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We present a simple and manifestly covariant derivation of the Weizsacker-Williams formula. 

RECENTLY in a whole series of papers, starting 
with that of Chew and Low,CtJ the contribution of 
pole diagrams to the cross sections for various 
processes has been calculated. Pomeranchuk 
and Shmushkevich [2] have pointed out that the 
cross section for inelastic processes occurring 
in a Coulomb field and calculated in the pole ap
proximation using the "Coulomb photon" coin
cides with the well-known Weizsacker-Williams 
formula ( WW). [S] In calculating the invariant 
pole matrix element, Pomeranchuk and Shmush
kevich, [2] in the spirit of the original quasi
classical derivation of Weizsacker and Williams, 
used quantities measured in the rest system of 
the incident particles. In this note we give an 
explicitly covariant derivation of the WW for
mula.* 

Let us calculate the cross section for the 
process shown in Fig. 1. Here k and p are the 
momenta of the colliding charged particles (for 
example, an electron and a proton), k2 =11- 2, 

p2 = m 2; p' and k' are the momenta of the par
ticles created, p' 2 = p2 = m 2; q is the momentum 
of the virtual photon. We want to express the 
cross section associated with this graph in terms 
of the cross section for the photoprocess with·a 
real photon q ( q 2 = 0, E1LqiJ. = 0) shown in Fig. 2. 

The cross section of the photoprocess for a 
photon of given polarization, integrated over the 
momenta of the created particles and summed 
over their polarizations, can be written in the 
form 

For an unpolarized photon 

,., __ 1 " To __ 1 To 
u.p - 2 u!-L'J 1-'-'J ---- 2 p.p.· 

(1) 

(2) 

In the expression for the cross section corre
sponding to the diagram of Fig. 1, after integration 
over the momenta of the particles k' and summa-

*Arguments similar to our are contained in part in the 
work of Dalitz and Yennie[•] concerning the creation of pions 
in electron-proton collisions. See their paper for references to 
earlier work on the Weizsacker-Williams method. 

FIG. 1 

FIG. 2 

tion over polarizations, there appears the tensor 
T IJ.II depending on the vectors k and q, such that 

(3) 

The most general expression for the tensor T11- 11 

which satisfies the condition of gauge invariance 

(4) 

The invariant functions a and b depend on k2, q 2 

and kq. Since the amplitude for the photoprocess 
has no singularity at q 2 = 0, this is also true for 
the functions a and b.* Substituting (5) in (2) we 
get 

crp =a (kq). (6) 

The cross section for the process shown in 
Fig. 1, expressed in terms of the tensor T IJ.ll' is 
equal to 

dcr =- [ . kq J 
ww J{(kp)2- k•p• 

"Z2 t (2 ) ( ) dp' 
X e- (f p- q l'· 2p - q "Tl'·'' (:2:n:)" :2£' 

*The functions a and b for the Compton scattering of 
pseudophotons were found by A. Badalyan. [•] 
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The factor in square brackets is the ratio of the 
invariant fluxes for the reactions k + q = k 1 and 
k+p= k 1 +p'. The expression Ze(2p -q) is 
the photon vertex part for the spinless nucleus p. 
Changing to the variables q2, w2 = ( k + q )2 and 
cp (where cp is the angle between p 1 and k' in the 
laboratory system) we easily find 

dp'/2£' =dw2 d(-q2)d~/8Jf(kp)2 -k2p2 • (8) 

Integrating (7) over the azimuthal angle cp, sub
stituting in (5) and using the fact that 2pq = q2, we 
get the invariant formula 

Z2o: (kp)2 (kq) { r (kq)' p2 (kq) J 
da ww= 2n (kp)'- k•p• a l1 + (kp)• q• - (kp) 

[ 2 q• J (kq) } d(f)2 dq2 
+ b P - T (pk) 2 (kq) If · (9) 

Using (6), we have 

z•o: ( k•p• )-1{[ (kq)• P' (kq) J 
da ww = n a.p 1 - (kp)• 1 + (kp)• q• - (kp) 

expression obtained by them does not contain the 
term which was found in [2] and is contained in 
formula (10). The expression given in [G] for the 
polarization vector of the pseudophoton is correct 
only to the extent that one can neglect this term. 
The correct expression is obtained if the vector 
P = 2p - q, which enters for the lower vertex 
of the diagram in Fig. 1, is represented in the 
form 

(Pk) 2 
Pp. = Aep. + (kq)• _ k'q• l(kq) qp.- q kp.]· 

Here (eq) = (ek) = 0. The vector e/J. is space
like, and if we normalize it so that e = -1, it will 
be the polarization vector of the pseudophoton, 
while 

A2= (Pk)2 [- 2_P2 f(kq)2 -k'q'J] 
(kq)2 - k2q2 q (Pk)1 ' 

The spectrum of pseudophotons is proportional to 
A2. The second term in the expression for PIJ. 
gives the additional term which was mentioned 
above. + !!_ (pZ- q2 /4) (kq)} dq2 d(f)2 

a (pk)2 q2 2kq · 
(10) The authors thank I. Yu. Kobzarev, I. Ya. 

For large electron energies ( kp ~ kq, 
(kp) 2 ~ k~2 ), this formula simplifies: 

0 - - 0 1 -J-. -- - --:;---.----= Z2r:t ( (kq)2 p2 ) dq' d(f)2 
ww- n P , (kp)•q• q• (f)•-q•-k• (11) 

and coincides with the result of WW. As for the 
last term in (10), for the case of large electron 
energy it is small, since p2(kq)2/(pk) 2 q2<1, 
and q 2/kq «:: 1. This term is missing from the 
original result of WW, but appears in that of 
Pomeranchuk and Shmushkevich. [2] In the ter
minology of ww,C3J it apparently corresponds to 
the small contribution from the photoprocess due 
to longitudinal "pseudophotons." 

In conclusion, we note in a recent paper of 
Badalyan and Smorodinskii, [&] what appears to 
be an incorrect assertion that they have given a 
new derivation of the Weizsacker-Williams for
mula and that the relation found by them enables 
one to get the cross section for photoproduction, 
for a given polarization of the photon, from the 
differential cross section for electric production. 
Actually the derivation which they present is just 
the usual classical calculation of the spectrum of 
pseudophotons, since the expression for the en
ergy-momentum tensor does not depend on the 
choice of gauge. It is therefore natural that the 

Pomeranchuk, and I. M. Shmushkevich for val-
uable discussions. 
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