
SOVIET PHYSICS JETP VOLUME 15, NUMBER 5 NOVEMBER, 1962 

ELECTRON RECOMBINATION IN A MONATOMIC GAS 

L. P. PIT AEVSKIT 

Institute for Physical Problems, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor December 19, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 1326-1329 (May, 1962) 

The Fokker-Planck equation is used to compute the electron-ion recombination coefficient in 
three-body collisions between an electron, ion, and gas atom. 

IT is the purpose of the present work to calculate The particle flux j (E) must vanish for a Boltz-
the electron-ion recombination coefficient in a mann distribution and is thus of the form [3] 

weakly ionized gas at high pressures and moder
ately high temperatures. 

It is well-known that at low gas densities the 
chief contribution to the recombination process 
is due to radiative recombination. Three-body 
recombination processes become more important 
at higher pressures. If the gas is almost com
pletely ionized then thr~e-body collisions between 
charged particles* are important; if the gas is 
weakly ionized the important process is collisions 
between an ion, an electron and a neutral atom. 
We shall be interested specifically in a weakly 
ionized gas. An elementary calculation of the 
recombination coefficient a for this case has 
been given by Thomson (cf. [2J). We show below 
that the elementary calculation yields the proper 
form for a but gives an incorrect numerical 
coefficient. 

A characteristic feature of collisions between 
electrons and atoms is the fact that the electron 
suffers a large change in momentum but a small 
change in energy (given approximately by m/M ). 
This means that the time required for the elec
tron energy distribution to reach equilibrium is 
much longer than is the case for the other vari
ables. For this reason the electron energy distri
bution in the field depends only on the relative en
ergy of the electron and the ion E and the recom
bination process can be regarded as a diffusion 
process in energy space in the direction of nega
tive energies. This means that the Fokker-Planck 
equation can be used in place of the usual kinetic 
equation. In other words, the equation describing 
the electron distribution function in phase space 
f( E) is a diffusion equation 

i(E) =- B (E) (of/ aE + f 1 kT) (2) 

where k is the Boltzmann constant and T is the 
temperature. 

We first clarify the meaning of the coefficients 
A and B. The coefficient A is determined imme
diately from the conservation of particles. The 
change per unit time of the number of particles 
with energies between E1 and E2 must be equal 
to the difference in the flow of particles to higher 
energies and to lower energies, i.e., j(E1)- j(E2). 
In the phase space layer lying between energies 
E1 and E2 we integrate (1) with respect to 

d[ = d1p d3r = dpxdpydp2 dxdydz, 

and find ( N is the number of electrons in the 
layer): 

dN \ \ df dj 
& = j dE .rilE A (E) d£· 

As indicated above, the right s~de of this expres
sion must be of the form j ( E1 ) - j ( E2) so that 

\ dr A (E) J d£ = 1. 

For an electron in the Coulomb field of a singly 
charged ion we have E(p • r) = p2/2m - e 2/r 
(m is the mass and e is the charge of the elec
tron) and 

\ ~ = \ 6 (E - L + _::_) dr. j dE J 2m r 
(3) 

In what follows it will be necessary to deal with 
negative values of E only. Computing the integral 
in (3) for the case E < 0 we have 

(4) 

~ = -A (E) 0~ j (E). (1) To find the recombination coefficient we need 

*This case has been studied in detail by Belyaev and 
Budker[1]. 

only find the stationary·solution of (1). In this case 

B (E) (of!iJE + f/kT) = - j = const (5) 
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and 
E 

f = _ je-ErkT \ e•lkT _r!!:_ (B) 
J B(e) • 
c 

To determine the constants j and C we must know 
the boundary conditions. Since small (absolute) 
values of E correspond to large distances from 
the ion, in which case the electron distribution is 
a Boltzmann distribution, we have 

f---+ (2nkTm)-'1•e-EfkT for E---+ 0. (7) 

Negative values of E that are large in absolute 
value correspond to small distances from the ion. 
An electron that has come this close remains long 
enough to recombine by a radiative process and 
is eliminated from consideration. Thus, at some 
value of the energy E0 that is large in modulus 
we can set the distribution function equal to zero:* 

(the final result will be independent of the exact 
value of E0 ). From (7) and (8) we have 

0 -1 

(8) 

C = £ 0 , j = -[(2nmkT)'1• ~ eE!kT 8dfE)J (9) 
E, 

The particle flux j, taken with opposite sign, is 
obviously equal to the number of electrons that 
reach a value E0 per unit time, that is to say, the 
number of electrons that recombine. Hence, the 
recombination coefficient is given directly by j 
if the distribution function is normalized, as we 
have done, to one electron. Since E0 » kT, we 
can replace E0 by - oo in the integral in (9). We 
then obtain the final general expression for the 
recombination coefficient: 

0 -1 

IX = [(2nmkT)'I• (' eE/kT .!!:!~] J B (E) • 
(10) 

-co 

To determine the significance of the coefficient 
B, in (1) we substitute the distribution function f0 
that describes an electron of energy E 

fo = Ab(p2 j2m-e2 / r -- £). (11) 

The function in (11) is obviously normalized to a 
single electron, i.e., jf0dr : 1. We then multiply 
the left and right sides of (1) by ( ~E )2 = [ E ( p, r) 
- E] 2 and integrate over dr. As a result, on the 
left we obtain a(~E )2/at, i.e., the square of the 
change in energy of a particle per unit time aver
aged over the distribution (5); on the right, after 
a double integration by parts we obtain the quan
tity 2AB. Thus, 

*It is interesting to note that an equation of the form of 
(2), with the same boundary conditions, is encountered in the 
theory of boiling.[~] 

B _ 1 a (tlE)2 _ n3VZ e6m'f, a (ll£)2 
- 2A -a-t-- -2-~-a-t- (12) 

To compute a(~E )2/&t we must examine the 
actual details of a collision between an electron 
and an atom in the electric field of an ion. We 
assume that the gas is monatomic and limit our
selves to the case in which the collision between 
the atom and the electron is so fast that the elec
tron may be assumed to be free during the colli
sion. If this requirement is to be satisfied w, the 
frequency of the perturbation produced by the atom 
at the point at which the electron is located, must 
be much higher than the frequency of rotation of 
the electron about the ion fl. Since w ~ V a I a 
"' a-1..j kT/M (Va is the velocity of the atom, 
a is the atomic dimension, M is the mass of 
the atom) and U"' mV3/e2 ,.... (kT)3/.!jm1/.!e2 
( V is the electron velocity), this requirement 
implies that 

(13) 

The condition in (13) sets the limits of applicability 
of the formulas obtained below. 

We note further that it is valid to neglect colli
sions between ions and neutral atoms. The ion 
velocity is v' M/m times smaller than the electron 
velocity. For this reason ion-neutral collisions 
are much less frequent than electron-neutral col
lisions and have only a small effect on the energy. 
For this reason it may be assumed that the ion 
moves uniformly and that the entire analysis can 
be carried out in the coordinate system fixed in 
the ion. 

Since the electron can be considered free if (13) 
holds, we can write a(~E )2/at immediately as the 
average of the product of the square of the energy 
change per collision (~E )2 times the number of 
collisions per unit time: 

(14) 

where n is the number of atoms per unit volume, 
V is the electron velocity and da is the differen
tial cross section for scattering of an electron by 
an atom. (We assume that V is much greater 
than the atom velocity Va.) 

The quantity (~E )2 can be computed easily if 
we assume that the magnitude of the relative ve
locity of the electron and atom is not changed in 
the collision: [5] 

(V- Va) 2 = (V'- Va') 2 

( V' and Va are the velocities after the collision 
while V and Va are the velocities before the col
lision; all velocities are measured in the coordi-
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nate system in which the ion is at rest). Thus 

V' 2 - V2 = 2 (V'V~- VVa) = 2Va (V'- V) 

(we assume that the atom velocity is not changed 
greatly in the collision ) and 

{A.£)2 = + m2 (V'2_ V2)2 = m2 [(VaV)2+ (VaV')2 

-2 (VaV') (VaV)l. (15) 

We must now average (15) over electron and 
atom velocities. For this purpose we express Va 
in terms of the velocities of the atom and ion in a 
fixed coordinate system: 

Va = Vao- Vto· 

Then, averaging (15) over Vao and Vio and assum
ing that Vf0 = V~0 = 3kT/M, we have 

(A.£)2 =4m2 [V2 - (VV ')2] V~o = 4~ (1 -cos 'fr) p2 

( p is the electron momentum and J is the angle 
between V and V' ) . 

Introducing the effective transport cross section 

a• =~(I- cos {))do, 

we have 

a (!l£)2 _ 4kTn • ( ) 3 at - Mm 0 p p ' (16) 

where the average is taken over the distribution in 
(5). We now must take account of the fact that if 
(13) is satisfied the electron wavelength is much 
greater than the atomic dimensions so that the 
electron scattering is independent of the electron 
momentum and is spherically symmetric. The 
cross section a* is then equal to the total cross 
section a, being independent of momentum, and 
we need only average over the factor p3: 

{}=I p3 Ab (K- e:_- E)d3pd3r .l 2m r 

- 4 SA\ :3 d"p - 32f2 ( IE[)'/, 
-- :rre ~ p (p 2 I 2m + I E 1)4 - 31t m · 

Substituting (17) in (16) and (12) we have 

B (E) = 128n2 e6m2GkTn 
3 M I o£ I • 

(17) 

(18) 

Then, calculating the integral in (10) we find the 
recombination coefficient 

32V 2n m'l•e6an 
IX=-----

3 (kT)'I•M . 
(19) 

This quantity is approximately six times 
greater than that derived in [2] by an elementary 
calculation. We note that the condition given in 
(13) for the applicability of (19) is rather stringent. 
For example, the limit of applicability of this for
mula for helium is approximately 1500°K. At 
higher temperatures the transfer of energy by 
the electron to the atom in a collision is reduced 
sharply and this effect should reduce the recom
bination coefficient markedly as compared with 
the value given by (19). If our formula is to apply 
it is also necessary that the equilibrium over the 
electron coordinate system be established more 
rapidly than the energy equilibrium. This require
ment implies that kT » e2naV m/M . 

In conclusion I wish to express my gratitude to 
Academician P. L. Kapitza for proposing this topic 
and to Academician L. D. Landau for help and dis-
cussions. 
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