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The probability of the production of tritons as a result of the indirect evaporation process 
when heavy nuclei are bombarded by protons of energy ~ 100 Mev is calculated. 

1. INTRODUCTION 

IT is known that nucleons, deuterons d, tritons t, 
helium nuclei a, and other heavier particles are 
produced in collisions between high-energy nucle
ons and nuclei. As a rule, these particles are 
produced as a result of a direct interaction be
tween the bombarding nucleon and the nucleus 
and the subsequent evaporation of the residual 
excited nucleus. However, at incident nucleon 
energies up to 100 Mev, the production reaction 
can take place through a compound state. For ex
ample, at an incident nucleon energy of 100 Mev 
(mean free path of a nucleon in the nucleus ~ 4 
x 10-13 em), the nucleon, in the case of a central 
collision with a heavy nucleus, can experience 
several collisions in the nucleus and lose a large 
part of its energy, as a result of which it is 
trapped in the nucleus and produces an excited 
compound nucleus. We shall consider such a 
mechanism of emission of particles. 

It is usually assumed that entire compound 
particles (d, t, a) are evaporated from the com
pound nucleus, but the excitation can be removed 
by other channels, in particular, by the evapora
tion of individual nucleons (or various combina
tions of them) and their subsequent uniting into 
d, t, or a close to the boundary of the nucleus 
(indirect process). 

Kikuchi C1l calculated the deuteron yield by 
means of the indirect process. The basic differ
ence in comparison with ordinary evaporation is 
in an increase in the mean kinetic energy of the 
emitted deuterons and a change in the shape of 
the energy distribution. The probability of deu
teron emission in the indirect process, at large 
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excitation, exceeds the corresponding probability 
for ordinary evaporation. 

In contrast to the case of deuterons, the indirect 
process for triton production can proceed via two 
channels: by the evaporation of two neutrons and 
one proton and their subsequent union and by the 
evaporation of a deuteron and neutron and their 
subsequent union. We calculated the triton yield 
via the first channel only and determined its en
ergy spectrum. The calculations were based on 
the method of Kapur and Peierls [21 (see also [11 

and [JJ). 

2. DETERMINATION OF THE REACTION MATRIX 

We shall consider the reaction in which a triton 
is produced in a heavy nucleus by a high-energy 
proton p 

p + Az -> C---+ (A -2)z + t, (1) 

where C denotes a compound nucleus, Az is the 
target nucleus of mass number A and charge Z. 
The production of a triton can take place through 
the union of combinations of two neutrons and one 
proton undergoing evaporation. In order to take 
into account all possibilities, we divide the con
figuration space of two neutrons ( n1 and n2 ) and 
a proton p, which form the triton, into eight re
gions corresponding to different combinations of 
these particles with respect to a surface S of 
given radius r 0 ( r 0 is the distance at which the 
potential energy between nucleons n1, n2, p and 
the residual nucleus (A- 2) z is sufficiently small; 
r 0 is a little bigger than the radius of the nucleus). 
The configuration space is divided in the following 
way: 
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In region 1, the particles n1o n2, and p unite into 
a triton. The transition from 8 to 1 can take place 
through one of the regions 5, 6, 7, and then, de
pending on the case, through one of the regions 2, 
3, 4. In all, there are six ways of transition from 
8 to 1. We shall consider below one of these tran
sitions: 8-5-2-1. 

The Hamiltonian of the entire system H is 
written in the form 

H = Ho +KP +K1 +K2 +Vp +V1 +V2 
+ Vp1 + Vp 2 + V12, (2) 

where H0 is the Hamiltonian of the residual nucleus 
(A- 2) z; Kp, K1, K2 are the kinetic energy oper
ators of the nucleons p, n 1, n 2; Vp, V1, V2 are the 
potential energies of interaction of nucleons p, n 1, 

n2 with the residual nucleus (A-2)z; Vp1, Vp 2, 

V 12 are the potential energies of interaction of nu
cleons p and n1, p and n2, n1 and n 2• It is con
venient to express the matrix of the transition T 
by means of wave functions of the final state ~t>, 
which are solutions of Schrodinger's equation 

To do this, we consider the initial (p + Az) and 
final [ (A- 2) z + t] states of the system. 

(3) 

The splitting up of the Hamiltonian into an un
perturbed part and a perturbation is different for 
the initial (i) and final (f) states. In the initial 
state 

H =Hi +Vi, 

In the final state 

(4) 

(5) 

Here Hi is the unperturbed Hamiltonian of the ini
tial state, Vi is its perturbation; Hf and Vf are 
the corresponding quantities in the final state. 

We also introduce the wave functions <I>i and <I>f 
of the unperturbed Hamiltonians Hi and Hf, re
spectively: 

(6) 

Then the matrix T is written in the form: [4, 5J 

T = <W)-l !Vi! <I>i), (7) 

w)-l = [ 1 + (E - ie - H)-1Vtl <I>t. (8) 

We are interested in those transitions which go 
through the compound state. It is therefore neces
sary to exclude from matrix (7) those processes of 
triton production in which the incident proton p is 
not inside the region bounded by the surface S and 
interacts with the tails of the wave functions of 
neutrons n1 and n2 (direct capture). For this 

purpose, we split the perturbation Vi occurring 
in (7) into two parts corresponding to the positions 
of the proton p in the initial state outside and in
side the nucleus: 

(9) 

We now introduce the Hamiltonian H< 2> describ
ing the decaying intermediate nucleus after p and 
n1 have left it: 

H(2l = Ho +K2 +V2, 

the Hamiltonian H< 5> describing the decaying in
termediate nucleus after the proton has left it: 

H(o) = Ho + K1 + K2 + V1 + V2 + V12 

and the Hamiltonian of the compound nucleus H< 8>: 

H(s) = Hi + v~s). 
We also introduce the quantities E< 2> = E 

-ti2(kb + k~)/2M, E< 5> = E -ti2kb/2M, where 
tikp and tik1 are the momenta of p and n1, and 
M is the mass of the nucleon. 

We shall consider the eigenfunctions <P ~2 >, <P J]>, 
<P ~B> of the Hamiltonians H< 2>, H(5), H< 8>, respec
tively, which have complex eigenvalues w~2>, wJ]>, 
W~8> (the subscripts v, JJ., A. indicate the level 
number). The function <P satisfies on the surface 
S the boundary conditionR 

(10) 

where the function f is given by Kapur and Peierls. [2J 

The functions <P~2 >', <PJ]>', <P~B>' corresponding to 
the complex conjugate eigenvalues wV>*, wU>*, 
W~8> * satisfy the complex conjugate boundary 
conditions. 

The functions <P are normalized in the following 
way: 

<rn(2)' I rn(2)) - N( 2) 0 (11) 
"'f'V 't'll- - ') vp., 

I N~2>1 = 1, and similarly for <P< 5> and <P<B>. The 
complex factor N occurs when <P< 2> is replaced 
by <P <2>' in the usual normalization conditions 

We now separate out of the matrix T given by 
formula (7) the part T(c) associated with the 
transition through the compound nucleus: 

(12) 



90 S. V. IZMAILOV and I. I. P'YANOV 

Here[5l 

p}-) = Q3Q2Q1<l>f, 

Q1 = I + [£ -is - H<5l - KP 

- (Vp1 + Vpz)<sl - L12 + V1 + V2)-1Ll2• 

Q2 = l + (E - ie - H<5l 

- Kp)-1 IV1 + V2 - (Vp1 + Vp2)<sl - L12l. 

(13) 

where L12 is an arbitrary interaction potential, 
which it is convenient to choose in the form of a 
potential of a rigid sphere. 

We now expand the matrix T( c) in the wave 
functions cp< 2>, cp< 5>, cp< 8>. However, the function 
F!-> in (12) does not satisfy on the surface S the 
boundary conditions of the type (12) corresponding 
to the decay. Kapur and Peierls[2l showed that the 
function Ft> - x can be expanded in terms of cp 
if x is chosen so that the difference satisfies the 
boundary conditions. The quantity x is taken in 
such a way that all final expressions containing 
it vanish. 

It is also convenient to introduce the potential 
energy[3l Lp [in analogy to the quantity L12 in
troduced in (13)] in order to separate out of T(c) 
terms responsible for potential scattering. The 
matrix T(C) then takes the form 

r<c> = <xr> 1 Lp 1 <I>;> + <Fr) 1 v;s) - Lp i xi+)>; (14) 

x)+> = [ l + (E + ie - H<5l - KP - Lp)-1 Lp) <l>;, 

:x}-l = [l +(£- ie- H<5l-KP - Lp)-1 Lp) 

x [l + (E- ie- H<5 l -Kpr1 

X (V1 + V2 - Vp1 - Vp2) I <I>,. (15) 

The first term in (14) vanishes, since it describes 
the elastic scattering of the proton, and its inter
action with nucleons n1 and n2 does not lead to the 
production of a triton because of the endothermic 
character of this transition. 

For the expansion of T(c) in terms of cp< 2>, we 
note that the function n1q,f in (12) satisfies the 
equation 

We multiply (16) on the left by the wave function 
( k1kp I of the free neutron n1 (momentum lik1 ) 

and the proton p ( likp ) ; we take the transposed 
matrix (we shall denote it with the tilde ) and act 
with it on the function cp~2 >. Then, using the identity 

1 < (2)' k k I 
-(-E-;;:(2,---) --W-~c:-;2)-) -N· ~2) <{lv 1 P 

= _1-- < (2)' k k I 1 
N~2l <p. 1 P E +is- H<2l-Kp- K1 

and carrying out the summation over v, k1, and 
kp, we obtain 

l; ~<2l(v; k2) [N\~l (£<2l- W~2l)]-1 (<p~2 )' k1kpl 
vk 1kp 

= ({l + (£- ie- H<2l- KP- K1}-1 IV2 -L12- V12 

- (Vp1 + Vp2)<sl)} QI<l>f!, (17) 

~<2 ) (v; k2) = (Q1<l>f I if<2l- H<2l I k1kp<p~2)>. (18) 

Multiplying (17) by 

+ (E- ie-H<5l- Kp}-1(V1 + V2), 

we obtain ( n2n1.Pf I in the right-hand part. After 
inserting this expression into (14), T(c) takes the 
form 

T<c> = 2; ~<2 l (v; k2) [N~2 > (£<2l - W~2l) )-1 
vl<,kp 

X (k1kp<p~2)' [ 1 + ("V;_ + Y2) 

X (£ + ie - if<sl- KP)-11 1'2a!V}8l-Lp lxt>. (19) 

The quantity t::.C 2) occurring here characterizes the 
probability of the evaporation of the neutron n2 

from the intermediate state of the nucleus (A - 1 ) z 
and the subsequent formation of a triton. 

Carrying out the expansion of matrix (19) in 
terms of cp< 5> and cp< 8>, we obtain, by similar 
arguments, 

T~ = ~ ~(2) (v; k2) [N~2 ) (£<2)- W~2)))-1 ~g~ (1.1; Vkl) 
vp.A 
k,kp 

X [N~) (£<&) - w~))l-1 ~:~~ (A.; f1kp) [N~S) (E - W~8))]-1 YAP• 

(20) 

Here 

characterize the probabilities of transition of the 
system from region 5 to region 2 (with the emis
sion of the neutron n 1) and from region 8 to re
gion 5 (with the emission of the proton). The 
quantity 

(22) 

characterizes the probability of the formation of a 
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compound nucleus in the state A when the target 
nucleus is bombarded by protons. 

The subscript 1 of the matrix Tlc) denotes a 
given channel for the reaction; we did not indicate 
this earlier for the sake of brevity. The matrices 
for processes taking place by other channels are 
written in a similar way. The complete matrix 
element is, of course, equal to their sum 

6 

T(c) = )~ T}c). 
"'-" 

(23) 

3. CALCULATION OF THE CROSS SECTION FOR 
THE PRODUCTION OF TRITONS 

We shall calculate the cross section u (p, t) 
for the process corresponding to the matrix T(c) 
(23). It is convenient to write it in the form of a 
dispersion formula in which terms characterizing 
the formation of a compound nucleus are separated: 

- :n: I:LJ (rt r),p l';, \z 
(j (p, t) - k~ ), N~B) (E- W\~)) I • (24) 

Here rAP = I YAp 12 is the width for the formation 
of a compound nucleus by the incident proton and 
the nucleus Az; r t is the width corresponding to 
the formation of a triton; w~B) = EA- !irA, where 
EA is the energy level of the compound nucleus in 
the state A, and rA is the width of this level. 

The expression for the cross section (24) must 
be averaged over the initial state and summed over 
all final states. To do this, we consider the aver
age of u (p, t) with respect to the energy of the 
bombarding beam, where we neglect the contribu
tion from cross terms: 

(j t - __::_ __ 1~ I rt r ),p dE 2:n: rtrAP 
(p, ) - k~ D (Ec) J (£ _ £1<)2 + f~/4 = k~ fAD (Ec) 

Here the symbol l: f denotes summation over all 
final states. 

We estimate the first term B1 in the sum (27). 
Introducing the notation 

g(r2, R; k1, kp) = <klkpi<:Pr>=<kikpl QJ<:Pt>. (28) 

we rewrite (18) in the form 

~( 2 \ (v; k2) = <g 1 H(2)- li(2) Jcp~2 )). (29) 

In (29), we neglected the effect of L12 on the wave 
function <l>f. The error in doing this is small, 
since, by choosing L 12 .in the form of a potential 
of a rigid sphere, we extrapolate the given form 
of g (28) to the small volume bounded by the sur
face S. 

In (28), R denotes the coordinates of all the 
particles except n1, n 2, p. Then 

1 
g= (2:n:)3 

X~ drldrpe-ik,r,e-ikprp <:Pt (r1, r2, rp) /Kt(rl+rz+rp)/3-qrf (R). 

Here 'llf( R) is the wave function of the residual 
nucleus (A-2)z; <I>t(r1, r 2, rp) is the wave 
function of the internal motion of the triton; for 
our problem it is convenient to choose it in the 
form 

<Dt = ~ [exp {-cr (PI+ p2)} + exp {-cr (p2 + p3)} 

2 V7 :n: PlPt P2P3 

+- exp {-ct (Ps+ p1)}J. 
PsP1 

(30) 

(31) 

We note that here <I>t is normalized, the parameter 
a characterizes the dimensions of the nucleus and 
the binding energy of the triton, and 

(25) The calculation of g (28) gives 

here D ( Ec) is the average distance between the 
compound nucleus levels for an excitation energy 
Ec =EA. 

Taking into account the fact that the density of 
the final states of the triton is 

2 ·41tKidKtf(21t)3 dEt = 3MKtl1t2n2 

where Kt is the wave number of the emitted triton, 
E = li 2K£ I 6M is the kinetic energy of the triton, 
we obtain the expression for the width rt: 

ft = l:r ~ MKt I B I\ (26) 
:n: n 

B = 2J ~(2) (v; k2) !N~2 ) (P2) - w~2)) J-1 ~m (~t; vk1) 
)J.Vk1kp 

x IN~) (£(5) - W~l)]-1 ~m (A-, r-kp) 

+ 5 similar terms from (23) (27) 

g = s (k1 , kp, Kt) 1ft (R) exp (iqr2), (32) 

s = ~~ 1 I 1 
;n:2 Jf7l (cr2 + qil (a"+ q~) (cr2 + q~) (ct2+ q;) 

+ ( ct2 + q~) \ cr2 + qiJ J ' 

q = Kt-k1-kP, q1=fl<t-k1-kp, 

(33) 

For greater accuracy in the estimate (28), we 
take into account the spin components of all par
ticles, except n 1 and p. After lengthy calculations, 
in which we neglect the recoil of the nucleus (so 
that q = Kt - k1 - kp ~ k2 ), and going over to the inte
gral over the surface, (SJ we obtain for the average 
value of (29) 



92 8. V. IZMAILOV and I. I. P'YANOV 

IL'l(2) (v; kz) l~v = (nn 218Mkz) G2f2v (kz), r2V (k2) =I Y2 (v) 12, 

(34) 

where, according to reference 1, 

x~("~~'tW)YJMt,ai<Jl~2>(a~2 --f(k2r2))it,(k2r2))ds (35) 
s 

is the amplitude of the width of the emission of 
nucleon n2 with a momentum nk2 from the inter
mediate nucleus (A- 1 )z in the state v. In (35), 
jz2(k2r 2 ) is the spherical Bessel function of the 
first kind and of order Z2, and 

YJMt,cr= S (l2crm2ttiJM) (cr20'of-lcflo[crfl) 

where x/-l2(u2 ) and x/-l0(u0 ) are the spin functions 
of the neutron n 2 and the residual nucleus (A- 2) z, 
respectively; ( .... I .. ) are the Clebsch-Gordan 
coefficients; Yz~2 are spherical functions. 

The calculation of (21) gives 

\ Llg:(fl; vk1) !2av = (rrN(Mk1) fw(kl); 

Ill~~~ (A-; flkp) l2av = (rr1i,2fMkp) rpA(kp). (36) 

where r 1/-l(k1 ) is the width for the emission of neu
tron n1 with momentum lik1 from the intermediate 
nucleus Az in the state 1-l; r pA. ( kp) is the width for 
the emission of the proton with momentum likp from 
the compound nucleus in the state A.. 

We insert (34) and (36) into (27) and make the 
substitution for the widths in accordance with 
Weisskopf's formulas:[7J 

r , = _1_ 2M£1 o(l) (£ ) 
li w (£(5)) rr,2fi2 1 ' 

f = _1_ 2M£2 (2) (£) I' ___ 1_ 2MEP (p) ( 
2v w(£(2)) rr,2fi2 0 2' pl.- w(Ec) n"n" Ci Ep), 

(37) 

here w(E< 5>), w(E<2>), and w(Ec) arethelevel 
densities of the intermediate nuclei Az, (A -1 )z, 
and the compound nucleus C, respectively, with 
excitation energies E(5), E< 2>, and Ec; u<1>(E 1 ), 

u< 2>(E 2 ), and u<P>(Ep) are the cross sections for 
the formation of intermediate nuclei Az, (A - 1) z, 
and the compound nucleus C by the incident nucle
ons n1, n2, and p of energy E 1, E 2, and Ep, where 
these cross sections are slowly varying functions 
of the energy, and E 1, E2, and Ep are eigenvalues 
of the operators K1, K2, Kp, respectively. After 
integration, we obtain the quantity Bj ( j = 1, 2, 3, 
4, 5, 6 ): 

I 1 n2rx2/M + 8£1,<3 llh2 jM + 32 £1/3~ 
T 2Jn fi2a_2jM Jn fi2rJ.2/M J • (38) 

In the calculation of (38), we took into account 
the fact that [BJ 

· E-1-E+S+S\ 
w (£( 2l):=:::.;w (Ec)exp (.- 1 ' P ~ 1 P 1 , 

c J 

w (£( 5 )) = w (Ec) exp (- EP ~ 5 P), 

where Sp and 81 are the binding energies of the 
nucleons p and n 1 in nuclei Az and (A - 1 ) z, 
respectively, ®c is the temperature of the com
pound nucleus C; we also took into account the 
fact that, according to reference 9, 81 ~ 82 ~ Sp 
in the case of heavy nuclei. 

Inserting the value of Bj (38) into (26) and 
carrying out the summation over all final states 
(after going over from summation to integration): 

( St is the binding energy of a triton in the resid
ual nucleus (A- 2 )z, Ef = Ec- Et- Stl. we obtain 
the width for the triton production: 

f 1 = 1.4 ·10-3 (Ma/n2) 2 cr11l cr(2) cr(PJ exp [- (3S1 + S1)/Elcl 

x ~ f2 (£1) £7 exp (- 2Et1Elc) d£1. (39) 

If we neglect the slowly varying logarithmic 
term, the integrand gives the energy spectrum 
dw ( Et) of the emitted tritons: 

dw (£1) ~ Ej exp (- 2£1/Bc) dEt. (40) 

Calculation of the integral in (3 9) by the method 
of steepest descent leads to 

(41) 

Finally, we compare the width (41) with the width 
for the evaporation of a triton r tc obtained from the 
ordinary theory of evaporation. For this, we intro
duce[!] the integral width for the evaporation of nu
cleons n1 and p and a triton by the compound 
nucleus: 
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(i = 1' p, t) 

f 1c = (2M/n2n2) cr<1> E>~ exp (- S 11E>c). 

fpc= (2M/n2n2) a<P> 8~ exp (- SpiE>c), 

ftc = (6Mfn2h2) aU> E>~ exp (- S,l8c), (42) 

where a< 1>, a<P >, and a<t> are the cross sections 
for the formation of a compound nucleus by the in
cident nucleons n1 and p and the triton. We note 
that formulas (42) are readily derived from (37). 
As a result, we obtain 

r r (2) ,,., 2 
10-2 1c pc c; f2(28 ) ~ x (- S ;e ) (43) ftfftc = 4.5 · D2 (E ) (I) c ME? e P 1 c • 

c Ci c 

The quantity r 1Cr pc /D2( Ec) is of the order of 
unity, since the excitation energy is large. £8] The 
ratio a< 2>;a<t> is also of the order of magnitude of 
unity; the term n2a 2/M is equal to 0.3 Mev.* The 
binding energy S1 can be taken equal to 6 Mev 
(heavy nuclei). Then 

I'tfftc = 1.4. I0-2 e;;-l f2 (28c) exp (- 6/8c) (8c in Mev). 
(44) 

For ®c ~ 2.5 Mev, which corresponds to an exci
tation energy of 100 Mev for heavy nuclei with A 
> 200, we have 

ftfftc ~ 0,3. (45) 

Hence the indirect evaporation process associ
ated with the evaporation of the three nucleons n1, 

n2, and p and their subsequent uniting makes an 
appreciable contribution to the cross section for 
the production of tritons. 

*The quantity ex. is estimated from the value of the triton 
radius Rt = 2.24 x 10-13 em determined from a comparison of 
the binding energies of the mirror nuclei t and He~: 

R _ r1 + r2 + ra 1 
1-r1- 3 3(PI-Pa), 

R1 =}~I Pl- Pa//IDt 12 0 (pr + P2 + Pa) dp1 dp2 dpa. 

Hence ex.= 0.85 X 1012 em - 1 and n2cx.2 /M = 0.3 Mev. 

We note that this result does not take into ac
count the probability that the particles cross the 
Coulomb barrier. If this is taken into account, the 
ratio (45) will be somewhat larger. 
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