /2 < M the value of 1/1-12 remains > 1. 
Similarly, 1/~-t1 > 1 if W/2 < M. This means that 
when there is an appreciable admixture of ex
change forces the effective repulsion is strength
ened, while for purely non-exchange forces the 
presence of a long-range force leads to a weaken
ing of the repulsion. The contribution from dia
grams c and d of Fig. 1 to the effective mass 
will thus be [ 4J 

f.L~~ = - 8 (7 In 2 - 1) p~a2/15Jt2f.L 1 • (25) 

We find from (5), (13), (20), (21), and (24) for the 
effective mass on the Fermi surface the expression 

6 )It may turn out that as v-> 0, i.e., when we take the 
limit to a constant potential, 1/ J1. -> oo which is absurd. How
ever, this is not the case. Indeed, when v = 0 we shall have 
Uv=o(q) =U' 0 o(q) and in order that U,..(q),.._,o =Uv=o(q) it 
is necessary that U0 = U'"vl+a with a> 0. The contribution 
of ~b to 1/ p., tends thus to 0 as v -> 0, as is evident from 
physical considerations. 

2p, 

- (2~)2 ~ (Uo(q)-3Ut(q))q2 dq(I- 2~J 
0 

2Po 

+ 2~3 (In 2- I) ~ q3U (q) dq 
0 

2ap3 r 1 ':• 
- 3n"o J U (q) dq- 8n" ~ (2i + I) ~ qa dq 

2Po i~o, 1 o 

[ 
; 2a:rt • 3 + 2V; (q) Q.~ (s) J x I-(-I) -Qq(s)---'------'!.--

11, 1 + V; (q) Qq (s) 

+ 2~1 P~ [ 3~ Poa + 15~2 ( 11 - 2ln 2) p~a2 J , (28) 

which in the simplest case, considered here, gives 
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A. = __i_ (w- ~) auo + _!_ 2 ' 2 (2M- W) uo ( 1 - ~) 
3n 2 T] 2 Po T 1t T] 41'] 

ft• (W2 - W M + M2) U02lJ2 { ( 1 ) + n•p~ 2 (In 2 - 1) In 2T] - 2 

_ i- + 3ln 2\;ft•i~~~ lJ -1) } + ~ \;T]Uo (in 2 _}) 

+ 2~1 P~ [ 3~ \; + 15
4n2 ( 11 - 2 In 2) \; 2 J , (2 9) 

where, as in (24), the second order contribution to 
the correlation self-energy part is taken into ac
count accurately by means of (19). The elemen
tary excitation spectrum at the Fermi surface is 
thus determined by Eq. (3) with i\. and J.teff taken, 
respectively, from Eqs. (28), (29), (26), and (27). 

One checks easily that one can obtain the ex
pression for i\. given here by using the formula 
i\. = ( 8E0 /aN) n where E0 is the total energy of 
the system of N particles in the volume n. Ac
cording to the definition of i\. given by Galitskil 
and Migdal[2J, i\. = Ep0• i.e., 

ep, = Ia (Ea.JV)!aNio = Eav + N (aEaJaN)n, 

and we have thus for self-compressed systems 
in accordance with the Van Hove-Hugenholtz 
theorem [1!] E = E Po av· 

It is of interest to note that as p - oo all ~ 
except ~a, ~c , and ~d tend to zero. Hence 

lim Re~(p) =~a+ Re ~c. d ~ (W- M/2) U(O) p + 

According to Galitskil [4] ~c,d- const as 

2p~a 
31[ 

(30) 

p - oo • Indeed, the amplitude a decreases and 
Re ~ c,d also decreases but at any rate less than 
~e. and so on. A particle with a large momentum 
( p » Po) will thus move in some self-consistent 
field created by the long-range potential and will 
interact with the other particles as a hard sphere. 
We note that (30) is valid for U(q) which are such 

00 

that ju(q)q2 dq < oo, i.e., U(r)lr=o is finite. 
0 

This requirement does not lead in the system 
considered here to a limitation of the generality 
since the presence of a strong repulsion at small 
distances ( r < a) enables us to change U( r) ar
bitrarily at small r, i.e., for large momenta. A 
study of the dispersion law for particles with large 
momenta enables us thus to study the forces act
ing in the system 7). 

7)This deduction is not conclusive, since damping may be 
so large for large momenta that it clearly means less to talk 
about a single-particle spectrum. The actual possibility of 
determining the forces U and a experimentally depends on 
their magnitude. 

The expression (28) which we obtained for i\. 

enables us to determine the low-frequency sound 
velocity. It is well known that (see, for instance, 
[12] 8) 

(31) 

We then find from (28) 

-2'""" (w - ~) u -+- r~ -+- <M- w ;2) 2[?" !L u (q) dq 
c - 2 oP ' 3 ' 3 (21t) 2 .\ Po 

·Po + ~ i2i + 1) r -- 1)' r· 3 d 
.LJ 3 (2n) 3 Po ) q q 

i=O, 1 

+oo o ' 
(" ds { u; (q) Qq (s) [< l)tU ( ) Q' ( ) 

X _-~P~+s' [1+V,.(q)Q~(s)J'- ;q qS 

. a 3- u,. (q) Q~ (s)l} 4p~ 
+2rrQq(s)- , + 33 a(ln2-I)U(2p0 ) 

ftl 1 +vi (q) Qq (s) 1t 

2ap~ ~ 
- 3Jt3 \ u (q) dq -f 3P~ [2_ Poa + 1-8 , (I I - 2 In 2) p~a2] • 

!11 1t an-
?Po 

(32) 

The presence in (32) of terms of both signs leads 
to the fact that c 2 = 0 or even less than zero for 
well-defined values of the parameters of the sys
tem U, a, W, M, and p0, i.e., sound cannot prop
agate. For instance c 2 > 0 if M/2 is appreciably 
larger than W and c 2 < 0 if W > M/2 and U is 
sufficiently large. 

It is of interest to note that c 2 is always posi
tive for self-compressed systems. Indeed, in that 
case 

2 a o aEav aEav . , iPEav (33) 
c = ap P" ---ap·- = 2p ap -t- p- --;v- > 0, 

since 8Eav/8p = 0 and 82Eav/8p2 > 0. From this 
it is clear that" for self-compressed systems, i.e., 
for all liquids occurring in nature, even estimates 
of the sound velocity in terms the first derivative 
of i\., evaluated using only part of the interaction 
(for instance, using the hard-sphere formula) 
and hence not taking into account that for the 
equilibrium density i\. = Eav• have no physical 
meaning. 

5. APPLICATION TO MANY-NUCLEON SYSTEMS 

The results obtained in the preceding sections 
can be applied to a study of nuclear matter, an 
equilibrium system consisting of the same num
ber of neutrons and protons at a density which is 
the same as the density of the interior regions of 
heavy nuclei. Indeed, the poles of the single-par-

8 lWe note that when we determine c from (28) we need not 
differentiate JPo q'dq with respect to the upper limit for the 
reasons given earlier (see footnote 3 l). 
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ticle Green's function enable us to determine the 
energy spectrum of the ( N + 1) -st particle coming 
into a system of N particles ( N » 1 ) . 

It is well known that the experimental data on 
the scattering of nucleons by nuclei in a wide range 
of energies (with E > 0) of the incoming particle 
can be interpreted as the scattering by some av
erage potential. The results obtained enable us 
not only to understand this fact but also, at least 
qualitatively, to find the potential. Indeed, one 
can introduce in the many-body problem quasi
single-particle states, the wave functions of which 
satisfy the equation 

(i 1-t + ~2) 1jJ (x)- ~ d4x' ~ (x, x') 1jJ (x') = 0, (34) 

which in the momentum representation yields for 
a spatially-homogeneous system near E0 - p2/2 
- ~ ( p, E0 ) = 0 the relation 

[ 
pz . lm ~ (p, E0 ) J 

Eo- 2- Re ~ (p, Eo)- t 1- iJ Re ~ (p, E)!iJE IE~E, 

x 1jJ (p, E0) ~~ 0. (35) 

We evaluate Re ~ for nuclear matter at E > 0. 
To do this we assume that Serber forces ( W = M 
= %) operate between the nucleons and we approx
imate the part corresponding to the attraction by 
a square well potential with a well depth of 30 MeV 
and a radius of 2.3 F. We assume that the core 
radius (repulsive core) is 0.4F.[13] 9> The equi
librium density (for which oEavfop = 0, B2Eav/8p2 

> 0) of nuclear matter is taken to be the same as 
that in the interior regions of heavy nuclei, corre
sponding to a Fermi momentum of 1.47 x 1013 cm-1• 

Since nuclear matter is a two-component sys
tem, we must generalize the results obtained 
earlier to this case. We shall, however, not give 
again the expressions for A and t-Leff in a two
component system for arbitrary W and M, since 
they are very cumbersome, but carry out the 
whole calculation in using suitable generalization 
of Eqs. (26) and (28). 

We consider excitations that are sufficiently 
close to the Fermi surface. The criterion for 
closeness is the smallness of the ratio ( E- A)/ 
pij « 1, which enables us to determine the spec
trum up to E"" 10 MeV. In the calculations given 
in the following we shall start from the fact that 
the two-parameter approximation is valid in nu
clear matter where p0b ~ 3.5 and p0a ~ 0.6. It 

9 lAs one can verify, the results are not very sensitive to 
the actual form of the potential. Since we are interested in 
qualitative estimates, the limitation in the choice of the inter
action is not essential. 

is completely obvious that without a detailed 
evaluation of the omitted diagrams it is impos
sible to assume that 3.5 is a large parameter or 
0.6 a small one. We can, however, check by a 
direct calculation that the two-parameter approx
imation is applicable. From (3), (26), and (28) we 
get for nuclear matter10 > 

E =o- 13.3 -~ 12.1 (fl --Po). (36) 

Since A = Eav in self-compressed systems, we get 
Eav = -13.3 MeV, in good agreement with the first 
term in the semi-empirical Weizsacker nuclear 
mass formula, -15.5 MeV. 

Expressing p in terms of E, the energy of the 
incoming particle, we find for Re I: near the 
Fermi surface 

Re ~="A- p~j2 -~ (1/f-tcff -- 1) (E -- /.) (37) 

or ReI: = (-54 + 0.32 E) MeV. This result agrees 
well with the data given in [!4]. If E < 0 the solu
tions of (35) describe the quasi-single-particle ex
citations in the system. 

We now consider the case of variable density 
and shall assume that the dependence of the den
sity of the system on the coordinate is such that 
Re I: is equal at each point r to its value for a 
homogeneous system of density p = p ( r). In that 
approximation we can evaluate the optical poten
tial of heavy nuclei. 11 > The aim of the calculation 
will be a proof of the qualitative agreement with 
the parameters of the potential wells used in phe
nomenological calculations. We can use the for
mulae for Re I: and (26) and (28) until p0b be
comes appreciably larger than unity, i.e., until 
p(r)/p(O) ~ 0.2. The results of the calculation 
are given in Fig. 6. The optical model potential 
is 

U(r) =U1 (r)+U 2 (r)E. (38) 

We see the rather steep decrease of the potential 
U1 at the surface. As far as U2 is concerned, it 
increases somewhat at p = 0.6p0• It is, however, 
possible that this is connected with the inaccura
cies in the determination of t-Leff which according 
to the calculations decreases somewhat at the 
surface while it is clear that t-Leff- 1 as p - 0. 

The results obtained, as well as the approach 
to the nuclear problem by starting from the single
particle Green's function, enable us to give a 

10 lWe have included terms ~a 3 in the calculation of A. 
11 lln reality we must consider the influence of the inhomo

geneity of the density more accurately. We shall, however, 
not do this here since we are only interested in the qualita
tive aspects of the problem. 
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qualitative foundation of the shell model. We 
saw that in a many-particle system with strong 
interactions there exists a branch of the excita
tion spectrum (quasi-single-particle branch) 
with wave functions described by Eq. (35) with 
a potential well defined by (38), i.e., by the shell 
model equation. It then becomes clear that the 
applicability of the shell model to a nucleus does 
not at all mean the independence of the motion of 
the nucleons in the nucleus, but the weakness of 
the interaction of the quasi-particles at the Fermi 
surface. Moreover, we see a direct connection 
between the shell-model potential describing the 
excitation spectrum for A. < E < 0 and the optical 
potential ( E > 0). The close agreement between 
their parameters of the phenomenological theories 
seems surprising, yet it is clear from (35) and (38) 
that this is in fact the same potential, taken in the 
one case for E -A. :S 3 to 4 MeV (shell model) 
and in the other case for E-A. > 15 MeV. We 
must make here one important observation: the 
excitation spectrum studied by the shell model 
corresponds in the many-body-theory language 
to the particle and hole spectrum at the Fermi 
surface. However, if we may neglect the residual 
particle-hole interaction, their excitation energy 
is equal to the sum of the excitation energies of a 
particle and a hole separately and is determined 
by (35) and (38). 

By way of another example in which the earlier 
results can be used, we evaluate the symmetry 
energy. Up to now we have considered the case 
where the number of protons is eq~o~.al to that of 
the neutrons. If the number of neutrons is not 
equal to that of the protons the average energy 
per nucleon increases. According to Weizsacker's 
formula 

f..Eav = 22 ((pp - Pn)f(op -t- Pn))2 MeV, 

where Pp and Pn are the proton and neutron den-

sities, Pp + Pn = p. The quantity ~Eav is called 
the symmetry energy. Let the initial density of 
the system be p ( Pp = Pn = p/2). The increase 
in the energy per unit volume of the system when 
we change the proton and neutron densities from 
p/2 to Pp and Pn will then be equal to the sum of 
the energies of the additional quasi-particles. In 
other words, 

Pop 

f..Eav= n~p [ ~ (A+ Po(~~ Po)) p2dp 
Po 

Pan 

+ ~ (A + Po (~: Po)) p2dp J , 
Po 

(39) 

where Pon and Pop are, respectively, the neutron 
and the proton Fermi momenta. We must assume 
in (39) that Pp + Pn = p. Let Pp- Pn « p; we have 
then from (39) 

f..Eav= _1_p2(pP-_P_'I\2=20(Pp-Pn).2, (40) 
6ftetf 0 Pp -! Pn) P 

i.e., we get good agreement with Weizsacker's for
mula. In the derivation we neglected interaction 
between the quasi-particles. We can, however, 
take such a small change in density that this neg
lect is fully justified. 

We can approach Eqs. (37) and (40) from a 
slightly different point of view. According to the 
derivation, both ~Eav and the term ~ E in (37) 
are determined by J.teff on the Fermi surface, 
and this enables us to determine this quantity ex
perimentally. It is clear that both (37) and (40) 
lead to values of J.teff close to unity. 

Just as the symmetry energy, we can also de
termine the compressibility of the nuclear matter 
K = 9p2a2Eav /Bp 2• If the average energy was E~v 
for some density p0, we have for a density p 

[(p- Po)/p « 1] 
Po 

E _ _!_[Eo p +3._\ (A-'- Po(P-Po))p2dp] (41) av- p av o 112 .\ I 1-teff ' 
Po 

where Po and Po are the Fermi momenta corre
sponding to Po and p. We find from (41) 

oEavlop I P=Po = - EaviPo + A/po, 

K, = 18 (Eav- A) + 3p~l(.te(f• 
(42) 

(43) 

For the self-compressed system which interests 
us, nuclear matter, A.= Eav. i.e., BEav/Bp = 0, 
and B2Eav/Bp 2 > 0 and 

K ~ 350 MeV. (44) 

Equation (44) expresses K in terms of J.teff and 
thus in terms of (40). This enables us in practice 
to find K experimentally. 
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6. CONCLUSIONS 

In the present paper we have extended I and 
considered the single-particle Green's function. 
We have shown that a study of Re ~ ( p) at high 
energies, of the excitation spectrum, of the sound 
velocity, and of the chemical potential enables us 
to determine several parameters characterizing 
the two-body interaction. We have ascertained 
that the possibility of propagating low-frequency 
sound depends essentially on whether the system 
is self-compressed and also on the character of 
the forces, namely the ratio of the Wigner to the 
Majorana forces. 

The introduction of the effective mass f.J.2 at 
the Fermi surface and an effective mass f.J.1 aver
aged over a momentum range from 0 to Po en
abled us to take into account reducible self-energy 
diagrams. We showed that f.J.1 and f.J.2 depend es
sentially on the character of the forces, which in 
turn leads to a dependence on the character of the 
effective repulsive forces. 

The application of the results obtained to sys
tems consisting of particles possessing isospin 
requires very elementary generalizations. 

Further problems of a two-parameter system, 
in particular, the two-particle Green's function, 
will be considered in another paper. 

The system considered is a convenient model 
which can find an application in the study of nu
clear matter and liquid He3• Indeed, it is clear 
that the existence of a self-compressed state at 
finite densities requires the presence of both re
pulsive and attractive forces. One needs there
fore only verify that indeed the experimentally 
determined parameters p0a and (p0b )-1 are 
small. At the present we have obtained by a direct 
calculation results which enable us to assert that 
for the experimentally known nucleon-nucleon 
forces nuclear matter is a two-parameter sys-

' -1 tern with small parameters Poa and ( Pob) . One 
can hope that this may enable us to develop a con
sistent microscopic theory of nuclear matter free 
from the objection usually raised against the 
Bruekner model. The value obtained in the last 
section for the average energy per nucleon in a 

nucleus ( -13.3 MeV), for the real part of the 
optical potential, and for the symmetry energy 
convince us of the reasonableness of the results 
obtained using the present model for nuclear mat
ter and heavy nuclei. The calculation is, however, 
still very rough. One needs both use more realis
tic nucleon-nucleon forces (for instance, Gammel
Christian-Thaler forces, and not Serber forces) 
and study the influence of the inhomogeneity of the 
density. Because of this a detailed study of real 
systems will be done elsewhere. 

In conclusion the author finds it a pleasant duty 
to express his deep gratitude to Prof. A. A. Sliv 
and also to G. M. Shklyarevskil for many discus
sions and valuable advice. 
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