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The frequency dependence of the permittivity of a ferroelectric associated with domain wall 
displacements is considered. Numerical calculations have been made, and are compared 
with experiment for Ba Ti 0 3• 

THE motion of domain walls in ferromagnetics 
under the influence of an external magnetic field 
has been discussed theoretically in a number of 
papers. [t-aJ Dispersion of the magnetic perme
ability associated with domain wall motion has 
been observed experimentally in ferrites (e.g., 
see [4- 5J ) . The ideas developed for ferromagnetic 
materials are applied in the present paper to fer
roelectrics. 

We consider a free boundary separating two 
ferroelectric regions polarized parallel to the 
boundary in opposite directions, i.e., to be defi
nite, we consider a single 180-degree boundary. 
It follows from energy considerations that the wall 
will be displaced by a uniform external electric 
field if it has a component parallel to the sponta
neous polarization inside the domains. We take 
this direction as the z axis, and the direction 
perpendicular to the wall as the x axis. We take 
as the steady-state solution, i.e., the structure of 
the stationary wall in the absence of external field, 
the solution obtained by Zhirnov. [6] A feature of 
this solution is that the change with x coordinate 
of the polarization vector P is confined to the Pz 
component, and Py = 0. If we take the external 
electric field E along the z axis, the only com
ponent of the polarization vector P different from 
zero will be, as before, Pz, which for brevity we 
will simply call P. 

It is convenient to write the thermodynamic po
tential of unit volume of a ferroelectric with cubic 
symmetry in terms of the variables P and Uij 
(the deformation tensor): 

F = f 0 + +x (dP/dx) 2 + aP2 + + ~P4 

+ + C1 (u;x + u!u + U~z) 

where the energy of anisotropy, the elastic and 
electrostrictive energies, and the correlation en
ergy associated with the nonuniformity of P are 
included explicitly. 

We write the density of kinetic energy in the 
form 

1 (au,.)" , 1 m (ap)2 

T = 2 P Tt 7 2 ne2 Tt, ' (2) 

where the first term is the energy of elastic os
cillations ( p is the density, and ui is the dis
placement vector), and the second term is the 
energy of the oscillations of the ions (it is as
sumed[7•8J that the polarization in a ferroelectric 
is due to the displacement of a definite ion, P 
= nez, where z is the displacement of the ion, 
e is the effective charge, m is the effective mass, 
and n is the number of ions in unit volume). 

The equations connecting P, Ui, and <Tij• the 
deformation tensor, are now obtained, following 
the usual rule, from the Lagrange density L 
= T- F by allowing variations with respect to 
P and Ui: 

m a•p I m ap _ a2p 2 p 2i.tp3 2 P 
ne2 f)t• ' ne2 Wr (f[ - x ax2 - a - ,.. - qluzz 

(3) 

(4) 

where a decay term has been added to the left-hand 
side of equation (3); Wr is the frequency of the ion 
causing the decay. In what follows we will take the 
field to depend harmonically on the time E = E0 x 
eiwt. 

The longitudinal acoustic wave along the z axis, 
arising when the field is switched on, decays with 
time. A solution can, therefore, be sought in the 
variables x and t. We introduce the dimensionless 
variable ~ = ( x - X) I o, which is a measure of the 
distance from the instantaneous center of the wall 

+ C2 (Uxx Uyy + Uxx Uzz + Uyy Uzz) 

+ {- C3 (u~u + u;z + U~z) + q1uzzP2 

+ q2 (Uxx + Uyy) P2 - P£, (1) X ( t); V = dX/dt is the velocity of the wall, o 
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= ..J K/({3 -qVc1) P~ is a parameter of the wall 
thickness, and P 0 is the static polarization in the 
uniform ferroelectric. We also introduce the no
tation 

(5) 

We seek a solution of the system (3) and (4) in 
the special form 

P (x, t) = pc (£) + p (S) e''vr, 

(6) 

where the field P 0 is considered to be sufficiently 
small [see inequality (10) below] so that it is pos
sible to use perturbation theory with respect to p 
and Ui. A solution in the form of (6) means that 
the wall, without changing its form (PC(x), u9(x) 

1 
is the static solution[6J in the absence of the field 
E), oscillates with frequency w and velocity V. 
A small distortion of the form of the wall occurs 
due to the superposition of the small oscillations 
of ions with the same frequency w about the equi
librium position in the moving boundary. Such a 
type of solution is dictated by the physics of the 
situation, and is justified by the fact that a solution 
of (3) and (4) in the form given by (6) exists, and 
is determined uniquely. 

By substituting (6) in (3) and (4) we obtain, in 
the linear approximation with respect to p and Ui, 
a system of linear equations in total differentials 
for p and ux (uy = uz = 0).* 

In the particular case q2 = 0 (according to the 
data of Devonshire[BJ q 2 = 0 for BaTi03), and 
on satisfying the inequalities 

this system of equations becomes simpler, and 
leads to a single equation for p: 

___:!__ i (l -- ,1~) _L '1u '-: 6- __ _::i ____ I,CJ 
dYJ i 1 ' rh) _! ' '_ ! --- ;1' J 

(7) 

(8) 

Here we have written TJ =tanh ~. For the inhomo
geneous equation (8) to have a finite solution, the 
following condition must be satisfied t 

*The latter is derived from the boundary conditions Uij(x) 

= 0 deep in the domains (x = ± oo). Such boundary conditions 
are valid at sufficiently high frequencies: ell « w, where c 
is the velocity of sound, l is the dimension of the crystal. 
If the reverse inequality is true, in particular when w = 0, the 
boundary conditions will be different: aij (x) = 0 at x = ± oo, 

tThis condition becomes obvious if the solution of the 
inhomogeneous second-order linear equation is written in the 
general form, and it is remembered that the second linearly 
independent solution of the homogeneous equation (8) is in
finite. 

-H 

\ dl]P~ (TJ) F (rJ) = 0, 
•' 

-1 

where F ( TJ) is the right-hand side of (8), and 
P~( TJ), the associated Legendre polynomial, is the 
finite solution of the corresponding homogeneous 
equation. From this condition is obtained the solu
tion for the wall velocity of interest to us: 

(9) 

We now make more precise the conditions under 
which expression (9) was obtained. The condition 
for a linear approximation in p and ui is the satis
fying of the weaker of the inequalities 

(10) 

For a fixed frequency of the external field w, the 
first of these inequalities imposes a limitation on 
the value of the field strength E 0• The presence 
of significant ionic damping ( w < wr) allows the 
requirement that E0 be small to be weakened. The 
satisfying of conditions (10) ensures that the dis
tortion of the form of the moving boundary, as com
pared with that of the stationary boundary, is small. 
The velocity of wall displacement, as is seen from 
Eq. (9), is also small, and is proportional to the 
strength of the external field E0• 

Condition (7), if decay is neglected, assumes 
that the frequency of the external field is small 
in comparison with the resonance frequency of the 
ions in the internal field [see formula (19) below]. 
The wall oscillates with the frequency of the exter
nal field, and thus condition (7) means neglecting 
the interaction of the wall oscillations with the in
trinsic oscillations of the ions in the internal field. 
This simplifies the problem and allows us to find 
without difficulty solution (9) for the wall velocity. 
If Pij depends on the temperature T linearly, Pij 
~ ® - T (second order phase transition), then, 
for a fixed frequency of the external field w, con
dition (7) imposes a limitation on the temperature, 
which must not be too close to the Curie tempera
ture ®. The greater the ionic damping, i.e., the 
greater wr, the stronger becomes this limitation 
[see the second inequality of condition (7)] . 

We now calculate the energy W of the boundary 
layer per square centimeter of surface: 

co 

\-V' = \ dx (T F)- \ dx (T -- F)uniform' (11) 
-:=D -:o 

where the integral of the energy density of the 
uniformly polarized ferroelectric has been sub
tracted. To do this it is necessary to use solu
tions (6). We substitute them into (11) and expand 
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the integrands in series, whilst observing condi
tions (7), (10) and q 2 = 0. After integrating we ob
tain 

\F = IX' 0 - - .1.- .VIV"- F X 

The first term of this expression 

(12) 

(13) 

is the energy per unit surface area of the station
ary wall.* The second term, proportional to the 
square of the velocity, is the kinetic energy of the 
wall. It is natural to call the coefficient M the 
effective mass of the wall, where 

(14) 

The third term, proportional to the displacement, 
is the potential energy of the wall in the external 
field. t The coefficient F is the pressure exerted 
by the field on the wall, F = - 2P 0E. 

According to (12) the equation of motion of the 
boundary will be 

MdVidt -- Mw,V = F, (15) 

where a decay term proportional to the wall veloc
ity has been added. Its solution, as would be ex
pected, is expression (9). It would, of course, 
have been possible to write down (15) (accurate 
to within an arbitrary constant multiplier) start
ing from the solution (9) obtained previously, with
out resorting to a calculation of the wall energy 
(12). However, the calculations presented confirm 
once more the correctness of the result obtained 
(9), and enable the physical meaning to be made 
more precise, and the coefficients M and F to 
be written down explicitly. 

So far the domain wall has been considered to 
be free (if we neglect the ionic damping). This 
will apparently be the case in an ideal crystal. 
However, when inclusions and deformations are 
present in the crystal, the boundary can have equi
librium positions which are energetically more 
favorable, and can also encounter in its motion 
additional resistance. If it is supposed that the 
wall is elastically coupled in an equilibrium posi
tion, then (15) must be generalized as follows: t 

*There are misprints in the analogous expressions in 
Zhirnov's paper:• in all formulae for a a multiplier ¥2 must be 
added. 

tWhen calculating the energy of a wall in a ferromagnetic 
a similar term was erroneously omitted in 5 as well as in 3 

(this did not, however, ·affect the result). The integral of the 
+oo 

type f dxPc(x) is, in fact, different from zero, and is pro-

portional to the displacement of the boundary X. 
Ht would be more logical to include the imperfection of 

the crystal in the original expression (1) for the thermodynamic 
potential and hence obtain Eq. (16). 

where Mw~ is the additional frictional coefficient, 
and Mw5 is the elastic coupling constant. Both 
these coefficients must depend greatly on the 
structure of the material. 

The polarization of the crystal changes, when 
the boundary is displaced a distance X, by the 
amount ~p = - 2P0X/l (under conditions such 
that the small distortion in the form of the wall 
can be neglected), where l is the dimension of 
the crystal. If the specimen is subdivided into 
many domains, then l should be understood to be 
the mean domain width. Solving (16), we obtain 
an expression for the electric susceptibility x of 
the ferroelectric due to the domain wall displace
ment: 

::,p 
X ((I)) ·~· E (t)~- <D:! i(wr--: (t) ;_) (J) 

where Xo is the susceptibility at the frequency 
w = 0: 

Xu··· 4P~ LMw~. 

(17) 

(18) 

The resonance frequency w0 is related to Xo by 
(18). 

We now make some numerical estimates for 
BaTi03 and compare the formula obtained, (17), 
with the experimentally observed[9J variation of 
the dielectric constant E of polycrystalline Ba Ti03 

on the frequency of the external field w/21f. In 
order of magnitude, the effective mass of the ion 
is m = 10-22 g (the reduced mass of Ba and the 
Ti03 group is 9.4 x 1o- 23g, [10J or the mass of Ti 
is 8 x 10-23 g). The effective charge is e = 4 x 4.8 
x 10- 10 (twice the charge of Ba and Ti03, or four 
times the charge of Ti). The number of ions per 
cc is n = (4 x 10-8 )-3 cm- 3• Thus, we have ne 2/m 
= 6 x 10 26 sec- 2• The experimental value of P 0 is 
4.8 x 104; according to Devonshire's data, [8J we 
have (3 = 7 x 10- 12• Thus, wq/27f = 1.2 x 10 12 sec- 1 

[see Eq. (5)]. Taking for K the value 3 x 1o-16 cm 2 

(see [10J), we obtain o = 1.3 x 10-7 em. The energy 
of unit area of the wall is, according to (13), w0 

= 8 erg/ em 2• The effective mass of the wall is, 
according to (14), M = 0.4 x 16-10 g/cm 2• Taking 
the experimental value[9J of the susceptibility at 
the frequency w = 0 as Xo = 1300/ 47f ( E = E 00 

+ 47rx), and taking the domain thickness as l = 10-3 

em, we obtain for the resonance frequency w0 

from formula (18) the value w0 /27f = 0.8 x 1010 

sec- 1, which agrees in order of magnitude with 
the experimental value[9J of 3 x 10 10 sec- 1• 

Since there are two damping mechanisms, it 
can be expected that the sum of the damping fre
quencies wr + w~ will be much greater than the 
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resonance frequency w0 ( wr has been experimen-
tally determined for Rochelle salt, [11J and gives 
wrlw~ = 2.6 x 10-8/(®- T) sec- 1 ). In this case 
the dispersion (17) will show, not a resonant, but 
a relaxation behavior, which is observed in ex
periment~9] 

It is still necessary to verify that conditions 
(7) and (10) for the applicability of formula (17) 
are satisfied. If we take E0 :s 1 v /em, then 
wp /2rr = 109 sec- 1• The value of wq has been ob
tained above. By comparing these values with the 
resonance frequency w0, we see that in the dis
persion region the frequency w in fact satisfies 
inequalities (7) and (10). 

The treatment given and the numerical calcu
lations show that the experimentally observed 
dispersion in Ba Ti03 can be considered as due 
to processes of domain wall displacement (this 
idea was first advanced by Kittel C12J). 

Apart from the dispersion considered, there 
exists in ferroelectrics another dispersion region 
at a higher frequency, associated with the intrin-
sic oscillations of the ions [the resonance fre
quency wq, (5)].C7· 10J In distinction from the first, 

the second dispersion region should also be observed 
in a homogeneous (single-domain) ferroeletric. 
Solving the system of linearized equations in the case 
of the homogeneous ferroelectric, we obtain for the 
susceptibility 

where Xoo = Y4f3P5. In distinction from formula 
(10) of C10J, Eq. (19) was derived taking into account 
the elastic energy and the electrostrictive energy. 
The applicability of formula (19) for all frequencies 
is limited by the single inequality wb « w~, i.e., 

E0 « 4{3P~. Taking into account that in a phase 
transition of the second kind we have P5,... ®- T, 
this inequality imposes at a fixed field strength E0 

a limitation on the temperature T, which must not 
be too close to the Curie temperature ® (for more 
detail on this question see C10J). 

In conclusion, it should be noted that the entire 
treatment is valid if there is a second order (but 
not a first order) phase transition in the ferro
electric. 

The author thanks V. L. Ginzburg and A. P. 
Levanyuk for discussing the work and for valuable 
counsels. 
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