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Results of the theory of anisotropic superconductors [ 3] are compared with the experimental 
data, and possible reasons of the discrepancy between the theory and experiments are ana­
lyzed. Several universal relations are desired for the thermodynamic quantities. The order 
of possible deviations from the universal relations of the isotropic model is considered. It is 
shown that Coulomb interaction of electrons and the possibility of formation of Cooper pairs 
in "nonsymmetric" states do not modify the results of the "anisotropic" theory. The contri­
bution of higher approximation in the coupling constant is estimated, as well as the tempera­
ture range in which the theory may be wrong because of inapplicability of the free-quasipar­
ticle concept. It is shown that in the low temperature region ( T « Tcr) the theory is in 
good agreement with experiment. No such agreement is found at temperatures close to Tcr· 
This may be due to the fact that the quasiparticle concept is inapplicable near T cr· 

THE theory of superconductivity based on an iso­
tropic model with weak coupling[1 , 2] leads to quan­
titative agreement with experiment, which is some­
what remarkable for so crude a model. One of the 
authors [ 3] developed a theory of anisotropic super­
conductors in the weak-coupling approximation and 
compared the results of the theory with experiment. 
In view of the lack of a sufficient number of good 
measurements of many quantities that are charac­
teristic of semiconductors, the impression was 
gained that the agreement between theory and ex­
periment became worse. Since that time, however, 
new experimental investigations were reported, in 
light of which it is advantageous to re-evaluate the 
agreement between the results of the theory of 
anisotropic superconductors with experiment. We 
consider, in addition, the possible reasons and 
probable orders of magnitude of deviations of ex­
perimental data from the results of the anisotropic 
theory, and we also estimate the order of the de­
viations of several thermodynamic quantities from 
the values predicted by the anisotropic model. 

1. SUMMARY OF THE PRINCIPAL RESULTS OF 
THE THEORY[aJ AND OF THE EXPERIMENTAL 
DATA 

We recall first the principal results of the 
theory developed in [ 3] and derive some new rela­
tions that result from this theory. The principal 
equation of the theory is that of the energy gap 
~ (p) 

6. (p) =g~ U (p, p')~(~/ [1 -2f (~e (p'))l d3p'. (1) 

Here g - dimensionless coupling constant, 
U ( p, p' ) - interaction function of two Cooper 
pairs, E (p) = V ~ 2 (p) + ~2 (p), ~ (p) = VF ·(P-PF), 
where vF and PF are the velocity and the momen­
tum on the Fermi surface, and f (X) = (eX + 1 r1. 

The criterion of the applicability of Eq. (1) is 
apparently the smallness of the ratio c/vF 
(c- velocity of sound), and not of g (see [ 2 ,4] ). 

In [ 3] this equation is solved for the anisotropic 
case under the assumption that the interaction 
occurs only in a narrow layer near the Fermi sur­
face, with a thickness ~ 2w0 ( w0 = Debye frequency) 
and that in this layer U (p, p') and ~ (p) depend 
only on the directions of the vectors p and p'. As 
a result of integration with respect to ~ we obtain 
for ~ ( n) ( n = p/p) the equation 

11 (n) = g ~ U (n, n') [In ~2~:') - F (~6. (n')) J 6. (n') :: , (2) 

00 

F (x) = ~ dy (y2 + 1)-'1' f (x J/y2 + 1). (3) 
-00 

All further derivations of the theory are based 
on the solution of (2) or of the equation 

~ (n) = g ~ U (n, n') 6. (n') In ~2r;') :;' (4) 

with T = 0. In the zeroth approximation in g, the 
energy gap ~ (n) is given by the formula 

6. (n) = 2uv-A/g Q'i' (n), (5) 
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where 1/J (n) is the solution of the homogeneous 
Fredholm integral equation 

'ljJ (n) = A\ U (n, n') 'ljJ (n') ~~~ , (6) 
p 

normalized by the condition 

\ 'ljl2 (n) ~ = 1 
~ PoVF 

(p0 is a quantity of the order of the Fermi mo­
mentum, fixed by the condition 

~~=1 J pov F ' 

(7) 

(8) 

and A is the minimum positive eigenvalue of this 
equation). The value of Q (for T = 0) is deter­
mined by the formula 

Q (0) = exp [-- \ 'ljl2 (n)In'ljl ~] <;;; 1. (9) 
~ PoVF 

It was shown in [ 3] that the thickness of the 
layer near the Fermi surface, in which the inte­
gration with respect to ; is carried out, is a func­
tion of n and can therefore be replaced by a con­
stant w0 defined by 

In w0 = 'ljl2 (n) In w(n)- . \ 
da 

PoVF 

For the critical temperature we obtain the 
relation 

(10) 

(11) 

where ln y is the Euler constant. Comparing (5) 
with (11) we get 

6. (n, T) = (n/r) T cr Q (T) 'ljJ (n) 

and by virtue of the inequality Q ( T) ::s Q ( 0) « 1 
we obtain 

!'.min (0)/Tcr <;;; 1. 76. 

For the jump in the specific heat we obtain at 
T = T cr the relation 

hence i> 

!'.C!Cn(Tc,) = 1.4/B, 

B = \ 'ljl4 (n) -~ > I , J PoV F 

tl.C!Cn(Tc,) < 1.4. 

(12) 

(13) 

(14) 

(15) 

When T « Tcr the critical magnetic field obeys 
the law 

!)We take this occasion to correct an error in the abstract 
of [•], where the word "larger than" should be replaced by 
"smaller than." 

Hc,(T) = Hc,(O) (1 -y.,.T2!T;,), 

X =r2/3Q(O) = 1.06/Q(O). 

From this we get 

X> Xis= 1.06. 

(16) 

(17) 

(18) 

From the formulas in [3] we can obtain in 
simple fashion two additional universal relations: 

(19) 

(20) 

[We note that only two of the three relations (18), 
(19), and (20) are independent.] 

Using formula (27) from [3] 

H~, = J!!L_ (!!___ T. )2 Q2 (T) +____I__\ [6.0 (f36,)- n• r] da (21) 
8n 16n3 r cr (2n )3 j 3 v F 

and substituting the asymptotic value of G ( x) as 
x- 0, we obtain an expression for Her ( T) at a 
temperature close to critical: 

Hc,(T) = Hcr(O) -v~.s (1- TT). (22) 
B Q (0) cr 

Since the quantity /BQ ( 0) can be either larger or 
smaller than unity, the quantity 
Tcr(dHcr/dT)T /Hcr(O) candeviatetoeither cr 
side of 1.8. 

Finally, using expressions (13) and {17) we ob­
tain one more universal inequality 

T (1.4Cn (Tcr)/ !'.C- 1) >In (0.94 X). {23) 

We now turn to a comparison of the obtained re­
sults and the experimental data. Table I lists the 
measured values of g/ A, T cr• Her ( 0 ) , 
(dHcr/dT)T and Ye (Ye is the coefficient ofT cr 
in the electronic part of the normal specific heat 
Cn =YeT). Table II is a summary of the measured 
cr calculated (from experimental data) values or 
combinations of values for which the universal re­
lations were derived. 

It can be seen from the presented data that the 
agreement between theory and experiment is gen­
erally satisfactory in the low-temperature region, 
with inequality (19) violated only for mercury and 
lead, and with a noticeable deviation from (20) 
existing for Tl. The situation is appreciably 
worse at temperatures close to Tcr• where the 
inequality (15) for the jump in the specific heat is 
violated for a whole series of elements. To save 
space, we do not present data on the inequality (23), 
which, as an obvious consequence of the violation 
of the inequality (15), is not satisfied in the major­
ity of cases. The possible causes of this will be 
discussed in the following sections. 
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TABLE I 

Ele-1 I mentg/A["J
1 

Ye·IO', J/mole-deg2 I (dHcr) 
- ~ T cr' Oe(deg 

AI 
Cd 
Zn 
Ga 

v 
Sn 

Ta 

T 1 
In 

N 
H 

b 

g" 

g/3 H 
p b 

0.193 1.175 [5] 
0.196 0.56 [21 ] 
0,200 0,84 [8] 

0.206 1. 09 [10] 

0.274 5.03 [8 ) 

0.296 3.72[11] 

0,296 4.48 [11] 

0.316 2.36 [8 ] 

0.345 3.41[11 ] 

0.357 9.17 [20 ]; 8. 7 [8] 
0.446 4.15 [13] 

3.94 P"l 
0.493 7.22 [21] 

1.3 [5 ]; 1.44 [6 ] 104 [5 ] 

0. 71 [7] 28.8 [9] 
0.66 [7]; 0.65-;-0.67 [8] 52.5 [9] 
0.63 [5 ] 59,5 [5 ] 

8,83 [7]; 9,,26 [8 ] 1200 [9] 

{ 1.96±0,1 [11] 
1. 75 ["]; 1,8 [12,13] 

308.6±0.5 [11] 
306 P"l 

{ 6.5±0.14 [11]; 
6.0±0.2 [13); 5.44 [Bj 

830±4 [11 ] 

825 [14] 
3.1 [7];2.55*[8];1.53**[8] 171 [9 ] 

{ 1.9±0.1 [11] 
1. 7±0.05 [13]; 1.81 [8 ) 

285,7 ±0.5 [11 ] 

8.54 [8] 1944 [20] 

{ 1.91±0.05 [13]; 412±1 P"l 
2.1 ±0.15 [15] 413 [9 ] 

1.37±0.04 [13] 339±1 [13] 

3.0 [7]; 3.09±0.05 [13] 805 [9 ] 

*Calorimetric measurement data and values calculated from them. 
**Values obtained from magnetic measurements. 

TABLE II 

163 [5 ] 

100 [9 ] 

83.5 [10) 
{ 92 [5 ] 

99.5 [1°] 
400 [9 ] 

149 [12 ] 

320 [9] 

139 [9] 
156 [121 

185 [9] 

200 [9 ] 

--

Ele- t:.min<0> I t:.C 
-T-- (..;;;1.?6) C (T ) (<1.4) x-1 

H'cr(O) H'cr(O) :r• Tcr<fi!i crfdT)T c 

ment (;;;.. 0.06) TcrCn<Tcr> TcrCn (Tcrl Hcr(O) cr I n cr (<6)*** <= 6.64)*** (~ 1.8)*''* 

AI 1.20 [8) li 1.6 ['[ 5.95 [5] 6.95 [5 ] 1.84 1. 44 [6 ] 0.08 [5 ] 5,45 [6 ] 6.4 [6] 
1.5 [19] 

Cd 1. 27 [20] { 1.4 [8] 4.85 [7] 1.94 1.2 [20] 

Zn {1,03 (8) 
1.35 [16 ] 

1.25±0.15 (8) 5.45 PI 1.32 P"l 
o.11 r•J 5.65 [5 ] 6.95 r•J 1.7 [•] Ga {1.18[ 5 ] 

1.32[20] { 1.41 [20] 1.84 [10] 

v {1. 7 ±0, 1 [16] 1. 7 [8] 5,85 [7] 
1.5 [8] 1.52 [19] 5.6 (8 ) 

( 1.8±0, 1 [16) 1.82 [19] 0.14[11] 5.65 [11] 7.35 [11] 

Sn { 1.65±0,1 [17] 1.4-+-1. 78[ 9] 0.12 [13] 6.05 [13] 7.6 P"l 
1.35±0,05 [18 ) 

l1.5 ["] 

e-5 [16] 1.58 [8 ] 0,10[11.14] 5. 75 [ll] 6.96 [11] 
Ta 1,49 [8 ] 1. 7 [20] 

Tl 1.3 (Bj f 1,72** [9• 8 ) 2. 78* [7 ] 3. 36* [7] 
1. 03* (9•8 ) 0.10 [11] 3.37* [Bj 4.08* [8] 

) 0.85* [9.7] 5.63** [8 ] 6.82** [8 ] 

f 2.05±0.1 [16 ) 1.56 [11) 
In \ 1.95±0.1 [17] 1.75[13] 0.10[11 ] 5.9 [8) 7.15 [8 ] 

1.6 ["] 1.62 [20] 

Nb e .4±0.15 [16 ] 2.07 [19] 5.6 (8 ] 

1.8 [8] 

Hg" 2.3±0.1 [16] 2.1 (9 ] -0.18 (9] 7.8 P"l 5.25 [13] 
7.1 [1 5 ] 4.8 [15 ] 

Pb {2.05±0.1 [16 ] 7.4 [7] 
2.0±0.25 [17] 2.4 [9 ] 7 [13] 

*Calorimetric measurement data and the values calculated from them. 
**Values obtained from magnetic measurements. 

1.68 

1.8 

1.7 

1.94 

1.87 

1.86 

1. 79 

***The published data refer to the value of 'Y, since the scatter of the values of 
H cr(O), T cr• and )( is small. 
****There are no references, since there is practically no scatter in the experi­
mental data except for the case of Ga. 
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We note first that the previously developed 
theoryC3J is quite dependent on the model; it con­
siders neither the Coulomb interaction of the elec­
trons nor the possible creation of Cooper pairs in 
states with symmetry different from the crystal 
symmetry. In the following sections we shall con­
sider these effects and show that they do not change 
the results of the theory. 

2. COULOMBINTERACTION 

Let us examine the changes produced in the 
previously obtained result[3J by an account of the 
Coulomb interaction of the electrons. The content 
of the present section is a generalization of the 
Tolmachev method [ 2] to include the anisotropic 
case. The presence of a screened Coulomb inter­
action now causes the kernel of the integral equa­
tion (1) to consist of two terms. The first, 
U1 (p, P1 ), is due to the phonon pair interaction and 
differs from zero in a narrow energy interval near 
the Fermi surface with thickness ~ 2w (we now 
consider the constant g to be included in U1 ). The 
second term, U2 (p, p' ), is the result of the 
screened Coulomb interaction and differs from 
zero in a wider energy range ( ~/J. ). Thus, Eq. (1) 
assumes the form 2> 

c(p) = \' I U1(p, P1 ) + U2 (p, p')l -v c (p') d3p'. (24) 
~ (1;')• + c• (p') 

After integrating with respect to p1 in the right 
half of this expression, we see that c (p) is the 
sum of two terms, c1 (p) and c2 (p ), which vanish 
when ~ > w and ~ > IJ., respectively. When ~ « w, 
c (p) is a function of the direction n: 

c (p) ~~~"' = ~1 (n) . (25) 

Similarly, when w « ~ « IJ., c (p) is another func­
tion of the direction 

(26) 

Since the characteristic dimension of the function 
c2 ( p) is IJ. » w we have for ~ « w 

We now integrate with respect to e in the right 
half of (24). We first fix the value of ~ « w. In 
the term containing the kernel U1 (p, p' ), the inte­
gration with respect to f is effectively limited to 
the region ~ :S w and we have 

2>To avoid confusion we use in the present section the 
symbol c (p) in place of 6(p). 

I u ( I) c (p') d3 I 

~ 1 p, p f(1;')• + c• (p') P 

\• u ( I) A ( I) I 2w(n,n'lc1)do' u' A A 
= 1 n, n '-'1 n n ~ ( ') ---,--- = 1'-'1 ' 

·~ 1 n VF 

A =In (2w (n, n' I c1)/ ~ 1 (n')), 

where w (n, n1 I c1 ) is a function of n and n', 
while the functional c1 is of the order of w. 

The integral containing the factor 

(28) 

U2 (p, p') c1 (P1 ) is sensitive also to small values 
of ~. and we have 

\ U ( ') c1 (p') d3 1 - \' U (n TI1 ) [ ~ (n1 ) J 2 p, P V (1;')' + c• (p') P - ~ 2 , 1 

- A ( ')I I 2w (n, n' I c,) dcr' - u' (" - A ) A 
'-'2 n n ~ ( ') . - 2 Ll1 '-'2 . 

1 n VF 

(More accurately speaking, it is necessary to take 
into account the fact that the logarithm in the last 
formula differs from A by an amount of the order 
of unity. However, since this does not change the 
results, we assume these logarithms to be the 
same, to simplify the calculations.) 

In the interval containing the factor 
U2 ( p, p' ) c2 (P1 ), the integration is effectively 
terminated at the upper limit ~/J.: 

\ U ( 1) c, (p') \ {} ( 1) A ( 1) I 211 dcr' 
~ 2 p, P f(t;')• + c' (p') = j 2 n, n '-'2 n n ~1 (n') v~ . 

Ultimately we obtain for ~ « w 

fj,1 (n) = (D1 + 02)1t.1A + D2t.2'A, 

A = I !1 (n, n' I c,) 
n w ( n, n' 1 c1) · 

Similarly we get for w « ~ « /J. 

/).2 (n) = 02 t.1A + rJ 2t.2'A. 

(29) 

(30) 

(31) 

Solving the system (29) and (31) by perturbations, 
we set in the zeroth approximation A and ,\ equal 
to constants A0 and A. 0 and seek Ai (n) in the form 

(32) 

The system of zeroth-approximation equations has 
the form 

t.~o> =Ao(01 + 02) t.1o> + 'Aull2t.io>, 

t.~o> = A0U2t.~o> + 'AoU2t.Jo>. 

Eliminating A~0 >, we get 

jj,io> = Ao0 t.1o>, 

0 = 01 + 02 (1- "Ao02r1. 

(33) 

(34) 

(35) 

Thus, A0 and r\0 assume the meaning of eigen­
values of a system of homogeneous integral equa­
tions for A~ 0 > and Af> and are by the same token 
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uniquely defined. Since U2 (n, n') < 0, we see from 
(35) that the role of the Coulomb repulsion is ef­
fectively decreased by the presence of the large 
logarithm A. 0 in the denominator of the second term 
[see formula (38) ]. This result agrees qualitatively 
with that of Tolmachev (see, for example, [ 2] ). 

We now introduce a constant w0, which has the 
same order as the Debye frequency and the exact 
value of which will be fixed later on, and a con­
stant f:lo ~ f:l, and put 

(36) 

We then have 

A ~ I 2w (n, n' I Cr) - A -I Lll (n') + r 
~ n Llr (n') - 0 n Llo ' 

A = In fl (n, n' I c2) = A - r 
m(n,n'lcr) 0 1 ' 

(37) 

where 

r = In w (n, n'\l Cr) r - In floW (n, n' I Cr) ' I flo (38) 
Wo ' 1 - Wofl (n, n' I c.) , ""o = n Wo • 

As in [s], we shall seek 6~ 0 > and ~~O> in the 
form 

where 4J 1 (n) is the normalized solution of (34), 
and 

(39) 

The first-approximation equations then yield, after 
elimination of ~~1), 

(1) A (1) A ( Q ( )) ;:...1 = A0U ;:...1 - Qf).0u'ljJ1 (n) In '1Jl1 n 

+ /). 0 Q [Uf1'1jJ1 (n)- (U- U 1) f 1'1jJ2 (n)l. (40) 

We now fix the choice of w0, stipulating the 
satisfaction of the equality 

('1Jl1 (n), 1D'IJl1 (n) r - (V - Dl) '1Jl2 (n) r1l) = o. (41) 

Then the condition that the inhomogeneous equation 
(40) be orthogonal to the solution of the homoge­
neous equation lj!1 (n) yields 

('ljl1 (n), U'ljl1 (n) In ( 0h (n))) = 0, (42) 

hence 

with respect to w0; this completes the determina­
tion of ~0 and of the function ~1 ( n). 

Thus, the inclusion of the Coulomb interaction 
leads only to a finite renormalization of the kernel 
U1 (n, n') and of the quantities 4J 1 (n), A0, and 
Q ( 0) associated with it, and consequently does 
not change the previously derived inequalities. 

3. FORMATION OF COOPER PAIRS IN STATES 
WITH SYMMETRY OTHER THAN THAT OF 
THE CRYSTAL 

Gor'kov and Galitski1[22J have demonstrated 
within the framework of the isotropic model that 
if account is taken of the possible formation of 
electron pairs with angular momentum :Ill dif­
ferent from zero, then ~ (p) should be replaced 
by the set of 2l + 1 quantities ~m (p) 
( m = -l, ... l ), and the energy gap is deter­
mined by the equality ~2 = I: I ~m 12• 

The values of ~m ( p) for T = 0°K are deter­
mined from the equation 

/). ( ) [' U ( ') Llm (p') d3 ' 
m p = g J p, p ~ p ' 

m 

The solutions of this equation are proportional to 
the associated Legendre polynomials ~m 
= am Yzm ( (}, cp ), and the equation is self-consistent 
(invariant under rotation) if and only if all the co­
efficients am are equal to one another: am = a. 

It is of interest to consider the possible crea­
tion of pairs in states with symmetry other than 
the lattice symmetry in the anisotropic theory, 
and to show that in this case the equations remain 
self-consistent ( invariant under transformation 
of the crystal symmetry group) and the ground 
state of the system has the same symmetry as the 
crystal. 

Integrating in (45) over a layer of thickness 2w 

(under the same assumptions as before), we obtain 

(46) 

Q = exp - \ 'IJli (n) In 'ljl1 (n) - , { ~ de, } 
.l PoVF 

which agrees with the previous result[s]. 

(43) We seek a solution of this equation in the form 

/).mk (n) = 2we-t.* Qk'IJlmk (n). (47) 

Once we determine Q, we can solve Eq. 
which can be rewritten 

~~ dcr dr:;' I w (n, n'j2w0e-A" Q1jll) K ( ') _ 0 --,- n n, n - , 
• VF VF Wo 

where 

(28), 

(44) 

In the zeroth approximation we have for the 
functions ~mk the equations 

~'mk (n) = Ak ( U (n, n') 'IJlmk (n') d~' • 
~ VF 

(48) 

The functions ~mk form a multi-dimensional rep­
resentation of the crystal symmetry group with 
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order equal to the degree of degeneracy of the 
eigenvalue A.k. It is easy to see that 

~ 1 /).lk 12 = 4w2e-2' k/g Q% ~I '1'1< ', 9 

l 

transforms in accord with the unitary representa­
tion of this group. Consequently, Eq. (46) for the 
gap is a self-consistent equation - any transfor­
mation from the crystal symmetry leaves this 
equation invariant. 

As shown in [3], the ground state of a super­
conductor corresponds to the solution (48) with the 
minimal positive eigenvalue. It is easy to see that 
in the case of a Froehlich Hamiltonian the inter­
action function U (n, n') is positive everywhere 
on the Fermi surface. For positive symmetrical 
kernels there exists a theorem (see [ 23 ] ), by 
which the smallest positive eigenvalue of (48), A, 
is not degenerate and the corresponding eigenfunc­
tion ~ (n) has no zeroes. Consequently, the 
energy gap ~ (n) does not vanish anywhere on the 
Fermi surface and all the results previously ob­
tained remain in force (it is easy to see that if 
the gap were to vanish at some point on the Fermi 
surface, the specific heat Cs ( T) would vary in 
the low-temperature region not exponentially, but 
in accordance with a power law, which would appa­
rently be in contradiction with the experimental 
data). Unfortunately, we cannot point to a neces­
sary criterion for the absence of zeroes in the 
function ~ (n ). Thus, an account of the possible 
creation of "asymmetrical" pairs does not change 
the results of the theory. In particular, all the 
universal relations given in Sec. 1 remain in force. 

4. OTHER POSSIBLE CAUSES OF DISAGREE­
MENT BETWEEN EXPERIMENT AND THEORY 

The contradictions between the predictions of 
the theory and the results of the experiment may 
also be due to the fact that the theory uses essen­
tially the concept of free quasi particles. This con­
cept is suitable only for temperatures at which the 
average energy of the quasiparticles is consider­
ably higher than the damping. On approaching 
Tcr• the gap decreases, on the one hand, but damp­
ing due to collisions of the quasiparticles with one 
another, with phonons, and with impurities in­
creases, on the other. Consequently, at a certain 
temperature the concept of quasiparticles ceases 
to correspond to reality ( in the case of a poly­
crystalline superconductor, additional damping is 
produced also by the boundaries of the crystallites, 
which assume the same role as impurities). For 
collisions with phonons, the temperature interval 
in which the quasiparticle concept ceases to be 

suitable was estimated by Eliashberg[4J and was 
found to be quite small [~ (~/wo)4 Tcrl· 

It is easy to present also a more general esti­
mate, based directly on the experimental data. 
From the measurements of the specific heat of 
superconductors [s ,iS] it follows that for typical 
specimens the collision frequency is 

't'-1 ~ 1010 -1011 sec-1 • 

The concept of free quasiparticles becomes 
meaningless when 1/ T becomes of the same order 
of magnitude as ~. From this we have at temper­
atures close to critical 

/). = /).0}/ 1- 'Fcr/T ~ 1010 -1011 , 

(T- 'fcr) / Tcr~ 10-1 -10-3 • 

The experimental data presently available do not 
make it possible to ascertain whether an excess 
increase in specific heat occurs in the narrow tem­
perature interval near Tcr· From the proposed 
explanation for the disparity between the experi­
mental data on the specific-heat jumps and the 
theory it follows that ~C/Cn is highly dependent 
on the degree of purity of the sample. Nor do the 
available experimental data enable us to judge 
whether such a dependence exists. 

The discrepancy between experiment and the 
theoretical results can in principle be attributed 
also to the contribution of the higher approxima­
tions in the coupling constant and also to the fact 
that the quantity w0 (or w in [ 3] ) is in fact a 
function of the temperature. Let us consider first 
the influence of the second effect. Integration with 
respect to ~ in the right half of (1) yields at 
T = 0, accurate to w/JJ,, the expression 

~ U( ')t1(p')dt' U( ') 2w(p,n') 
~ p, p e_(p') .., = p, n In Lf(riT , (49) 

-co 

where w (p, n') is of the order of the Debye fre­
quency. 

It can be proved (see the appendix) that, accu­
rate to quantities ~ ~/w, w (p, n') depends func­
tionally only on the ratios U (p, p' )/U (p, n' ) and 
~(p' )/~(n' ), but is independent of~ (n). 

Choosing p also on the Fermi surface, we ob­
tain from (1) the equations 

" 2w (n n') ds' 
/). (n) = g ~ U (n, n') /). (n') ln t1 (~') v~ , T = 0. (50) 

t1 (n) = g~ U (n, n') /). (n') [ln 2wc.(~~·~')- F (~!). (n'))1::, 

T=f=O. (51) 

If we now seek, following [3], a solution of (50) or 
(51) in the form 
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where cp 1 ( n) is a correction of the order of g, 
and define the constant w by means of 

In Woo=~\ u (n, n') If (n) 'tJl (n') In(!) (n, n') dcr d;', (53) 
Po • Vp v F 

then all the results obtained in [3] remain in force. 
Since w (n, n') depends functionally on <I> (p) 

= ~ (p )/ ~ (n ), both w (n, n1 ) and w0 are functions 
of the temperature. Let us show, however, that 
wo ( T cr) and w0 ( 0) coincide in the isotropic model, 
with relative accuracy ~ l::i/w. Indeed, in the 
isotropic model ~ ( ~ ) is determined from the 
formulas 

(T = 0), (54) 

!J. (£)=g!J.(O)I U (p,n') In 2w (p, n') r da 
J nTcr v F 

(T;::::; Tcr) • (55) 

The equation for the energy gap has at T = 0 the 
form 

1 = gU 0 In (2w0 (0)/ f:..o)o (56) 

The critical temperature is determined by the re­
lation 

(57) 

where w0 is determined, independently of the tern­
perature, from the equation 

I 1 ~ U ( ') I ( , ') ·da da' nw0=-u n, n nw n, n ----,--, 
0 Vp Vp 

~~• 1 dcr dcr' 
U 0 = U (n, n) v---;- 0 

o F Vp 
(58) 

From (54) - (58) we get 

<D (£) ~ m = _!__ \ u (p, 0 1 ) d;' + g \ u (p, n') ln (t) (p, n') d:' 
~ (0) U o J V F ~ Wo V F 

(59) 

both when T = 0 and when T = Tcr· Since 
w (p, n') depends, apart for terms ~ ~/ w, only on 
<P ( ~ ) and not on ~. the values of w (n, n') for 
T = 0 and T = Tcr coincide with the same degree 
of accuracy. Consequently 
[ wo ( T cr ) - Wo ( 0 ) ]/ w0 ( 0) is of the order of 
~/w0 in the isotropic model. One of the main re­
lations of the theory, l::i ( 0 )/T cr = 1. 76, is ob­
viously satisfied with the same accuracy. 

In view of the fact that [ w0 ( Tcr)- wo (0) l/wo 
does not contain in the isotropic model terms pro­
portional to g, it is natural to assume that in the 
anisotropic theory this quantity will be at least of 
order ag, where a is the anisotropy parameter, 
which we define by means of the formula 

A calculation, which is too cumbersome to present 
here, confirms this assumption. (In the interme­
diate range of temperatures w0 differs from w0 ( 0) 
and wo ( T cr) by an amount ,.., gw0 in both the 
isotropic and the anisotropic theory.) 

Let us estimate the deviation of Q ( 0) from 
unity, assuming the parameter a to be small. We 
have 

(61) 

Let us examine, finally, the contribution made 
to Eq. (2) by higher approximations in g. At tem­
peratures close to Tcr• using the asymptotic ex­
pression for the function F (x) ( see [is]), we ob­
tain for the gap ~ ( n) the equation 

' T ) I d' 
!J. (n) = l i\ + g ln ,;' } U (n, n') !J. (n') v: 

\ 1 , [. • ~2 (n') J dr;' 
- g J U (n, n ) !J. (n ) -A ----p:- + . 0 0 v~ , (62) 

from which we see that as T- Tcr the actual ex­
pansion is not in the coupling constant g, but in 
(T- Tcr)/Tcr· Consequently the contribution of 
the higher approximations is always small at suf­
ficiently small T - Tcr· When T « Tcr. account 
of the higher approximations in the coupling con­
stant can be readily carried out and leads to an ef­
fective increase in Q ( 0) by an amount ~ ga2• 

5. COMPARISON OF THE THEORETICAL AND 
EXPERIMENTAL RESULTS 

We now turn to an examination of Tables I and 
II and continue the comparison of the theoretical 
conclusions with the experimental results. We 
start with an examination of the quantity 
~min ( 0 )/Tcr and see what deviations from in­
equality (12) can be expected for real supercon­
ductors. We have already seen that inclusion of 
the next approximation in the coupling constant 
leads to an effective increase of Q by an amount 
~ ga2, which makes the inequality "worse." 
Another possible cause of the violation of inequality 
(12) is the temperature variation of w0• This change 
is of indefinite sign and has, as we have seen, an 
order of magnitude ga. 

Since the deviation of Q from unity is ~ a 2 

[see (61) ], the satisfaction of inequality (12) could 
be assured for all superconductors for which 
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g «a. No such superconductors exist in nature, 
so that we can speak only of the probable satisfac­
tion of inequality (12) for rigid superconductors 
with maximum values w/Tcr "'eA/g and with 
anisotropy a. 

Measurements of .6min (0) have been made on 
the basis of two different principles: 1) determi­
nation of the absorption threshold of infrared ra­
diation in superconductors, and 2) measurement 
of the specific heat of the superconductor at T 
« Tcr· As can be seen from Table II, measure­
ments of the infrared absorption threshold were 
made by Richards and Tinkham for superconduc­
tors with large values of g and have led to the con­
clusion that inequality (12) is violated in many 
cases (Pb, Hg, In, Sn). Although, as shown above, 
failure to satisfy inequality (12) does not strictly 
speaking contradict the theory, nevertheless in the 
case of Hg, and particularly in the case of In, 
which has an almost spherical Fermi surface, the 
deviation of D-min/1.76 Tcr from unity is exceed­
ingly large. Thus, to obtain agreement with exper­
iment, it becomes necessary to assign to In a 
parameter a ,..., 0.4, which is of little likelihood. 

Possible reasons of these discrepancies will be 
analyzed elsewhere. Unlike the threshold meas­
urements, measurements of the specific heat in the 
low temperature region [a •18 •20 ] yield for all super­
conductors, with the exception of Nb, a value of 
.6min (0)/Tcr which agrees with inequality (12). 

Let us consider further the data pertaining to 
the critical magnetic field. According to estimates 
of the preceding section, x - 1.06 ,..., a 2• The main 
reason for the possible failure to satisfy inequality 
(18) is the difference between w0 ( 0) and w0 ( T cr). 
This leads to an effective change in x by a factor 
[wo(Tcr>lwo(O)f = 1:!: bga (b- constant on the 
order of unity). Thus, inequality (18) should be 
satisfied also for superconductors with g/a < 1. 
There are only a few exact measurements of x. 
As can be seen from Table II the values of x ob­
tained for Ga, Al, In, Sn, and Tl agree with in­
equality (18). This inequality, according to Shoen­
berg[9J, is violated for Hg, but the deviation can 
be attributed to the difference between w0 ( Tcr) 
and w0 ( 0) for reasonable values of the anisotropic 
coefficient a. 

Inequality (19) is noticeably violated for mer­
cury and lead. This is not at all strange, in view 
of the large values of g of these metals. 

What is striking is the unexpectedly small value 
of H~r (0 )/TcrCn (Tcr) for TlP•8J and the asso­
ciated violation of inequality (20). However, the 
value of Cn ( Tcr) for Tl, determined by calori­
metric means, is utterly unreliable, since when T 

,..., Tcr = 2.39°K the electronic part of the specific 
heat amounts to less than 3% of the lattice part. 
Magnetometric data [s] are apparently much more 
reliable. They lead to satisfactory agreement with 
relations (19) and (20). 

APPENDIX 

We consider the integral 

(A.1) 

Assuming that f(;) decreases rapidly when 
; ~ w, with w » .6. Integrating by parts, we obtain 

r ?' 
P = - ~ f' (s) In -l d£ 

0 

00 

- \ t (s) In __ , _ 1 _J_ _ d£. r· , ( 1 , 1 V ~2 ) 

.) 2 ' 2 I ~2 , 
0 

(A.2) 

It is easy to show that the second integral in the 
right half of (A.2) has the order .6/w. Actually, 
the substitution .6/; = y reduces it to the form 

00 

il ~ f' ( ~ J In ( ~ + ~ J!T+7) :if , (A.3) 

where the integral with respect to y converges as 
.6- 0. From this we have 

2w 
P =f(O) In~, 

00 

I 1 r m t n w = - ~ [(0) In s d,, 
() 

(A.4) 

i.e., w is functionally dependent only on the ratio 
f(;)/f(O), butnoton .6. 

We have assumed so far that D.= const. The 
derivation remains in force also if D. = D. (;) is a 
slowly varying function of ; . Indeed, the difference 
from the case D. = const reduces to the appearance 
in the integrand of (A.2) of a factor 

(Li 0 = Ll (0)), 

which is quite close to unity at both small and 
large ; . In this connection, the result remains 
the same accurate to ( .60 / w )2. 
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