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The most rigid equation of state compatible with the requirements of relativity theory is 
p = e: ~ n2, D- c, where p is the pressure, e: the volume density of energy, n the density 
of baryons, D the speed of sound, and c the speed of light. This differs from the previously 
proposed asymptotic behavior 3p = e: ~ n413, D- 3-112c. The case of interaction of the 
baryons through a vector field is considered and it is shown (both by considering the interac­
tion of pairs of baryons and by using the stress tensor of the field) how in this case the equa­
tion p = e: ~ n2 is realized and how the transition to the equation 3p = e: occurs as the mass 
of the field quanta goes to zero. 

1. INTRODUCTION 

IN connection with the problem of the last stage of 
the evolution of heavy stars-gravitational collapse 
-there is now intensified discussion of the ques­
tion of the eq_uation of state of matter at ultrahigh 
densities.Ct-4] Attempts are being made to perfect 
the idea of a neutron condensation, which was first 
put forward by Landau, [5] on one hand by taking 
into account the various elementary particles, and 
on the other by taking into account the nuclear in­
teraction between nucleons (and other baryons). 
Here use is sometimes made of the approximation 
of a rigid repulsion of nucleons, which leads to an 
infinite pressure at a finite density. It is obvious 
that near such a state the speed of sound D would 
exceed the speed of light, D >c. The rigid repul­
sion is in obvious contradiction with the theory of 
relativity, and its use in discussing the asymptotic 
behavior of the equation of state makes no sense, 
even in case the rigid-repulsion model does give 
satisfactory numerical agreement for the usual 
range of nuclear densities. What are the actual 
limitations imposed by relativity on the law of re­
pulsion and on the asymptotic behavior of the equa­
tion of state? 

It is generally assumed [G] that already from the 
special theory of relativity there follows the in­
equality 3p s e:, where p is the pressure and e: 
the energy density, and e: includes the rest masses 
of the particles. The grounds advanced for this are 
that for the electromagnetic field 3p = e: and for 
free noninteracting particles with non-vanishing 
rest masses 3p < e:. We shall construct below an 
example of a relativistically invariant theory in 

which 3p > e: is possible and in the limit p = e:. 
An example of this kind is a classical vector field 
with a mass, interacting with stationary classical 
point charges. 

In Sec. 2 the field equations are formulated and 
the interaction energy of the charges is found as a 
function of the density of the charges and of the. 
pressure; then in the limit of large density p- e: 
(Sec. 3). The same result is obtained in a more 
formal way by considering the stress tensor T ik 
of the vector field (Sec. 4). 

If the energy density e: has a power-law depend­
ence on the charge density n (the density of the 
particles that are sources of the field), e: = an v, 
then the energy and pressure of one particle are 

p = -de1jd(lfn) = (v-l)an• = (v-l)e. 

Thus the asymptotic behavior 3p = e: corresponds 
to v = %. whereas our asymptotic behavior p = e: 
corresponds to v = 2, p = e: = an2• 

Finally, the speed of sound is given by the for­
mula (cf. [7]) 

D2 = c2iJpjde, 

so that for 3p = E we have D = 3-112c, whereas 
our asymptotic behavior gives in the limit D = c; 
from this it can be seen that the equation of state 
obtained from the model of the vector field is the 
most rigid one possible. A higher ratio p/ e: > 1 
and a higher power v > 2 are impossible in prin­
ciple, since a relativistic theory cannot give D > c. 

When the quantity that plays the role of the mass 
of the quanta of the vector field goes to zero one 
gets the well known result which holds for the 
electromagnetic field, 3p s e: (Sec. 5). 
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The main purpose of the present work .is to 
bring out the possibility in principle of a violation 
of the previously proposed relation 3p::::: e:. 

The choice of the vector field with a mass has 
been influenced by a paper by Kobzarev and 
Okun', [s] which develops the theory of the interac­
tion of baryons through a field of heavy neutral 
vector mesons (vectons). If this theory is con­
firmed, then at ultrahigh densities (exceeding by a 
large factor the density of nucleons in nuclei) the 
pressure will be mainly due to the repulsion of 
the baryons ( p = an2) and not to their Fermi en­
ergy ( PF = Bn4/3) (Sec. 6). The question of which 
baryons, and how many kinds of baryons, are to 
be regarded as elementary particles [9] will then 
have no effect on the asymptotic behavior of the 
equation of state. 

2. THE FIELD EQUATIONS 

Let us take the Lagrangian density in the form 

(2.1) 

(2.2) 

We everywhere set c = 1; the metric used is 
Ak = A2 + A1, ~ = i.Ao = icp. In the quantum theory 
the mass m of the field quanta is expressed in 
terms of the constant 11: m = fJ,ti. 

We must add to Sf the terms corresponding to 
the motion of the charges and their interaction 
with the field: 

Sp =- M 5 ds, (2.3) 

where M is the mass of the charges (baryons) and 
g is their charge. 

Varying A, we get the field equations 

(2.4) 

and varying the trajectories of the particles we 
get the equations of motion of the particles. These 
latter do not differ from the equations of motion of 
particles of charge g in an electromagnetic field 

Fik· 
For a point charge at rest at the origin jk is 

3. THE INTERACTION OF THE CHARGES AND 
THE EQUATION OF STATE 

Two charges at rest repel each other with the 
force 

(3.1) 

The interaction energy of the two charges is 

(3.2) 

Here the action of its own potential on a given 
charge is obviously included in the mass M of the 
charge. 

In classical theory with quadratic L and linear 
equations there is no limitation on the application 
of the principle of superposition. Let us consider 
a system composed of a large number of charges. 
Its total energy is 

(3.3) 

If the average density of charges is n and we as­
sume that n-113 < 11-1, we find as the energy of one 
charge 

E = M + g2 n \' -p.r dv = M + 2ng2 n 
1 2 J e r ll" . 

From this we find the energy density 

e = n£1 = Mn + 2:rtg2n2f!L2 

and the pressure 

(3.4) 

(3.5) 

p =- a£1/a (lin) = 2:rtg2n2/f12. (3.6) 

It can be seen from Eqs. (5) and (6) that in the 
limit of large n we indeed have p- e:. 

The pressure could also have been found from 
the virial theorem 

3pV =~ rs fs = ~ rs fst =+ 2; rstfst 
s+l s;.t 

(3. 7) 

the result naturally agrees with Eq. (3.6). 
The increase of E 1 with the density n and the 

law p ~ n2 are due not to the decrease of the dis­
tance to the nearest neighbor, but to the increase 
of the number of neighbors at a given constant 
distance ~ 1/fJ,, which plays the most important 
part in the integrals (3.4) and (3. 7). 

Let us assume that the mass of the vector 
and Eq. (2.4) has the solution 

cp = ge-p.r I r, A =0. (2. 5) meson is much smaller than that of the baryon, 
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and that the coupling constant is in a definite range 
of values: 

from which we have for a system of large dimen­
sions (I 11cp I « f.l 2cp ) 

(3.8) cp = 4ngnlfl~, 

Then it is easy to verify that the state in which we 
are interested, with 3p > E, is attained at a density 
at which both the characteristic length 1/(.l and the 
distance to the nearest neighbor n - 1/3 are larger 
than the classical baryon radius go/Mc 2 and larger 
than the baryon Compton wavelength ti/Mc. * 

Consequently the conclusion that states with 
3p > E are possible is not due to the extrapolation 
of the theory to a region in which there are doubts 
as to its applicability (concerning the potential in 
the region in which we are interested see the end 
of Section 6). The interaction law (3.1), (3.2), 
which has led to the equation of state (3.5), (3.6), 
was not chosen arbitrarily, but comes from the 
relativistically invariant field theory with the 
Lagrangian (2.1). 

We remind the reader that the purpose of this 
paper is to settle the question of the logical pos­
sibility of the inequality 3p > E in a relativistic 
theory; the question of the actual existence of the 
neutral vector field remains open. 

4. THE STRESS TENSOR 

The stress tensor, whose diagonal components 
are T44 = -E, Txx = Tyy = Tzz = p ( [sJ, p. 108), 
is obtained from L by the formula 

(4.1) 

As in the case of the electromagnetic field, to 
symmetrize this tensor we subtract from it the 
quantity 

1 i) 
4;rc iJxt (A; F~.t). 

According to the field equations (3.4), in the ab­
sence of charges (cf. [s], p. 103) 

a iJA; iJF kt i!A; 
-c--;-(A;Fkt)=Fkt-· -. +A,--_ =Fkt--fl2AtAk. (4.2) 
d~l 0.\l iJxl iJxl 

From this we finally get the following expressions: 

8 =- T41 = [P + li2 + fl2 (A2 + cp2)/8n]/8n, (4.3) 
3p = Txx + Tyy + Tzz = (P + li2)/8n + fl2 (3cp2 - A2)/8n. 

(4.4) 

For a system of stationary charges distributed 
with uniform density n the field equations give 

(4.5) 

*The inequalities (3.8) at the same time assure the valid­
ity of the condition 1/ll > n-\ which is necessary for the 
replacement of the sum (3.3) by the integral (3.4). 

Adding to the field energy density the energy 
density coming from the rest mass of the charges, 
Ep = Mn (the charges do not contribute to the 
pressure), we get again the expressions (3.5) and 
(3.6) and the result 

P- 8, 3p > 8 for n > fl2M/4ng2,<Ji>M. 

In (4.5) the system of point charges with the 
density !: go ( r - ri ) has been replaced by a con­
tinuous and uniform charge density. We have thus 
lost the singularities cp ~ (r- ri)-1, IE I 
~ ( r - q )- 2 near the individual charges. These 
singularities should indeed not be taken into ac­
count, since the corresponding energy density has 
been included in the experimental rest mass of 
the particles (charges), and the contribution to the 
pressure is compensated by internal forces, which 
in classical theory secure the existence of ele­
mentary charges. 

Let us consider the field in a region free from 
charges. From (4.3) and (4.4) we find 

(4. 7) 

We try to find the potentials in the form of a com­
bination of plane waves 

cpk (x, t) = ~cpk e'kx--iwt. (4. 8) 

From the field equations we get the relation 

w2 =k2 + fl2, (4.9) 

and from the supplementary condition (2.2) the re­
lation 

(4.10) 

from which it follows that I f{Jk I < I ak I. and con­
sequently, according to Eq. (4. 7), E > 3p for such 
a field. 

Thus the free vector field with a mass actually 
gives E > 3p, in accordance with the picture of 
heavy field quanta with spin 1, nonvanishing rest 
mass, and speed of motion less than c. But the 
relation E > 3p can be violated for a field of 
charges. What is the cause of this difference? 

It must be remembered that the Lagrangian of 
the vector field involves not three (the number 
2s + 1 of components of the spin s = 1 ), but four 
components of the potential, so that the content of 
the theory is not exhausted by the concept of heavy 
particles with spin 1. The fourth component just 
describes the static repulsion. Electrodynamics 
also is not exhaustively described by the trans-
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verse field quanta, but has also the longitudinal 
Coulomb field. In this connection we may remark 
that the present theory of the weak interaction can 
be formulated as the interaction of the fermion 
current with a vector meson field. Furthermore, 
the theory includes 0-0 transitions in {3 decay, 
which could not be understood from the point of 
view of the emission by the nucleus of a meson 
with spin 1 and subsequent decay of this meson 
into e and v. Here also the fourth component of 
the vector meson field comes into action. [to] In 
electrodynamics E- 3p for E -- oo, both for the 
free quanta and for the Coulomb interaction. In 
the theory we are now considering, with the term 
p2A2 in L for the free quanta, we naturally have 
E > 3p, but for the analog of the Coulomb interac­
tion E < 3p; we only have to remember that we 
cannot confine ourselves to the eonsideration of 
the free vector-field quanta alone. 

5. THE TRANSITION TO ELECTRODYNAMICS 

The transition to the case Jl '= 0, i. e., to ordi­
nary electrodynamics, is not entirely trivial, since 
the expressions for E and p, Eqs. (3.4)-(3.6) 
have the quantity p2 in the denominator. The solu­
tion of the paradox is that these formulas are valid 
only for Jl > 1/R, where R is the dimensions of 
the system, and that the equations change their 
form before Jl reaches zero. 

The physical peculiarity of the system in ques­
tion is that the system is not neutral; there is a 
charge density, which is everywhere of the same 
sign. With the Coulomb interaction ( Jl = 0) the 
energy of such a system cannot be written as 
V €( n ). In an infinite system with a finite charge 
density the energy density diverges in the Coulomb 
case. Let us consider a finite system of charges. 
In such a system we must prescribe a pressure to 
retain the charges. According to the virial theo­
rem we get [the notation is as in Eq. (3. 7)] 

~ - 1 
3 ~pdv= 3pV = ~ rs fs = 2 ~ r5t fst· (5.1) 

But for the Coulomb potential 

(5.2) 

so that 

3 ~pdV = 3pV =Ees= e,.V, (5.3) 

where the index es denotes the electrostatic part 
of the energy (the energy density). Recalling also 
the contribution to E from the rest masses of the 
charges, we get for the Coulomb field 3p < €, in 
agreement with [S]. 

In the argument that led to Eq. (4.6) we cannot 
let 11 go to zero, since Eq. (4.5) for the potential 
has the solution (4.6) only so long as I t:.cp I 
« I p2cp 1. In order of magnitude, t:.cp = -cp/R2, 

where R is the dimensions of the system. For 
Jl < 1/R, the solution of Eq. (4.5) will be of the 
form 

(5.4) 

where Ecp is the contribution to E from the term 
Jl2cp 2 [ cf. Eq. (4.3) ]; Ecp goes to zero as it should 
for Jl - 0, but only after 11 has become smaller 
than 1/R. On the other hand, for Jl < 1/R the con­
tribution to E from E 2 becomes finite, whereas 
for Jl » 1/R this quantity was proportional to the 
surface, and not to the volume of the system. The 
term in E 2 occurs with the same coefficient in E 
and 3p in the forms (4.3) and (4.4), so that again 
for the field (electrodynamical) part E = 3p. 

6. ON THE PRACTICALITY OF THE 
STATIONARY-CHARGE MODEL 

Is the model we have considered, for which we 
can have E < 3p, a mechanically possible model, 
a stable one? What could be expected under the 
actual conditions of an ultradense gas, with quan­
tum phenomena taken into account? 

According to Eq. (3.6) the pressure is propor­
tional to n2, and consequently Bp/Bn > 0. This 
sign assures the stability of the system against 
macroscopic fluctuations of the density n for a 
prescribed n in the volume. On the microscopic 
scale, according to the field equations (2.4), at the 
point where the i-th particle is located the poten­
tial cp(i) produced by all the other particles satis­
fies the equation 

(6.1) 

and since cp(i) > 0 and grad cp(i) = 0 by consider­
ations of symmetry, cp(i) has a minimum, which 
corresponds to stable equilibrium of the i-th par­
ticle, if this particle is at a site of a regular lat­
tice with all the other sites occupied by the other 
particles. 

As we know from Earnshaw's theorem, in the 
case of the Coulomb interaction a system of 
charges does not have a stable configuration: the 
charges enclosed in a given volume will concen­
trate themselves on the walls of the volume. This 
property of the system is changed, however, when 
Coulomb's law is replaced by the potential e-pr /r. 

According to Kobzarev and Okun', [S] we may 
take for quantum estimates 
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m = Tif-t = M/2, (6.2) 

with g assumed the same for all three elementary 
baryons ( n, p, A in the scheme of Sakata and 
Okun' ). Then the value of the density at which 
3p = E is reached is 

nc = f1 2M/4ng2 = M 3c3!16nn3 , (6.3) 

which corresponds to the nearest-neighbor dis­
tance 

rc(ikJ = 41i/Mc = 2/f-L = 0,8 fermi (6.4) 

The value of nc is twenty times the nuclear den­
sity that corresponds to the known expression 
R = 1.2A1/3 f for the radius of a heavy nucleus. At 
n ~ nc, however, we can still not expect that the 
formulas will apply, because the density is not 
large enough for us to regard the nucleons as 
"crushed" and quit giving separate consideration 
to other baryons and 7T and K mesons. 

The law 

e =2aN + aN2 , 

N =nine, (6.4) 

at best applies for N > 10, i.e., just in the region 
which, in Salpeter's opinion,[(] is impossible be­
cause of the "incompressibility" of the hard cores 
of the nuc leans. 

Let us estimate the quantum corrections. On 
the assumi_>tion of three types of independent par­
ticles (cf. [9]) the energy of the free Fermi gas 
can be approximated by the expression 

e = 2aN JII + 0.2 N';,_> 0.9 aN'\ N > 1, (6.5) 

which replaces the term 2aN in the expression 
(6.4). The effect of the interaction on the quantum 
kinetic energy of ultradense matter can be esti­
mated by considering the zero-point energy of the 
Debye spectrum of the matter with the speed of 
sound equal to c, the density e:/c2, and 3n inde­
pendent vibrations per unit volume. We get 

ed = 1.0 ncn'1• = 0.9 aN'Ia. (6.6) 

Although in the region in which we are inter­
ested, the potential gcp exceeds the rest mass of 
the particles (charges), we may suppose that as 

usual the vacuum polarization depends on the 
fields ( E, H ) , and not on the potentials, since the 
equations for motion of particles and pair produc­
tion are not changed by the addition of the term 
112 A 2 to L. In the system considered the fields do 
not increase with increase of n. Finally, the quan­
tum motion of the baryons, even with speeds ~ c, 
does not change the charge density they produce, 
which is involved in the equation for cp. Thus on 
the assumptions of Kobzarev and Okun' about the 
role of the vector meson field as the basis of the 
strong interaction we can evidently expect that the 
asymptotic behavior of the equation of state will be 

2 
p=E~n. 

The present work was discussed in April 1961 
at the School of Physics in Nor-Amberd, organized 
by the Institute of Physics of the Academy of 
Sciences of the Armenian S.S.R. I take occasion 
to express my gratitude to the participants in the 
discussion, and particularly to G. S. Saakyan, for 
helpful comments. 
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