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The theory of electromagnetic waves in a crystal in the presence of spatial dispersion due to 
exciton states, developed in previous papers, [1•2] is applied to the analysis of a number of 
problems. Double refraction in a cubic crystal as the result of spatial dispersion is consid
ered. The transmission of a wave through a plane-parallel plate at an arbitrary angle of in
cidence is discussed. A generalization of the Fresnel formulas is given. The results obtained 
are compared with the corresponding results of the Pekar theory [9] and a critical discussion 
of the latter is given. 

A scheme was given in [1] for the solution of the 
Maxwell equations in a nonconducting, spatially dis
persive medium. The solenoidal part of the elec
tric field is determined by the equation 

6.~&}. (r) + y [(Sf, (r) + 4n Pf. (r)l = 0, (1) 

where pl is the solenoidal part of the polarization 

Px· (r) = ~Kx•y• (r, r') (Sf, (r') dr', (2) 

'Y = Jl.W 2/c2• The irrotational part of the electric 
field is determined by the expression 

(8~. (r) = - 4nP~· (r), 

where pll is the irrotational part of the polariza
tion. 

In [2] (in subsequent citations-H) the polariz
ability kernel was obtained for a plane-parallel 
plate in the case in which the spatial dispersion 
is due to the exciton states of the crystal: 

K = K+ + K-. 
kN 

K"tiu· = [L2 I (2n)22nwl ~ ~ ~ r± (k, a)~ exp fl= i [k3b~zz 
a. k3=-kN bb' 

+ kx (x- x') + ky (y - y') + (k1b1z + k2b2z) (z - z') 

+ 2n (br- b'r')]} [g_ty' (b, b', k, k, a) exp (± ik3b3zz') 

-- g"t;y' (b, b', k, k, a) exp (;:F ik3b3zz')] dkxdky. (3) 

Here L measures the dimensions of the principal 
region; a is the number of the exciton band; 

k1. 2 = ka1.2 = ka1. 2 , k3 = ka3 = - ka3 = nv I (N + 1}, 
v=l, ... ,N, kN=nNI(N+!); 

ai (i = 1, 2, 3) are the unit lattice vectors, where 
a 1 2 are parallel to the surfaces of the plate; N 

' 

is the number of elementary cells contained within 
the thickness l of the plate; bi (i = 1, 2, 3) are the 
unit vectors of the reciprocal lattice; 
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r± (k a)==-= E (k,cx)- Eo 
' t E (k, a)± ie (k, a, =f w)- Eo± li.ro' 

E ( k, a) is the energy of the exciton, Eo the energy 
of the ground state, E is determined by the finite
ness of the lifetime of the exciton state; 

g;'y' (b, b', k, k', a) = g;, (b, k, a) gy' (b', k', a), g- = g+*, 

g (b, k, a) are the expansion coefficients of the po
larization matrix element in the vectors of the re
ciprocal lattice b; the z axis is perpendicular to 
the plate, i.e., z = 0, l on the surfaces of the plate. 

The transmission of a normally incident wave 
through a slab or plate of a cubic crystal was con
sidered in II, but the double refraction which can 
be produced by spatial dispersion was not taken 
into account. In the present paper, we investigate 
this effect. Furthermore, we consider the case of 
an arbitrary angle of incidence; finally, we find the 
longitudinal component of the electric field of the 
wave. 

1. DOUBLE REFRACTION 

The possibility of optical anisotropy of a cubic 
crystal due to the finite wavelength was suggested 
by Lorentz in 1878. [3] Calculation of double re
fraction for single crystals of the NaCl type was 
given in C4J, and for crystals of the diamond type 
in [5]. From the phenomenological point of view, 
the calculations mentioned were based on an ex
pansion of the dielectric constant E in powers of 
k. The effect is shown to be very small in this 
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case; for example, for crystals of the diamond 
type the difference in the indices of refraction for 
the two polarizations is ~ 10-4 • 

Again from the phenomenological viewpoint, one 
must distinguish the spatial dispersion described 
by expansions of the quantities E and 1/ E in pow
ers of k. [GJ We shall speak, respectively, of 
direct and reciprocal spatial dispersion. From 
the viewpoint of IT and the present paper, direct 
and reciprocal dispersion are described by ex
pansions (in powers of k) of the numerator and 
denominator of the polarizability kernel, respec
tively. The double refraction studied in [4, 5] is 
due to direct spatial dispersion. Here we consider 
double refraction that results from reciprocal dis
persion. We emphasize that by double refraction 
we mean here not the effect of increase in the 
number of waves, but the difference in the propa
gation of waves with different polarizations. 

For small k, a cubic crystal contains pairs of 
almost transverse exciton bands in which the po
larization matrix element Pal is perpendicular 
to k in the zeroth approximation (in k). Neglect
ing direct dispersion, we restrict ourselves to the 
zeroth approximation in Pal; hereC7J I Pat I 

=I Pat I and Pat· Pat= 0. We consider normal 

incidence on the plate of a wave whose electric 
vector is parallel to one of the P a-h.. Let k0 be 

the wave vector and [g n• Rn, Dn the amplitudes 
of the incident, reflected, and transmitted waves. 
By the method developed in II, we get 

Here* 

i2G n exp (- ik0l) (4) 
Dn=[gn • 

G~ + (1 + ifn)2 

Fn ·= fnl dg Xml + fn 2 dg Xn/• 

Gn = f nl /sin Xn~l + f n2 /sin Xn2l, 

xn2 I ko 

fnl = i-(x2 -k2)/(x2 -k2)' 
n2 n nl n 

fn2 is obtained from fn 1 by interchange of the in
dices 1, 2; K~1 2 are the roots of the equation 

' 
- x2 + 'Y (I + 4n~) + Bl(~nX2 - ien- ~) = 0, 

B = 4n'Y£2ll P".1l2 [E (0, a.l)- Eo] I fiw, 

Sn = n2 I 2m:, ~ = E 0 + tiw- E (0, a.l), 

where mzi is the effective mass for the direction 
of k perpendicular to the plate, and (3 takes into 
account the local part of the polarization; kn is 
the root of the equation 

Sn k2 - ien- ~ = 0. 

*ctg =cot. 

In accord with II, the indicated results agree 
with the corresponding results of [B, 9] in the ab
sence of double refraction (for m{ = mt ). Inas
much as m{ and mt can be appreciably different 
from one another, it is clear from C4J that the 
double refraction due to reciprocal spatial dis
persion can be very large. Reciprocal dispersion 
should apparently give a significant contribution 
also in the case of a non-cubic crystal. 

2. INCIDENCE OF A WAVE ON A PLATE AT AN 
ARBITRARY ANGLE 

We take the yz plane as the plane of incidence 
and seek a solution of (1) in the form 

[gf, (r) = ~Csx' exp (iksr), 
s 

k.c. = 0, 

(5) 

(6) 

where k0 is the wave vector in the outer medium, 
the components of k8 are 0, koy• K 8 , while the 
smoothness of the field is guaranteed by the con
dition I K 8 I d « 1 ( d is the lattice diameter ) . As 
was done in II, one can separate in (2) the local 
part of the polarization Pz(r) which occurs be
cause of K+, and those components in K- for 
which E ( 0, a) - Eo - nw is sufficiently large. 
The nonlocal part of the polarization Pn ( r) comes 
about as the result of the remaining components of 
K- and can be calculated by the method developed 
in II. In the integration and summation over the 
components of k in (3), the principal contribution 
to Pn(r) is made by the region around the points 
k8 and kaq• where the components of the latter 
vector are 0, koy• kaq• and 

E (kcxq, a) - ie (kaq, a, w) -Eo - fiw = 0. 

As a result of the calculation, we get 

Pnx' (r) = ~Csy' [p~~\Y, (r) + P!;\Y, (r)l, (7) 

where p<1> and p<2> are the contributions made by 
the points k8 and kaq• respectively. Without writ
ing down the very cumbersome expressions for 
p<1> and p<2>, we note that p~0 ~ exp (ik8 ·r), 
while p~2 > contains an exponential with a different 
exponent. In order to get the solution of (1) in the 
form (5), it is obviously necessary to equate to 
zero the part of P-6. which comes about as the re
sult of p<2>. This leads to the additional conditions 
for c 8 : 

"V "V + -+ 
LJ Csy' LJ fGsy' (b, kaq, a) - Gsy' (b, kaq, a) l = 0, 

b 

~c~·exp (ix.l) ~exp (- i2nbl) fGsy•(b,k ;q, a) 
b 

-Gsy•(b,k;q, a)l = 0. (8) 
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Here 

G,(b, kt, a)= g*(b0 , k;!=q', a)/(x,- 2nb- k~); 

only the component along b3 in b0 differs from 
zero; it is denoted by b; the signs ± on k indicate 
the sign of the imaginary part. Now, substituting 
(5), Pz and the remaining part of (7) in (1), we 
get the equation for Ks and c8 : 

(- k2 + y) Cx· + 4ny (lL2/nw) 

x[~ r-(k, a)gf, (0, k, a)gj.(O, k•,o:) 
a 

+ ~ r+ (- k, a) gf,* (0,- k·, a) gf. (0,- k, a)] Cy•=O, 
ex (9) 

where the components of k are 0, koy• K; 
gl(b, k, a) are the components of g (b, k, a) along 
k + 21rb. It is easy to see that there are three in
dependent equations in (9) and (6). By the method 
developed in II, it is possible to show that the num
ber of solutions of the system (9) and (6) exceeds 
the number of additional conditions (8) by four, so 
that (5) has precisely four independent solutions. 

The longitudinal field far from the surface is 
determined by the formula 

lil'~·(r) =c - 4n !Pt~·(r) + P~x' (r)l, (10) 

where only the part due to p <1> enters into Pll. 
The amplitudes of the reflected wave and the 

wave transmitted through the plate can be ex
pressed in terms of the amplitude of the incident 
wave from the usual Maxwell boundary conditions 
and the additional conditions (8). 

3. CUBIC CRYSTAL 

Even in the absence of spatial dispersion, it 
is rather difficult to obtain a solution of the prob
lem of a doubly refracting plate in explicit form 
for the case of oblique incidence. Therefore, in 
the application of the results of the preceding sec
tion, we limit ourselves to a cubic crystal when 
there is no double refraction due to the reciprocal 
spatial dispersion. As was shown above, this takes 
place for m~l = m~l. 

A longitudikl bank which we shall designate 
all, is associated with the pair of transverse ex
citon bands in the cubic crystal. To be specific, 
we consider a crystal without a center of symme
try, when linear terms are present in the expan
sion of g ( 0, k, a) in terms of k. In first approxi
mation, 
g (0, k, a*) = ln (ak) Pa. + [k, q_!_ (ak, af)l + kqll (ak, af), 

g (0, k, all)= (k/k) Pcx + lk, q_!_ (ak, all)]+ kqll (ak, all). 
(11)* 

* (k, g) = k X q. 

Here and in what follows, a-+ 0; 11, 2 are unit 
vectors perpendicular to one another and to k; 
let 11 be perpendicular to the plane of incidence 
and let 12 lie in it. To simplify the notation 
we assume the effective masses to be isotropic. 
Making use of C7J, it is easy to obtain (for small k) 

E (k, a)= E (0, a_!_)+ 4nlL2IPa\26acxll ·+ ~cxk2 + ... , 

where ~ af = ~ af = ~all. 
It is easy to see that ,%'11 "'k8 ; we shall con

sider in .%'1 the terms of zero order and in .%'11 
the terms of first order in k8 . In the zeroth ap
proximation, the components referring to longi
tudinal bands do not enter into (9). Let the reso
nanc~ condition E ( 0, a) - Eo - tiw ~ 0 be satis
fied only for one value of a (isolated triplet of 
bands ) . The most interesting case is the one in 
which I kaq I d « 1; here, under the additional 
conditions (8), we can neglect the components with 
b ~ 0. 

Taking into account all that has been said, we 
can obtain the following results. Let the trans
verse field lie in the plane of incidence, (ij'~,, 
R2X', D2X' are the amplitudes of the incident, re
flected, and transmitted waves. Then 

4 

lil'dx· = exp (ikouY) ~ Csx' exp (ix,z), x' = y,z, 
S=l 

g;}x = 0; 
(12) 

(13) 

Here 
Yt Y2 ra Y4 

f11 = 
q1r1 q2r2 qara q4y4 
p~ p~ + + 

' Pa P4 
P~Yt P~Y2 P;ra P~Y4 

6.2 is obtained from 6.1 by substitution of q for y 
in the first line, 6.3 by substitution of q for y in 
the first row, and of y for qy in the second, 6.4 

by substitution of unity for y in the first row, 6.0 
by substitution of unity for y in the first row and 
of y for qy in the second; 

p'f' = (k± + k~yix,) r, (k±) - (k± + k~ulx,) i, (k±), 
q, = (x, + k~)x,)/[1, qo = koz + k5)koz, 

y, = exp (ix,l), r, (k) = 1/(x, - k) (k~Y + k2)'/,, 

k± = k0 + -r±, k± = kO- '(±, '(± = 'C~l, 
'Ctq = (ktq)abaz = k~ - k0 , k0 = k~blz + k~b2z, 

k~, k~ are determined from 

k~blx + kgb2x = 0, b~kly + k~b2y = koy· 

Now let the transverse field be perpendicular 
to the plane of incidence. The field inside the plate 
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is described by Eq. (12). One must replace the in
dex 2 by the index 1 and set x' = x. Equations for 
the amplitudes are obtained from (13) by replace
ment of 2 by 1, y by x, qs by Ks I f.l, qo by koz• 
and Ps by [(Ks-ko)2- (r±)2]-1. 

4. GENERALIZATION OF THE FRESNEL FOR
MULAS. TOTAL INTERNAL REFLECTION 
OF A SINGLE WAVE 

Let us consider the case of a semi-infinite 
crystal. Let Im (K 1,2) < 0, Im (K 3, 4 ) > 0. As 
l- oo we have y 1,2- oo and y 3, 4 - 0, and (13) 
reduces to 

wo P; (qo ~ q,) ~p; (qo ~ q.) 
Roll = 02y ·• 

• P;(qo + q3) ~ P; (qo + q.) 

Rtx is obtained from R2y by the substitutions 
shown at the end of the previous section. The re
sults shown give a generalization of the Fresnel 
formulas to the case where spatial dispersion is 
taken into account. 

In the case of a semi-infinite crystal, only two 
components remain in (12), with s = 3 and 4. It is 
interesting to establish the conditions for which 
one (and only one) of these two waves undergoes 
total internal reflection if in the case of normal 
incidence this does not occur for either. (For a 
purely imaginary index of refraction, total reflec
tion takes place for normal incidence, too.) It is 
shown that for realization of the case outlined it 
is necessary and sufficient that 

(k2)i = {(- 1)iV<~ + £a.LY)2-4£".l(r~-B) 

+ ~ + £,ar}/2£".l > o, i = 1. 2. 
where 

-y = y { 1 + 4n (lL2f'ttCJ)) [2J r+ (0, al) I Pal2 
<1 

a'+a. 

+ ~ r-(o, a'.l)IPa·l21}. 

and that kgy lie between the values (k2)1 and (k2)2. 
If the smallest of the kj is larger than the wave 
vector in the vacuum, then it is necessary that the 
wave be incident not from a vacuum but from a 
medium with a sufficiently large index of refrac
tion. Having accomplished an experiment of this 
type, we can investigate the separate transmission 
through the plate of a wave with a large value of kj; 
this would be very useful in the determination of 
parameters relating to the separate waves. We shall 
set down the relevant formulas. Let K~ = K~ < 0 and 
K~ = KI > 0. Then, for a sufficiently thick plate, we 
find from (13) 

- - -
p, P2 P• 

X[- f~; t;; + exp (2ix.l) f~.- t;;J-'. (14) 

where rf~ = p[(qk ± q0 ) - p~(qi ± q0 ), in which the 
first± signs on f are identical with the sign on p, 
and the second with the sign in front of q 0• Rtx 
and Dtx are obtained from (14) by the substitutions 
shown at the end of the previous section. The de
pendence on plate thickness in (14) is the same as 
in the absence of spatial dispersion, [lO] which cor
responds to total internal reflection of one of the 
waves. 

5. LONGITUDINAL FIELD 

The longitudinal component of the electric field 
of the wave is determined by (10), whence we find 

iffJ~. (r) = - 4n (lL2fliw) 2J exp (ik,r) k,., (k~u + x~r'', 

X 2J {r- (k,, all) [k,, q.l' (ak:. all)) c,P" 

" + r- (k,, a.l) (koyCsz- 'KsCsy}qll (ak,, af) p: 

+ r+ (0, a II) [k,, q.l (- ak,, a II )J c,P" 

+ r+ (0, a.l) (koyCsz - X 5Csy) q II' (- ak:, af) p a} 

(the transverse field is in the plane of incidence), 

18111· (r) = - 4n (lL2/nw) 2J exp (ik,r) ksx' c,x2J {r- (k,, a II) 
s " 

x [k,, q.l' (ak:, a II) lx (k~Y + x~)-'!,p a. 

+ r- (k,, a.l) q II (ak,, af) P: 
+ r+ (0, all) [k,, q.l (- ak,, aii)Jx (k5y + x~)-'/, p: 

- r+(o, a.l) qll' (-ak:, af-)Pa} 

(the transverse field is perpendicular to the plane 
of incidence). The principal contribution to fe~, 
is made by components from r-. For small E a• 
the longitudinal field can reach large values if the 
expression obtained from the denominator of r
vanishes as Ea- 0. It is not difficult to show that 
this is possible only for a = all. Thus the large 
values of the longitudinal field are obtained as a 
consequence of the longitudinal bands. The ratio 
of the maximum value of the longitudinal field to 
the transverse is of the order of 47rksdZL21Pai 2/Ea 
and can be very large if Ea is sufficiently small. 
If we take into account the contribution of the lon
gitudinal bands in the transverse field, then we 
get (for the given ratio), 
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4nk5dlL2IP" 12 (ea.+ 4nk~d2 lL21 P,l2t 1 • 

If 47rk2d2lL2jp 12 « E,., the previous result is ob-
s a ._., II/' 1 

tained. For the opposite inequality we have IS IS 
~ 1/ksd » 1. Thus, in the case of a limitingly 
small Ea, &II can exceed cs1 appreciably. We 
emphasize that the anomalously large values of 
the longitudinal field are possible only in the pres
ence of longitudinal bands in the crystal, for which 
the transverse part of the polarization matrix ele
ment tends to zero as k ...-... 0. 

In the preceding sections, the analysis was car
ried out under the assumption that the longitudinal 
field is limitingly small in comparison with the 
transverse one. If this condition is violated, then 
it is necessary to take (8~, into account in the 
Maxwell boundary conditions (for oblique incidence 
of the wave). We shall not write out the cumber
some formulas obtained in this case, but shall limit 
ourselves to a qualitative consideration. The longi
tudinal field lies in the plane of incidence; there
fore, if the transverse field lies in the plane of in
cidence, the same holds for the total field also. In 
this case, account of &~, in the boundary condi
tions leads only to a quantitative change in the ex
pression for the amplitudes of the reflected and 
transmitted waves. If the field in the incident wave 
is perpendicular to the plane of incidence, then a 
component due to cg~, appears in the refracted 
waves; it lies in the plane of incidence. The cor
responding component appears also in the reflected 
and transmitted waves, leading to a depolarization 
of the reflected and transmitted waves. The indi
cated effect is absent at normal incidence; in this 
way, it differs considerably from the optical activ
ity. Moreover, it is not connected with double re
fraction. In this regard, it differs from depolari
zation upon reflection from an anisotropic medium 
in the absence of spatial dispersion. 

In conclusion, we note that the presence of the 
transverse part in the polarization matrix element 
for the longitudinal band should lead to absorption 
of light in the vicinity of the frequency [ E ( 0, a 11 ) 
- Eo] /ti. In view of the fact that there is only one 
longitudinal band (in an isolated triplet of bands ) , 
this absorption must possess complete dichroism. 

An experimental test of the results obtained in 
this research appears to us to be highly desirable. 

6. COMPARISON WITH THE PEKAR THEORY 

We shall compare our results with the corre
sponding results of the Pekar theory. [8•9•11] These 
results, which pertain to double refraction in the 
case of normal incidence, correspond to those 

which appear in [1i]. In [9] the incidence of a 
wave on a semi-infinite crystal was considered, 
and the reflected and transmitted waves were 
found. In that case the results were significantly 
different from ours (although, as noted in II, we 
used the wave functions of the exciton states as 
set forth by Pekar[s] ). The difference can be 
traced to the following points: in the first place, 
for the case in which the transverse field is per
pendicular to the plane of incidence, cs 11 = 0 in 
[9]; in the second, for the case in which the trans
verse field lies in the plane of incidence, (8~, is 
given in [9] by an expression that is proportional 
to the longitudinal component of that part of {7) 
which take place because of p<2> and, in accord 
with the second section of the present paper, is 
equal to zero; in the third place, the Fresnel for
mula in [9] for this case differs from that obtained 
here. 

The first point is connected with the fact that 
Pekar's theory takes into account only the zeroth 
approximation in k in the polarization matrix 
elements, in which approximation &If = 0. How
ever, as shown in the previous section, cell can 
even exceed eel, so that it is impossible to re
strict oneself to the zeroth approximation. 

The second and third points are connected with 
a difference in the methods used in the Pekar the
ory and in the present research. The equation for 
the ks in the Pekar theory is equivalent to our (9). 
However, while we obtained (9) as the result of an 
approximate solution of (1), so that the additional 
conditions (8) automatically arise in the process 
of solution, an equation similar to {9) appears in 
[8] at the beginning and requires the independent 
introduction of additional conditions. In other 
words, our integral equation (2), which connects 
the polarization and the field, has already been 
solved with respect to the polarization, while the 
corresponding Eq. (17) in [8] is a differential 
equation and requires additional conditions. As 
such, Pekar uses boundary conditions which re
quire the vanishing of the exciton part of the po
larization on the surface of the crystal. If we 
neglect components with b ~ 0, then we can write 
P 1 ( r) in our notation in the form 

P1 (r) = ~ Ck exp [i (kxx + kyy)l [g (0, k, a) exp (ikzz) 
k 

- g (0, k, a) exp (- ikzz)l, 

where the Ck are expansion coefficients of the per
turbed wave function in terms of the exciton func
tions. Assuming that the Ck fall off sufficiently 
rapidly with increase in k, Pekar assumes that 
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g ( 0, k, a) = g ( 0, k, a) = g ( 0, 0, a); in this case 
he gets Pi= 0 for z = 0, l. However, according 
to (11), as k- 0, g depends on the direction of k, 
as a consequence of which, generally speaking, 
g(O,ak,a) ;eg(O,ak,a) (a-+0). Itiseasyto 
prove that the equality holds only when the trans
verse field is perpendicular to the plane of inci
dence. In the case in which the transverse field 
lies in the plane of incidence, the use of the con
dition Pi= 0 seems unsubstantiated to us. Fur
thermore, the longitudinal component of the field 
that appears in [9] is introduced specially to sat
isfy this condition; however, as was noted above, 
it is equal to zero. The longitudinal polarization 
waves considered in [S, 9] cannot be excited by 
electromagnetic waves. This is connected simply 
with the fact that the indicated waves possess dif
ferent k for the same frequency. The longitudinal 
field which figures in the present work has the 
same k = ks as the transverse field. 

On the strength of the above result, the Pekar 
theory appears to us to be invalid, so far as it 
concerns the longitudinal field, and also the trans
verse field in the case of oblique incidence of the 
wave. 
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