GAMMA RAYS FROM INELASTIC SCATTERING OF 2.95-MeV NEUTRONS ON Ta¹⁸¹

L. Ya. GRAUDYNYA, O. I. KOSTOCHKIN, K. A. PETRZHAK, and A. V. SOROKINA

Radium Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor July 17, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 349-352 (February, 1962)

The spectrum of γ rays emitted when 2.95-MeV neutrons are scattered inelastically by Ta¹⁸¹ nuclei is obtained.

THE energy levels of Ta^{181} , which are known mainly through the radioactive decay of Hf¹⁸¹, have been studied most thoroughly in [1,2] and are well determined up to 0.619 MeV. Muir and Boehm^[2] give the following levels of Ta¹⁸¹: $618.9\,(\tfrac{3}{2}^+),\, 615.0\,(\tfrac{1}{2}^+),\, 482.0\,(\tfrac{5}{2}^+),\, 158.8\,(\tfrac{11}{2}^-),\,$ 136.25 $(\frac{9}{2}^+)$, and 6.25 $(\frac{9}{2}^-)$ keV. The literature contains conflicting evidence pertaining to the possible existence of a 958-keV level. Boehm and Marmier^[3] detected a very weak 0.476-MeV γ transition accompanying the β decay of Hf¹⁸¹, in addition to the known 0.482-MeV transition. These authors suggested that Ta¹⁸¹ has a 0.958-Mev level and attributed the 0.476-MeV quantum to a direct transition from this level to the 0.482-MeV level.

The question of the existence of a 0.958-Mev level has been thoroughly discussed in ^[1 2]. Berovikov et al^[1] used a fast coincidence circuit with 3×10^{-8} sec resolving time and a multichannel amplitude analyzer to measure the γ -ray spectrum coinciding with the 0.482-MeV line. The peaks observed at 0.220, 0.270, and 0.480 MeV were associated with two excited levels, 0.958 and 0.699MeV, in Ta¹⁸¹. The first two peaks were identified as 0.217- and 0.256-MeV γ lines emitted in cascade from the 0.958-MeV level through a 0.699-MeV level to the 0.482-MeV level. The 0.480-MeV peak was regarded as a direct 0.476-MeV transition.

Muir and Boehm^[2] studied $\gamma - \gamma$ coincidences between the 0.476- and 0.482-MeV lines. These coincidences were measured by a fast-slow coincidence circuit with the resolving time $2\tau = 4.4$ $\times 10^{-8}$ sec and two single-channel amplitude analyzers defining the energy range 480 ± 25 kev. The coincidence count was found to be lower than the expected background of random coincidences. This work therefore casts doubt on the existence of a 0.958-MeV level in Ta¹⁸¹. Since it is difficult to decide between these two investigations, which were performed with almost identical experimental

FIG. 1. Experimental arrangement. 1 - deuteron beam, 2 - deuterium target, 3 - lead shielding cone, 4 - Ta scattering ring, 5 - NaI(Tl) crystal, 6 - photomultiplier, 7 - black paper shield

techniques, the existence of a 0.958-MeV level is still an open question.

Since the Ta¹⁸¹ nucleus is highly deformed we know that it should possess collective excited levels. Experiments on the Coulomb excitation of Ta¹⁸¹ have determined^[4] the first two rotational levels at 0.131 ($\frac{9}{2}^+$) and 0.303 ($\frac{11}{2}^+$) MeV.

The literature contains very little information about higher excited Ta¹⁸¹ levels. One source of information regarding γ transitions associated with high levels is the study of γ rays arising in inelastic neutron scattering. Four investigations^[5-8] of γ rays from inelastic neutron scattering on Ta¹⁸¹ have been published so far; only two of these^[7,8] detected previously unknown γ transitions associated with higher excited levels. However, conflicting results were obtained in these two investigations. It was therefore of interest to make a more thorough study of the γ -ray spectrum arising in the inelastic scattering of neutrons on tantalum.

The spectrum was studied with a scintillation γ spectrometer using annular geometry in an arrangement shown in Fig. 1. The energy resolution of the spectrometer for the 0.66-MeV γ line of Cs¹³⁷ was 10%. A metallic tantalum ring weighing 286 g was the scatterer for measurements of the spectrum up to 1 MeV. For measurements of the harder portion of the spectrum the scatterer was an annular clear plastic container filled with 818 g

2.10

1 10

020

FIG. 2. Spectra of γ -ray pulses from the inelastic scattering of 2.95-MeV neutrons on Ta¹⁸¹. The ordinates are the numbers of pulses.

of metallic tantalum powder. The background of neutrons scattered into the crystal by the scattering ring and surrounding objects, together with the γ -ray background from various nuclear reactions between neutrons and nuclei of the environment was determined by measuring the γ -ray spectrum from the plastic scattering ring. The tantalum and plastic scattering rings contained the same number of scattering atoms.

In the present work the spectrum from 0.35 to 3 MeV was investigated. Figure 2 shows the pulseheight spectra of γ rays from the inelastic scattering of 2.95-MeV neutrons on Ta¹⁸¹. Each region of the spectrum shown in the figure was measured eight to ten times; the indicated γ -ray energies are average values. In our opinion, the pulseheight peaks at 1.39 and 1.60 MeV resulted from pair production in the NaI(Tl) crystal by 1.90and 2.11-MeV quanta followed by the emission of one annihilation quantum from the crystal. The broadening in the higher amplitude direction of the peak corresponding to a 0.62-MeV quantum (Fig. 2a) indicates a possible γ transition of about 0.7 MeV.

γ -ray energy, MeV		
Present work	$E_n = 3 \text{ MeV}[^7]$	$E_n = 3 \text{ MeV } [*]$
0,35** 0,42* 0.49** 0,57* 0,62** 0 76*	0,46	0.46
0,86 1.24 1.47 1.90 2,11*	1,44	0,87 1,18 1.82

Our present results are compared with [7,8] in the table. The γ transitions from inelastic neutron scattering that were here observed for the first time are denoted by single asterisks, while those known from the radioactive decay of Hf^{181} are denoted by double asterisks.

All the observed γ transitions can be accounted for if we assume that, in addition to the known excited levels up to 0.619 MeV, Ta¹⁸¹ possesses the following higher levels: 0.7, 1.24, 1.47, 1.90, and 2.11 MeV. The table shows that no 0.958-MeV γ rays were detected, and all the observed γ transitions can be obtained without introducing a 0.958-MeV level.

¹Berovikov, Gvozdev, Kondurov, and Khazov, Izv. AN SSSR Ser. Fiz. 23, 1449 (1959), Columbia Tech. Transl. p. 1437.

²A. H. Muir and F. Boehm, Phys. Rev. **122**, 1564 (1961).

³ F. Boehm and P. Marmier, Phys. Rev. 103, 342 (1956).

⁴ N. P. Heydenburg and G. M. Temmer, Phys. Rev. 100, 150 (1955). ⁵ R. B. Day, Phys. Rev. 102, 767 (1956).

⁶J. B. Guernsey and A. Wattenberg, Phys. Rev. 101, 1516 (1956).

⁷Scherrer, Allison, and Faust, **96**, 386 (1954).

⁸Androsenko, Broder, and Lashchuk, Atomnaya Énergiya (Atomic Energy) 9, 403 (1960).

Translated by I. Emin 54