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The coherent radiation produced by electron bunches moving in circular orbits in a magnetic 
field gives rise to retarding forces that can remove the electrons from the acceleration mode. 
These forces set an upper limit on the current of accelerated particles in a microtron. We 
calculate the radiative retarding force acting on an ultrarelativistic electron bunch that moves 
in a circular orbit and has a spherically symmetric charge distribution (in the laboratory co
ordinate system). The limiting current in the microtron is estimated to be approximately one 
ampere. 

FORMULATION OF THE PROBLEM 

AN electron moving in a circle of radius a with 
velocity c {3 radiates a power 

P - 2e•c fl4 4 
o - ""3a2~"' r 

and is subject to a retarding force 

Now consider a bunch consisting of N electrons 
moving in a circular orbit; if the bunch is small 
enough (point charge) the radiated power is in
creased by a factor of N2 while F cp• the force 
acting on each electron, is increased by a factor 

( 1) 

(2) 

N. The radiated power for a bunch of finite dimen
sions is 

(3) 

where the factor ® < 1 approaches unity as the 
coherence of the radiation produced by the elec
trons in the bunch increases, i.e., as the bunch 
dimensions become smaller; in what follows we 
shall call ® the coherence factor. Since the re
tarding force is not the same for different elec
trons in the bunch, it is convenient to introduce a 
mean retai·ding force 

- 2e2 
F =-N _r:~3r4e 

"' 3a2 1-' 
(4) 

such that NF cp is the force ac_!ing on the entire 
bunch. The quantities P and F cp are then related 
by 

( 5) 

and the factor ® is the same in (3) and (4). 
We shall be interested in the radiation retard

ing force acting on electron bunches in the micro-

tron. Calculation [i] and direct measurements [2] 

indicate that the dimensions of these bunches are 
approximately the same in all directions in the 
laboratory frame (l.s.) so that the problem can be 
simplified by assuming that the charge distribu
tion is spherically symmetric (in the l.s.) and that 
the bunch translates like a solid body with velocity 
c {3, describing a circle of radius a. Using these 
assumptions it is relatively easy to compute the 
coherence factor and to estimate the effect of the 
radiation retardation on the motion of electrons in 
the microtron; in particular, it is possible to de
termine the value of N at which the radiation re
tardation removes electrons from the acceleration 
mode. 

Rabinovich and Iogansen [a-5] and other authors 
have investigated the coherent radiation reaction 
on the electron bunches in a synchrotron assuming 
that the bunches extended along circular arcs and 
were of small transverse dimensions. To the best 
of our knowledge, however, the problem has not 
been treated for the case of spherically symmetric 
bunches. We shall solve this problem for ultrarel
ativistic electrons, taking {3 :::::: 1 and 'Y2 » 1. 

FIRST METHOD FOR COMPUTING ® 

It is well known that the radiation of a single 
ultrarelativistic electron is quasi-continuous, with 
the power radiated in a spectral interval ( w, w 
+ dw) given by 

P (w) dw =Po'¢ (t) dt, (6) 

where P 0 is the total radiated power (1), t is an 
auxiliary variable related to the angular frequency 
w by 

573 



574 S. P. KAPITZA and L.A. VAINSHTEIN 

dffi = ~r3 Vtdt, 

and the function If! ( t ) is given by 
00 

'I' (t) = - 2:it t [ v' (t) + f ~ v (-r) d-r]. 
I 

where v ( t) is the Airy function. [sJ The function 
If! ( t) that satisfies the relation 

co 

(7) 

( 8) 

~'I' (t)dt = 1, (9) 

is shown in Fig. 1. 

u.s 
~rtf [\ 
I \ 
I 

I 
I 

0,4 

O.J 

0.2 

0.1 

0 

i\ 
\ 

FIG. 1 

~~ t-----,.,. t 
5 

In going from a single electron to a bunch con
sisting of N electrons the radiation field in the 
direction of the wave vector ( kx, ky, kz ) is mul
tiplied by the factor Nf ( kx, ky, kz ) where 

-co 

is the form factor for the bunch ( cf [?] or [B] ) and 
p ( ~, 1), t) is the volume charge density in the 
system of coordinates ~, 1], t, which are given in 
terms of the laboratory coordinates x, y, z by the 
relations 

l;=x-x, 
- -

'lj=y-y, ~=Z-Z (11) 

where x, y, z are the coordinates of the center of 
gravity of the bunch. If the bunch is spherically 
symmetric then p and f each depend on a single 
dimensionless parameter 

p=p(u), u=r/r0 ; f=f(v), V=ffir0 jc, (12) 

where 

and r 0 is the "radius'~ of the bunch [see (15) and 

( 16) below]. The functions in ( 12) are related by 
the expression 

4:rtcr2 ':" 
f (v) = -N ° (' p (u) u sin vu du, (14) ew ,\ 

0 

so that a Gaussian charge distribution yields 

p (u) = (2rt)-'1'r-;3Nee-u''2 , f (v) = e-~'12 , ( 15) 

while a uniform charge distribution inside a sphere 
of radius r 0 gives 

p(u)=3Nej4rrr~ when u< 1, p(u)=Owhenu> 1; 
f(v) = 3(sinv-vcosv)jv3 • (16) 

Using (7) we can write v in the form 

v=st'l• (s=rarofa). (17) 

In the case of spherical symmetry f depends only 
on the frequency and not the direction of the radi
ation so that the power radiated by the bunch in 
the spectral interval ( w, w + dw ) is 

P {ffi) dffi = N 2P 0 \ f (s{') \2 '!' (t) dt, 

while the total power is 
00 00 

P=~ P(ffi)dffi= N2P0 ~ \f(st'1')\ 2 '!'(t)dt 
0 

and the coherence factor becomes 
co 

El=~ lf(sf'l')i2'1'(f)dt. 
0 

(18) 

( 19) 

(20) 

The coherence factor depends only on the di
mensionless parameter s, which is proportional 
to the radius of the bunch r 0, and satisfies the 
limiting relations 

8->-1 as s->-0, 8=xjs'1• as s->-oo, (21) 

where 
00 

2 r 'I x = 3 '!'' (0) ~ lf(v) \2v 'dv, '!'' (0) = - ,~- v' (0) 
2 f :rt 

in particular, for a Gaussian bunch (15) 

x = 6'1•r {5/6); 4J/i = o.527, 

while for the uniform bunch ( 16) 

X= 243·6''• I 560 = 1.43. 

(22) 

(23) 

(24) 

The expressions in (21) can be made more exact 
for a Gaussian bunch: 

8 = 1 - 7 s2 + . . . when s < I , 

8 = xj s''•- 1j4s2+ ... when s~ 1 (25) 

and the calculations can be carried out directly 
with (20) up to the point at which they join the 
limiting expression in (25). It is also possible to 
find e by numerical quadratures from (20) for a 
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uniform bunch, but it will be found easier to use 
relations that will be derived below. 

SECOND METHOD OF COMPUTING e 
Assume a linear bunch in which N electrons 

are distributed around a circle of radius a in 
such a way that the charge in an angular interval 
( x. x + dx ) is Neg ( x ) dx where · 

(26) 

is the polar angle computed from the position of 
the center of gravity of the bunch. If this bunch 
moves around the circle with velocity c {3 the 
power radiated at the m-th harmonic (frequency 
w = mc{3/a) differs from the power radiated by a 
single electron by the factor N2 1 gm 12 where 

1t 

gm = ~ etmxg (X) dx, go= 1 (27) 
-1t 

is the form factor for the linear bunch. If we use 
the relation 

gm = f (m~rola), (28) 

then the coherence factors are the same for the 
linear bunch and a spherically symmetric bunch. 
Using (14) we can show that when (28) is satisfied 
it is sufficient to take g ( x) as an even function 
which is defined by the following expression for 
X> 0; 

00 

2na \ 
g (X)= Ne .) p (u) udu, (29) 

X/X, 

where 

X = ~rIa, Xo = ~r o I a. (30) 

Thus, a Gaussian bunch ( 15) corresponds to a 
linear bunch for which 

1 -x'/2X2 
g(x) = ,~ e 0 

r 2n Xo 
(31) 

that is to say, the linear charge density also fol
lows a Gaussian distribution. A uniform bunch (16) 
corresponds to a linear bunch with a parabolic 
distribution 

3 ( 2. 
g(x) =-4 1-~) for lxl < Xo· 

Xo Xo 

g(x) = 0 for lxl > Xo· (32) 

However, if the entire bunch is concentrated in a 
sphere of radius r 0 the corresponding linear bunch 
has a rectangular distribution. 

g(x) = l/2xo for I X I< Xo• 
g (x) = 0 for I X I > Xo· (33) 

The correspondence between a spherically sym
metric bunch and a linear bunch holds for any {3 

and requires only that the condition exp { -rr2/2xt} 
« 1 be satisfied for a Gaussian bunch and that the 
condition Xo < rr be satisfied for a bunch with sharp 
boundaries, (32) or (33). 

The coherence factor for a linear bunch can 
also be computed in a different way by starting 
with ( 4) and using the interaction law for charges 
moving on the same circle of radius a, as has 
been done in [3- 5]. We omit the calculations, giving 
only the final result for the coherence factor: 

2" 
___ 3_ (' G' 1 - 132 cos 1P d 

8 - 213314 ~ (X) 2 J sin 'ljJ /21 (1 -13 cos 'ljJ /2) X 
0 

" 3 \ ' 1 - 132 cos 'ljJ 
= -213314 ~ G (X) 2[sintp/21 d'IJ, 

where G ( x) is the convolution of the function 
g (X): 

1t 

G (X) = ~ g (X- fl) g (!-1) dfl, 
_, 

and the angle l{! is given by the equation 

'lJ- 2~ I sin 'I' I 21 = X· 

(34) 

(35) 

(36) 

The relation in (34) applies for any {3. We com
pute the integral (34) for ultrarelativistic ( {3 f'::j 1) 
short ( Xo « 1) bunches assuming that for posi
tive values of x and l{! 

'ljJ 1jJ3 1 1jJ2 'ljJ 
X= 212 + 24 , I- ~2 cos 'lJ = 1"2 + 2 , 2 sin 2 = 'lJ, (37) 

while for negative values of x and l{! 

x=2'1J, I-Wcos'IJ=l/r2 , 2jsin'!JI21=-'IJ. (38) 

Introducing the even function H ( u) by means of 
the relation 

G' (X) = - ~ H (u), u = .:£.., 
Xo Xo 

(39) 

we have 
00 

8 = _!_ \ H ( ..: + 't3 112 ) ('t2 + 't•) d't 
4s3 .) 2s 8 ' 

(40) 
0 

where 

Equations (20) and (40) are equivalent but it is 
difficult to prove this equivalence directly. The 
factor e can be computed for a uniform bunch by 
means of (40). The expression in (32) yields 

H (u) = ~ ( 1-~ + ~) for 0 < u < 2, 

H (u) = 0 for u > 2. (42) 

The integral in (40) is computed and we have 

t3 [ 3t2 9t ( 5t2 t4 ) 
8 = 8s3 I + 40 - 32s I + 36 + 192 

t8 ( 9t2 t4 1ft6 tB )] + 256s3 I+ 32 + 32 +.6912 + 35146 ' (43) 
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where the auxiliary parameter t is related to s 
by the expression 

s = +(t + t3 ; 12). (44) 

Curve a of Fig. 2 (log-log scale) shows the de
pendence of ® on s for a uniform bunch as com
puted with (20) and (43); curve b shows the same 
relation for a Gaussian bunch as computed with 
(20) and (25). The dashed lines show the asymptotes 
corresponding to the second formula (21) with (23) 
and (24) taken into account. As s increases the 
factor ® decreases monotonically and the asymp
tote is approached at relatively large values of s. 

For the distribution given by (33) 

H (u) = 1j4u 

H (u) = 0 
for 
for 

0 < u < 2, 
u>2 (45) 

and the coherence factor is given by the simple re
lation 

3 [t2 ( t2)] e = Ss' 4- In 1 + 12 ' (46) 

where s is related to t by Eq. (44) as before. 
The formulas above indicate that ® - 0 as 

s- oo, Actually ®- 1/N as s- oo, because the 
bunch is discrete. However, since N ~ 107 for 
bunches in the microtron, the discrete nature of 
the bunch is not important. 
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FIG. 2. 

LIMITING CURRENT IN THE MICROTRON 

In order to estimate the effect of the coherent 
radiation on the motion of electron bunches in the 
microtron we assume for simplicity that the time 
of flight of an electron through the accelerating 
gap (high-frequency field) can be neglected. Intro
ducing the notation 

We= eHo/ nu, (47) 

where H0 is the constant magnetic field, we is the 

cyclotron frequency, and w is the angular fre
quency of the accelerating field, we can write down 
the value of y (dimensionless electron energy) for 
the k-th transit through the accelerating gap 

(48) 

where the numbers gi = 0, 1, 2 ... and g = 1, 2 ... 
denote the multiplicity of the acceleration and give 
the energy of particles with equilibrium phase cps; 
the quantity Yk represents a correction for radia
tion retardation and the fact that the phase deviates 
from the equilibrium value by an amount qJk in the 
k-th transit. Generalizing the relations given by 
Kolomenskil [s] to include radiation retardation, we 
obtain the finite-difference equations 

~q;h = qlk+r- ~" = 2ny"jQ + 6cp", 

~r"- = Yk+r - r" = gQ [cos ( cp. + ~k+r)/cos cp,- 1] + t>y"" 
(49) 

where O'Yk < 0 determines the energy loss due to 
radiation in the circular trajectory between the 
k-th and the ( k + 1) -st transits through the ac
celerating gap while 

(50) 

is the phase increment in the same path caused by 
the radiation. [ If the energy O'Yk were lost at the 
beginning of the path, instead of over the entire 
path, we would use 27!' instead of the factor 1r in 
(50).] 

The two equations in (49) are equivalent to the 
single second-order nonlinear difference equation 

~2(j)" = 2ng [cos (cp, + q;k+1)/cos cp,- l] + 6cp" + 6cpk+r· (51) 

If ocpk does not vary greatly from orbit to orbit 
[this is the case within the limits of applicability 
of (66)] the radiation retardation simply causes· a 
gradual displacement of the equilibrium phase. In 
this case we have 

Cjl1< = Cjls, k- cp, + '\j)k, (52) 

where CfJs,k is the equilibrium phase at the k-th 
orbit (taking account of retardation), given by the 
relation 

cos cp,, " = [ 1 - ( 6cp" + llcpk+r)/2ng] cos cp,, .<53) 

while lf!k is the deviation of the phase from the 
equilibrium value CfJs,k· When llf!k I « 1 we can 
write a linear finite-difference equation for lf!k: 

~2'\jJ" + 2ng [1- (6cp" + 6cpk+r)/2rrg] tg<p,, k"'\j)" =- ~2<rs. k, 
(54)* 

where the coefficient for lf!k and the small right 

*tg =tan. 
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side are weak functions of k. This equation corre
sponds to a stable oscillation when 

(54 a) 

The radiation retardation is usually negligible 
in the first orbits ( -6cpk/7rg « 1) so that 

cp,, k;::::::: cp,, 0 < cp, <arc tg (2/Jtg). (55)* 

As k increases the absolute value of O<Pk in
creases gradually while the equilibrium phase is 
gradually reduced ( 0 < <Ps,k < <Ps• since O<Pk < 0 ). 
It is evident from (54) that stability is lost when 
<Ps,k = 0 so that microtron acceleration is no 
longer possible. It then follows that the limiting 
value of -Ocpk (at which acceleration is still pos
sible) is 

(-llcp)max = ng (I -cos cp,)jcos C!Js (56) 

and if <Ps is the optimum value cp~ =tan -t ( 1/7Tg) 
then 

(-llcp)max = tgcp~/2 = 0.155 for g =I. (57) 

We can make further use of this estimate. If all 
the O<Pk were the same the radiation retardation 
of the bunch as a whole could be easily compensated 
by choosing <Ps judiciously from (53) and (54), and 
the radiation force would only smear out the bunch, 
an effect which is much more difficult to compute. 

The average energy lost per orbit by an elec-
tron is 

- mc21ly = PTjN, (58) 

where the orbit radius a and the period of rota
tion T are related to the dimensionless energy y 
by the expressions 

a= c~yfwc, T = 2'Jtyfwc. (59) 

Hence, when {3 i":j 1 
4:rtNe r.:. 3 mc3 

lly =- ~wcoY, J0 = e = 17000A. (60) 

We replace the number of particles in a bunch 
by the corresponding current 

J = wNej2n, 

so that (50) and (60) yield 

where, by virtue of (17), (47), and (59), the co
herence factor ® depends on the parameter 

(61) 

(62) 

(63) 

Using (57) we can write an expression for the 
limiting current in the microtron 

lmax/Jl = lj8y3 , (64) 

*arc tg =tan"'. 

where 

Jl = ~~~ (-llcp)max = 32 A. (65) 

In the first few orbits the right sides of (62) and 
(64) vary rather strongly from orbit to orbit be
cause s is small; however, when s » 1 this de
pendence is weakened and (64) becomes 

(66) 

In Fig. 3 we show the dependence of Jmaxl J1 
on y for the values Q = 1, 2, and 4. In accordance 
with the measurements reported by Bykov [2] ( car
ried out at Q i":j 1) the charge distribution in the 
bunch has been approximated by ( 15) and it has 
been assumed that 

wro/ c = 2nro/ A= 0,12. (67) 

These results apply for other modes of operation 
under the condition that the parameter s 1 assumes 
the values 0.12, 0.24, and 0.48. 

FIG. 3. 

It is evident that the limiting current and the 
maximum number of electrons in a bunch are re
duced monotonically with increasing y and in
creased monotonically with increasing Q. The re
lation in (64) becomes that in (66) at high values of 
y, corresponding to the linear portions of the 
curves in Fig. 3. 

By increasing the energy of a given electron 
bunch or by increasing the cur~ent J for a fixed 
electron energy we increase the effect of radiation 
forces on the motion of electrons in a bunch, 
which will then not only be deformed but also tend 
to deviate (as a whole) in phase. As we have indi
cated above, this mechanism can remove the bunch 
from the acceleration mode. More precisely, if 
the current J is increased for a given y, then 
with J appreciably smaller than Jm~x both the 
equilibrium phase <Ps,k• which determines the po
sition of the center of the bunch at the k-th orbit, 
and the region of phase stability, which determines 



578 S. P. KAPITZA and L. I. VAINSHTEIN 

the longitudinal dimensions of the bunch (when 
cps,k- 0 the region of phase stability contracts 
to a point ), will both be changed. In this case the 
retarded interaction of the electrons must be con
sidered in calculating the electron motion. This 
calculation is extremely difficult and the results 
do not justify the effort. The considerations given 
by us above leading to (64) obviously give only a 
rough estimate of the limiting current in the mi
crotron. 

CONCLUSIONS 

The radiation r~tardation, which determines the 
limiting current of accelerated particles in ami
crotron, is due to the coherent radiation of the 
electron bunches in their circular motion. The 
spectrum of this radiation can be computed from 
(18); this computation shows that even at relatively 
low energies ( mc2y ~ 5 MeV, i.e., 'Y ~ 10) the 
spectral width is determined by the dimensions of 
the bunch and is only a weak function of its energy. 
At these and higher energies, the limiting current 
(Fig. 3) can be estimated from the asymptotic 
formula (66), which always applies for actual mi
crotrons. It can be shown that the walls have only 
a small effect on this spectrum. 

We have assumed the radiation spectrum to be 
quasi-continuous. Actually, however, it consists 
of discrete lines whose frequencies are multiples 
of the frequency of the accelerating field (not the 
rotational frequency); this is due to the fact that 
there are several bunches moving simultaneously 
in each circular orbit. Hence the coherent radia
tion in the microtron may be regarded as the re
sult of frequency multiplication of the accelerating 
field. 

At the present time a current J = 25 rnA has 
been reached in the microtron at the Institute for 
Physics Problems of the U.S.S.R. Academy of 
Sciences, The estimates given above show that the 

radiation retardation of the bunches will not affect 
the operation of the microtron even if this current 
is increased several times. The current would 
have to be increased by a factor of 15-30 or more 
for the effect of radiation forces to become evident. 

We have neglected the electrodynamic interac
tion of different bunches in this calculation. Close 
to the accelerating cavity, however, all the circular 
orbits are tangent to each other and bunches mov
ing on different orbits pass through the cavity 
simultaneously. In this case the radiation produced 
is sensitive to the properties of the cavity and also 
tends to limit the current in the microtron; how
ever, this problem is beyond the scope of the 
present paper. 

We are indebted to M. S. Rabinovich and V. P. 
Bykov for valuable discussions. 

1 Kapitza, Bykov, Melekhin, Krutikova, and 
Prudkovskil, JETP 41, 368 (1961), Soviet Phys. 
JETP 14, 266 (1962). 

2v. P. Bykov, JETP 40, 1658 (1961), Soviet 
Phys. JETP 13, 1169 (1961). 

3 L. V. Iogansen and M.S. Rabinovich, JETP 37, 
118 (1959), Soviet Phys. JETP 10, 83 (1960). 

4 M. S. Rabinovich and L. V. Iogansen, Proc. of 
the Intern. Conf. on High Energy Acceler. and 
Instr.-CERN, 1959, p. 673. 

5 M. S. Rabinovich and L. V. Iogansen, JETP 38, 
1183 (1960), Soviet Phys. JETP 11, 856 (1960). 

6 V. A. Fock, Diffraktsiya radiovoln vokrug 
zemno1 poverkhnosti (Diffraction of Radio Waves 
About the Surface of the Earth), AN SSSR, 1946, 
Sec. 5. 

7 A. P. Belousov, JETP 9, 658 ( 1939). 
8 M. A. Markov, JETP 16, 600 ( 1946). 
9 A. A. Kolomenskil, ZhTF 30, 1347 (1960), 

Soviet Phys. Tech. Phys. 5, 1278 (1961). 

Translated by H. Lashinsky 
132 


