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not small for kr "' r I 6 "' 1 alone, since the spatial 
dispersion is weak in normal skin-effect* as a re­
sult of the inequality kr « 1 and it is therefore 
possible to expand w ( k); in anomalous skin effect, 
on the other hand, resonance is possible only in 
the magnetic field parallel to the metal surface, 
when Vz = 0 and w is finite as k- co (see [1]), 

so that w(k) can be expanded in powers of 1/kr. 
We are grateful to E. M. Lifshitz for valuable 

comments. 

*In diamagnetic resonance in an inclined field, the 
Doppler effect produces a supplementary attenuation 
with 1/r eff- w1 (quadratic dispersion or resonance for 
nonquadratic dispersion on a section off center) or 
1/Teff- w1(wJw) (resonance on a central section). 

1M. Ya. Azbel', JETP 39, 1138 (1960), Soviet 
Phys. JETP 12, 793 (1961). 

2 J. E. Aubrey and R. G. Chambers, J. Phys. 
Chern. Solids 3, 128 (1957). 

Translated by G. Stillman 
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A calculation of the equilibrium of a cold ideal 
Fermi gas in its own gravitational field made by 
Volkoff and Oppenheimer [1, 2] led to the following 
result: for a small number of neutrons (N < 0.35 0) 
there is a single solution, for 0.35 0 < N < 0. 750 0 
there are two solutions, and for N > 0.75 0 there 
is no solution at all (the symbol 0 here means 
the number of neutrons in the s tm). 

It was assumed that the unique solution for 
N < 0.35 0 is absolutely stable and that for such 
a value of N collapse is impossible. We shall 
show that this is not true. 

By prescribing a sufficiently large density we 
can obtain for any given number N of particles a 
configuration with mass as close to zero as we 
please, and clearly less than the mass of the static 
solution. Such a configuration obviously cannot go 
over into the state of equilibrium (into the static 
solution), and consequently can only contract with­
out limit. 

Let us take an arbitrary spherically symmet­
rical distribution of motionless matter. We denote 
the particle density by n and the energy density 
by E ( E includes the rest mass of the particles); 
n and E are connected by the equation of state. 

The metric is given by the expression (we 
everywhere set c = 1 ) 

ds2 = ev dt2 - e}.dr2 - r 2 (sin2 8 dqJ2 + d82). (1) 

As is known from the equation for A. (cf. [3]) it 
follows that 

r 

e-1-(r) = 1- ~~ e (r) r 2 dr, 
0 

(2) 

where b = 87l'k. The mass of the star is given by 
the expression 

00 

M = 4n ~ e (r)r 2 dr, 
0 

(3) 

and the number of particles by (dw is an invariant 
volume element) 

00 

N = ~ ndw = 4n ~ n (r) eA/2. r2dr. 
0 

(4) 

Let us take the distribution of motionless mat-
ter given by the formulas 

e=afr2 , r<R; e=O, r>R. 

Then 

e-A= 1-abRjr, r>R. 
R 

N = 41-c \' nr2 dr. 
f1-ab ~ 

0 

M = 4naR, 

For an ultrarelativistic gas 

(5) 

(6) 

(7) 

e = 1i (3jn2)'1•n'l•, n = (n2j3)'/• (efli)'l•. (8) 

Substituting Eqs. (5) and (8) in Eq. (7), we get 

N = const a'I•R'I•f Y 1 - ab, 
R = const N'!.a-'f, (1 - ab)'l•, M = const N'!.a'lz (1 - ab)'l•. 

(9) 

It follows from this that M - 0 for a - 1/b, what­
ever the value of N. * This proves the assertion 
made above. 

For a rough estimate of the energy barrier 
which separates the equilibrium solution with 
M ::::: Nm (m is the mass of the neutron) from 
the collapsing state, let us find the maximum M 
from Eq. (9). We get 

Mmax-:::::; N'l•vnJk. MmaxfNm~ N-'/, Vhfkjm~ NJNcr, 
(10) 

where mNcr is of the order of the maximum mass 
for which a solution exists, i.e., of the order of the 
mass of the sun. Consequently for systems con-
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sisting of a small number of neutrons collapse 
may indeed be possible, but the height of the barrier 
is many times larger than the initial rest energy 
of the system. Since the barrier ,.... N2/3, its abso­
lute value decreases (although the required den­
sity increases ) when part of the body in question 
is compressed. All of the conclusions remain 
qualitatively unchanged when one takes interaction 
between the neutrons into account, and in particu­
lar even for the equation of state E ,.... n2, which is 
the most rigid relation consistent with the theory 
of relativity. C4J 

In the use of the expressions (1)-(4) it is not 
assumed that n(r) and E(r) with zero velocity, 
v = 0, correspond to the static solution; the field 
equations give nonvanishing values of ~. v, v, 
where the dot means differentiation with respect 
to time. Outside the body (r > R) we have ~ = 0, 
so that the mass M measured from the external 
gravitational field remains unchanged during the 
process of evolution which ensues for a prescribed 
initial distribution which does not satisfy the con­
ditions for equilibrium. 

The distribution (8) used for the proof has sin­
gularities: E- co for r = 0; E has a discontinuous 
change from a/R2 to 0 at r = R. It is easy to 
verify, however, that the result is not changed 
when one smooths out these singularities, for ex­
ample by replacing Eq. (5) by 

e = aja2R2 for r < aR; a~ 1, 
a R (1 + (3)- r . 

e = i" :!.i3R , R (1- ~) < r < R (1 + ~), ~~I, 

B=ajr2 , aR<r<R(!-~). (11) 

In the initial distribution (5) used in our argument, 
and also in the smoothed distribution (11) we have 
everywhere e-..\> 0, ev > 0, i.e., the metric is 
not singular and there are no difficulties of the 
sort associated with the Schwarzschild singularity 
(eA.-co, eV=O). 

The writer is grateful toN. A. Dmitriev, L. D. 
Landau, E. M. Lifshitz, and S. Kholin for valuable 
discussions. 

*For small a one must not use the ultrarelativistic 
equation (8). For a-+ 0, the mass M -+ Nm. 

1 J. R. Oppenheimer and G. M. Volkoff, Phys. 
Rev. 55, 374 (1939). 

2 L. D. Landau and E. M. Lifshitz, Statistiche­
skaya fizika (Statistical Physics), Gostekhizdat, 
1951. 

3 L. D. Landau and E. M. Lifshitz, Teoriya 
polya (Field Theory), 3rd edition, Fizmatgiz, 1960. 

4 Ya. B. Zel'dovich, JETP 41, 1609 (1961), 
Soviet Phys. JETP 14, 1143 (1962). 
Translated by W. H. Furry 
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THE discovery of complex ferroelectrics with 
perovskite structure and with a considerable num­
ber of Fe3+ ions at octahedral sites prompted the 
suggestion that some of these ferroelectrics have 
antiferromagnetic properties. [1] 

This suggestion was studied in the case of 
Pb( Fe2; 3W1; 3 )03 and Pb( Fe1; 2Nb1; 2 )03; the brack­
eted ions were at the octahedral positions. X-ray 
diffraction at room temperature showed no order­
ing of t):le ions at the octahedral sites, i.e., these 
compounds were disordered solid solutions based 
on orthoferrites. 

We investigated the electrical and magnetic 
properties of monocrystals of these compounds. 
The monocrystals were grown from a solution in 
molten lead oxide by spontaneous crystallization 
on cooling. Chemical analysis showed that the 
compositions of the two compounds corresponded 
to the specified chemical formulas. 

Electrical properties were measured on thin 
monocrystals and magnetic properties on powders 
of fine monocrystals, because large crystals were 
not obtained. The results are shown in the figure. 
Magnetization of both compounds was a linear 
function of the magnetic field intensity ( Hmax 
= 8000 Oe ). No residual magnetic moments were 
found throughout the temperature interval used in 
the tests. 

The ferroelectric phase-transition tempera­
tures, ®c, were determined approximately from 
the maxima of E: they were 178°K for PbFe2; 3W1130 3 

and 387°K for PbFe1; 2Nb1; 20 3• In these two com­
pounds, as in the majority of solid solutions, phase 
transitions from the paraelectric into the ferro­
electric state occurred over a range of tempera­
tures. The paramagnetic-antiferromagnetic phase 
transitions also occurred over a range of tempera­
tures. The curves representing x(T) and x-1(T) 
had kinks at 363°K for PbFe2; 3W 1; 30 3 and at 143°K 
for PbFe1; 2Nb1; 20 3 ; these kinks were assumed to 
represent the antiferromagnetic transitions. Sim­
ilar dependences have been reported for antiferro­
magnetic crystals of CrSe [2] and for the antiferro­
magnetic solid solutions Mn1_xMgxO, [3] in which 


