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The broadening of the energy distribution of neutrons or photons which are quasi-elastically 
scattered by crystal defects resulting from diffusion is investigated. The macroscopic ap­
proximation is not used and the diffusion mechanism is taken into account explicitly. The 
broadening may be appreciable in the scattering of neutrons and photons which are emitted 
without recoil by nuclei in a crystal, and also in certain cases of Rayleigh scattering of 
light at high temperatures. The analogous broadening should occur for the spectral distri­
bution in the absorption and emission spectra in the Mossbauer effect for the case of high 
.temperatures. The characteristic dependence is found of the broadening on the magnitude 
and orientation of the wave vector, and this makes it possible in principle to investigate the 
mechanism of diffusion and the type of defect. 

1. INTRODUCTION 

THE diffuse scattering of neutrons by defects in 
a crystal at sufficiently low temperatures can be 
divided into inelastic scattering associated with 
thermal vibrations and having a continuous energy 
distribution, and elastic scattering whose energy 
distribution is described by a 6 function 6 (E) 
(where E is the change in energy on scattering). 
At high temperatures, however, defects (atoms 
injected in interstices, vacancies at lattice sites, 
etc.) give an appreciable diffusion mobility. A 
defect moving at random even in the absence of 
vibration can transfer energy to a neutron, as a 
result of which the 6 function in the energy dis­
tribution of the scattered neutrons is smeared 
out, and the scattering becomes completely in­
elastic. 

The influence of the diffuse motion of the atoms 
of a liquid on the scattering of neutrons has been 
treated by means of the macroscopic approxima­
tion in references 1-3. This approximation is 
applicable for the case of very slow neutrons or 
small scattering angles. For large differences 
q1 of the wave vectors of the scattered and inci­
dent waves, the results depend essentially on the 
geometry of the diffusion jumps of the atoms, and 
the macroscopic approximation ceases to be applic­
able. In the case of scattering by defects, for each 
of several possible mechanisms of diffusion the 
geometry of the diffusion jumps is known, which 

makes it possible to construct a theory of the en­
ergy distribution of scattered neutrons which is 
also applicable for large q1• As we shall see from 
the results obtained below, it is just this case which 
is especially interesting, since the comparison of 
theory with the experimental data regarding the 
case of large q1 makes it possible in principle to 
obtain valuable information concerning the type of 
defects in the crystal and concerning the mechan­
ism of diffusion. In certain cases, even for small 
q1, the macroscopic treatment does not allow one 
to carry out the investigation. In this connection, 
we shall treat in Sec. 2 the influence of diffusion 
on the energy distribution of scattered neutrons 
without using the macroscopic approximation. 

It is obvious that the diffusion of defects must 
give rise to the same sort of broadening of the en­
ergy distribution of scattered x rays. But, since 
the energy of x-ray photons is approximately 105 

times greater than the energy of thermal neutrons, 
while the natural width of x-ray levels is much 
greater than this broadening, its experimental de­
tection by ordinary methods is impossible. The 
possibility of such an observation has arisen in 
connection with the discovery of extremely narrow 
energy distributions of photons ( x rays or y 
quanta) which are emitted by long-lived excited 
states of nuclei of certain isotopes in a crystal, 
and can be studied with high precision by using 
the resonant nuclear absorption of the photons 
(the Mossbauer effect). 4 ( For reference to other 
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work, we refer to the summary of Belozerskii and 
Nemilov. 5 ) With respect to this we discuss in Sec. 
3 the influence of diffuse motion on the energy dis­
tribution of such photons. 

If the defects can occur only at sites of one 
type, then for small values of q1 the magnitude 
of the broadening produced by diffusion falls off 
like qi. For the scattering of light waves in this 
case, the broadening is approximately 107 times 
smaller than for the scattering of x rays and is 
completely insignificant. If, however, the defects 
may be present at positions of several different 
types, then, as we shall show later, as q1 - 0 
the broadening tends to a non-zero limit, and may 
be appreciable for the scattering of light at high 
temperatures. Therefore in Sec. 3 we also dis­
cuss the influence of diffusion on the scattering 
of light. 

Diffusion may also appreciably affect the en­
ergy distribution of the emitted radiation if, dur­
ing the lifetime of the excited state of the radi­
ating atom (nucleus), it succeeds in shifting such 
a distance that the phase difference between the 
waves radiated in the initial and final points is 
comparable with 1r. The corresponding broaden­
ing of the emission line may become appreciable 
at high temperatures in the case of the Mossbauer 
effect and also in the case of no-phonon emission 
of light, if the radiating defects can be at several 
different sites. These effects will be treated in 
Sec. 4. 

2. THE INFLUENCE OF DIFFUSION OF DE­
FECTS ON THE SCATTERING OF THERMAL 
NEUTRONS 

The atoms of a crystal carry out motions of 
two types: oscillations around their equilibrium 
positions, and diffusion jumps to new equilibrium 
positions. If the diffusion can be neglected, then 
there remain only the oscillations of the atoms 
which lead to a reduction in the amplitude of elas­
tic scattering of the s-th atom by the Debye factor 
e-Ms, where Ms =! (q1 • Us )2 and the u's are 
the thermal displacements of the atoms. 

We take account of the diffuse motion for the 
case where the probability W of diffusion jumps 
to neighboring positions is considerably less than 
the effective frequency of oscillation of the atom 
w0• In practice the criterion W « w0 is always 
satisfied. We denote by E = tiw the change in en­
ergy of the neutrons during scattering. As will 
be shown later, diffusion leads to a smearing of 
the energy distribution of the elastic scattering 
in the region w ~ W. In the following we shall 

treat just this region of low values of w ( corre­
sponding to long times in the time-correlation 
function). In this case we may treat the oscilla­
tions simply by introducing the factor e-Ms into 
the scattering amplitude. 

Suppose that point defects (or defects of finite 
dimensions ) can occupy positions of several 
types, 1, 2 .... , v, ... , n. We shall assume that 
the concentration of defects c v is small ( c v « 1 ) , 
that they are distributed randomly, and that in 
the absence of these defects the non-ideality of 
the crystal can arise only from the presence of 
isotopes of different types. The detailed distri­
bution of the defects can be characterized by as­
signing the numbers Crv(t), equal to one or zero, 
if at the time t at the position r of the v-th type 
there is or is not a defect. The amplitude of scat­
tering of monochromatic neutrons by a single 
crystal containing defects, at the time t, is pro­
portional to the sum 

a (t) = ~ Cn (t) exp ( iql Rrv) {<p. + ~' lAs -As + b, (sSs) J 

X exp ( iq10 Rsrv) exp (iq1, R,- Rrv)} 

+~"lAs-As +b.(sS.)lexp(iqt,Rs+ORs). 

(1) 

Here q1 = ~ -k1 is the difference of the wave vec­
tors of the scattered and incident waves; s num­
bers the atoms (both those which are at the sites 
of any sublattice of the ideal crystal, and those 
belonging to the defects); the summation ~' goes 
over atoms which move together with the center 
of the defect rv (if the defect is an added atom, 
then the sum reduces to a term corresponding to 
this atom); the summation ~" goes over all the 
other atoms; As and bs are the constants A~ 
and bs in the expression for the energy of inter­
action of a neutron with the nucleus s: 

Vs (r) = lA: +b~ (sSs)l o (r-R,) 

( s and Ss are the spins of the neutron and the 
s-th nucleus), multiplied by the Debye factor 
e-Ms; As is the average value (over the iso­
topes) of the quantity As; oRsrv is the static 
displacement of the s-th atom with radius vec­
tor Rs, resulting from the influence of the defect 
at the rv location with radius vector Rrv; oRs 

= 6 Crv ( t) oRsrv is the total displacement of the 
rv 

s-th atom. For small concentrations of defects 
we may keep in the sum for oRs just the terms 
corresponding to the nearest defect. ( This point 
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is explicitly taken into account in the formula for 
cp 11· ) 

The differential cross section (per unit solid 
angle and per unit energy range) for the scatter­
ing of neutrons is (cf., for example, reference 1) 
expressible in the form 

00 

cr' (ql> w) = -8;~,- ~ dt e-iwt (a (t) a* (0)). 
-co 

Here m is the neutron mass, ( ... ) denotes an 
average over the initial configuration of defects 
and over the possible types of their diffusion 
jumps, the bar denotes an averaging over isotopes 
and over nuclear spins. In the average over iso­
topes and spins of the product of expressions (1), 
a ( t) a* ( 0 ) is different from zero only for terms 
of the type 

[A,- As + b, (sS,)l [A,.- A,· + b,, (sS,·) I 

with s = s', corresponding to the same atom. As 
a result of the motion of defects, this atom at vari­
ous times may be located at different positions 
(with different Rs ) . Then for the atoms moving 
together with the defect [corresponding to ~' in 
(1)] the change of Rs is the same as the change 
of Rrv• so that Rs - Rrv does not depend on t. 
The other atoms [corresponding to ~" in (1)] 
during the motion of the defect (for example, a 
vacancy) from rv to r'v' may (in a not com­
pletely determined way) move to other sites, 
which are displaced from the old ones by Rs 
( rvr'v' ) . In the corresponding term in a ( t) a* ( 0) 
as a result there appears a factor exp [ iq1 • Rs 
(rvr'v' )], and in these terms we must take an av­
erage ( ( ... ) ) over the possible types of such 
displacements of the atoms s. 

In calculating (a ( t) a* ( 0 ) ) we shall also take 
into account that in this case of small concentra­
tion, where we neglect configurations of low prob­
ability, we may set 

exp{iq1 ~[crv(t)-c,v(O)] oRsrv}-1 
rv 

= ~ Crv (t) Cr'v' (0) [exp (iql, oRsrv- oRsr'v')- I]. 
rvr'v' 

Then, substituting (1) in the expression for a' 
( q1, w) and subtracting the cross section for 
scattering by a crystal not containing defects, we 
find the expression for the change in the scatter­
ing cross section a ( q1, w) due to defects: 

00 

IJ (q1, w) = 8::/l" :: ~ ~ dte -iwi(Crv (t) Cr'v' (Q)) 
rvr'v' -co 

x [Fvv' exp (iq1, Rrv- R,·.,·) + <Dvv' (Rrv- Rr·v·)l. (2) 

Here 

+ B~] [~exp {iq1R, (rvr'v')} 

X exp (iq1, o Rsrv - o Rsr'v') ~ - I], 

s; = b;s, (S, + 1)/4. 

Going over in (2) from the quantities Crv to 
their Fourier components 

Ckv (t) = + ~Crv (t) exp (ikRrv) 
r 

(4) 

(5) 

(where N is the number of unit cells ) , we obtain 
the following expression for the differential cross 
section for inelastic scattering ( w .,._ 0): 

cr (ql> w) = Nq:z:li' :: {~ [Fvv' exp (2:rtiK.nRvv•) fvv' (q, w) 
vv' 

+ ~ <Dvv'kfvv•(k,w)J}. (6) 

Here 
co 

fvv' (q, w) = ~2 
2
11"1 ~ (Cqv (t) c;v' (0)) e-iroldt, 

-co 

<Dvv' ( Rrv - Rr•v•) = L; <Dvv'k exp ( ik, Rrv - RN), (7) 
k 

where q = q1 - 27rKu, Kn is the reciprocal lattice 
vector which is closest to the vector qtf27r, Ng 
is the number of defects in the crystal, Rvv' 
= Rrv - Rrv'. The summation over k is taken 
over the values k/27r lying in a cell of the recip­
rocal lattice. 

Thus the problem of determining the energy 
distribution of neutrons scattered by defects re­
duces to finding the time correlation function for 
the Fourier components cq11 and Cqv'. This tran­
sition from the quantities Crv to their Fourier 
components greatly simplifies the computation. 

First we consider the simplest case, where 
the defects are located at positions of just one 
type and move from one position to another, over­
coming potential barriers of the same height. We 
denote by p the vector joining the initial and final 
position in a diffusion jump, and by w the proba­
bility of transition of the defect from a given posi­
tion to a definite neighboring position. If at the 
time t one of the quantities c ( Rr) = cr is equal 
to unity, then at the time t+dt its average value 
will be 

I- dt L;w = 1- zwdt 
p 

(where z is the number of positions to which the 
diffusion jump can go), while the quantities 
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c ( Rr + p) take the values wdt. As a result, in 
this case, the quantity Ck( t) satisfies the differ­
ential equation 

dck (t)/dt = - w ~ (1 - eikP) ck (t), (8) 

i.e., ( Ck ( t) Ck ( 0) ) depends exponentially on time: 

(ck (t) c~ (0)) = ( I Ck (0) 12 > exp (- ak I t i). 

ak = w ~ ( 1 - cos kp). (9) 

Here we make use of the fact that ( Ck( t) Ck( 0)) 
is an even function of the time (cf., for example, 
reference 6, Sec. 117). Formula (9) is applicable 
for long times, where t » 1/ w0• 

Taking into account the fact that for low concen­
tration of randomly distributed defects (I ck( 0) 12 ) 

= Ng/N2, we obtain from (7) and (9) the following 
expression for the function f ( q, w) (we omit the 
subscripts v and v' in this case): 

1 a f (q, w) =- q 
n a~+ w2 

(10) 

As we see from (10) and (9) for small q the width 
of the Lorentz curve f ( q, w ) falls off like q2• 

The constant w which determines this width is 
related in this case to the diffusion coefficient D 
of defects in cubic crystals by the relation 

(11) 
p 

i.e., for small q we have aq = Dq2• In the more 
general case where the defects, just as in the pre­
ceding case, are located only at positions of one 
type, but can go over from this position to neigh­
boring positions by overcoming potential barriers 
of various heights, the function f ( q, w) can again 
be calculated from formula (10), but ak in this 
formula is now determined not by (9), but by the 
more general expression ak = 2::) w p< 1 - cos k • p), 

p 
where w p is the probability of transition of the 
defect from the position Rr to the position Rr +p. 

We give several examples of the application of 
the formulas obtained above to defects in cubic 
crystals of various structures. In all cases we 
shall assume that during diffusion jumps the de­
fects go to nearest neighbor positions. If the de­
fects are vacancies at the sites of a face-centered 
cubic lattice, then 

D ( kxa . kya 
iXk = 4 a2 3 -cos 2cos2 

(12) 

where a is the length of a side of the cubic unit 
cell. This expression is also applicable to injected 
atoms which are located at the octahedral inter­
stices of this lattice (the centers of the cubes and 
the midpoints of the edges ) . 

In the case of vacancies at the sites of a body­
centered cubic lattice 

(13) 

For vacancies diffusing through one of the sub­
lattices of a crystal with a lattice of the CsCl 
type 

ak = 2Da-2 (3 - cos kxa -cos kya -cos kz(l). (14) 

The expression for O!k in the case of vacancies on 
one of the sublattices of a crystal of the NaCl type 
is given by formula (12), in which we must replace 
a by 2a. For atoms which are injected at the 
centers of the cubic cells of this lattice, formula 
(14) can be used. 

Formulas (12) - (14) and formula (10) for 
f ( q, w) determine the Lorentz-shaped energy 
distribution of the scattered neutrons correspond­
ing to the first term in (6). As we see from these 
formulas, for large q the width of this distribution 
may differ markedly from the width determined by 
the phenomenological formula aq = Dq2• For ex­
ample, for C1x = qy = qz = rr/a, formula (13) gives 
aq = SD/ a 2, instead of the value aq = 3rr2D/ a2 

from the phenomenological theory. From ( 9), and 
(12) - (14) we also see that the width aq of the 
distribution for large q must depend markedly 
on the orientation of the vector q relative to the 
axes of the single crystal. For example, for the 
vector qxa = /3 1r, qy = qz = 0, which has the 
same length as the one given in the preceding 
example, (13) gives aq = 15.3 D/a2, i.e., almost 
twice the value. 

The second terms in (2) or (6) are important 
only for the case of relatively large incoherent 
scattering cross sections. The triple integral 
over k in the second term of formula (6) can 
be calculated for specific types of defects by 
using numerical integration. Here in the case 
of atoms injected into a lattice of Bravais type, 
the 4>w'k are proportional to I ~(k)l 2 where 

cp (k) = ~exp (iq1 11Rsr) exp (- ikRs). 

The same factor determines the intensity of 
diffuse scattering of x rays or neutrons by static 
defects. Therefore it can be obtained from inde­
pendent experimental data, or from computations 
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of such scattering. In the general case, one can 
find the frequency dependence of the second term 
in (6) for small w. To do this we note that for 
small k, the functions <I>k for arbitrary defects 
in Bravais lattices with n = 1 can be written in 
the form <I>k = CN-1 1 cp(k)j2, where C is the av­
erage value (over s) of (As- As )2 + Bt. Since, 
in addition, for small k we have cp ( k) = q1 • Rk 
= q1 • ekak /k, where Rk is the Fourier component 
of i6Rs, ek is a unit vector, and ak for small 
k depends only on the direction (and not on the 
magnitude) of the vector k (cf. reference 7), so 
for small w, in the sum in the second term in (6) 
the region of small k predominates, where ak 
i"::l Dk2• Thus the integration can be carried out in 
general form and gives for cubic crystals 

(where v is the volume of a cell, d~ is the ele­
ment of solid angle ) . Thus if the second term in 
(6) is important, then for small w the scattering 
cross section must increase like w-112 (inde­
pendent of q). 

Now we consider the more general case where 
the defects may be present at different sites. Then 
the Fourier components are determined not by (8), 
but by a system of equations 

" dckv (t) I dt = - ~ a •.• (k) Ckv' (t), v=l,2 ... n, (15) 
v'=l 

where the avv'(k) are constants. Remembering 
that at t = 0 

<c;v (0) ck.' (0)) = N gvN-2 bvv' = xp gN-2 bvv'' 

where Ngv is the number of defects at the v posi­
tions and xv are their relative fractions, we ob­
tain by the usual method (cf. reference 6, Sec. 120) 
expressions for the functions fvv' ( q, w ) defined 
by formula (7), 

1 (a (q) iro )-1 ~ A, (q) 
fvv' (q, ro) = n Re x + x = "'-l 2 + 2 , (16) 

vv' i =t ctqi ro 

where a (q)/x is a matrix with matrix elements 
avv'(q)/xv, and the matrix 1/x has matrix ele­
ments Ovv'lxw This last expression is obtained 
from the preceding by an expansion in elementary 
fractions. Here the "reciprocal relaxation times" 
O!qi are determined by the roots Yi of the equation 

lavv•-bvv•YI = 0. (17) 

In each specific case it is not difficult to carry out 
the inversion of the matrix a (q)/x + iw/x and to 
find fvv'(q, w ). 

As an example we consider the case of atoms 
injected at the octahedral interstices of a body­
centered cubic lattice (the centers of the faces 
and edges of cubic cells). In this case there are 
three types of interstices, which have two nearest­
neighbor atoms located respectively along the x, 
y, and z axes. If the injected atoms carry out 
diffusion jumps to their nearest-neighbor inter­
stices with probability w, then the system of dif­
ferential equations (15) takes the form 

3 

dckv (/) / dt = - 4WCkv (/) + 2] Cv"Ckv' (/). (18) 
v'=1(v'+v) 

Here v" '~" v and v" '~" v', Cv" = 2w cos k· Pv"• 
where, for example, the vector p1 = !aex joins 
interstices of the second and third types. 

Since all the positions are energetically equiva­
lent, xv = %. Equation (17), which determines the 
quantities O!qi in (16), is a cubic equation in this 
case: 

D (y) = (y - 4w)3 - (y - 4w) (C~ + C~ + C~) 
(19) 

The quantities fvv' ( q, w) are equal in this case 
[as one finds from (15), (16), and (18)] to 

1 (4w + iro)2-C~ 2 6w 
fu (q, ro) = 3n Re - D (- iro) :::o "9n 36w• + ro• 

2 wa•q• 
+ 3:it w2a4q4 + 36ro2 ' 

f 1 (4w + iro) Ca+ C1C2 1 6w 
12 (q, ro) = 3n Re - D (- iro) :;:.0- 9n 36w2 + ro• 

2 wa2q2 

+ an w•a•q• + 36m• • 
(20) 

The second equalities in (20) are written for small 
q. The quantity w is related to the coefficient of 
diffusion of the injected atoms by the relation w 
= 6D/a2• 

As another example, we consider vacancies at 
the sites of an ordered solid solution of the type 
of {3 brass (with a lattice of the CsCl type). 
Suppose that a diffusion jump takes a vacancy 
from a site of one sublattice to one of the neigh­
boring sites of the other sublattice [the case of 
the diffusion of vacancies over sites of a single 
sublattice is described by formulas (10) - (14) ]. 
We shall denote by wtf8 the probability of tran­
sition of a vacancy from a site of the first type to 
sites of the second type, and by w2 /8 the proba­
bility of the reverse transition. Then the time 
behavior of Ckt ( t) and Ck2 ( t) is described by 
(15), in which 

a21 = -w1C, a22 =w2 , 

p = ~ (±ex±eu±ez). 
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Noting that 

x1 = w2/(w 1 +w2). X2 = w1/(w1 +w2), 

we obtain from (16) 

f ( ) 1 1:.!'2 R. w2 + iw 
11 q, w = n w1 + w2 e (w1 + iw) (w2 + iw) -w1w2C2 

_ i_ w R. [ 1 , w2/W1 ] 
q-:o :r1 w1 + w. e WJ + w2 + iw 1 wa2q2 + iw ' 

f ( 4wC 1 
12 q, w) = l1 R.e (w1 + iw) (w2 + iw)- w1w2C2 

= _i_w_. -R.e[- 1 + 1 J 
q-+o Jl Wt + Wz w1 + w2 + iw · · wa2q2 + iw ' 

(21) 

The energy distribution of the scattered neu­
trons which we have found takes a simpler form 
for the case where the coefficients .Pvv'k in for­
mula (6) are equal to zero (for example, if the 
lattice contains only nuclei of one isotope with 
zero spin, or if we can neglect imperfections ) . 
As follows from (16), the energy distribution is 
then described by a superposition of Lorentz 
curves. In the two cases considered above, where 
there are two nonequivalent positions for defects, 
for small q the function f ( q, w ) is a sum of two 
Lorentz functions. One of them is described by a 
curve with a width proportional to q2 and the co­
efficient of diffusion of the defects and coincides 
with the curve obtained from a macroscopic treat­
ment. The width of the curve corresponding to the 
second function tends to a nonzero limit for q- 0. 

If all the quantities 

F:v' = F vv' exp (2n i KnRvv') 

are the same, then these second terms in the sum 
(6) cancel, and the energy distribution, just as for 
the case of defects of only one type, is described 
by a narrow Lorentz curve. In the general case, 
however, in this sum, in addition to the term cor­
responding to the narrow curve for small q, there 
must also be a term corresponding to the broad 
Lorentz curve and proportional to the differences 
of the quantities F~v'. Obviously the appearance 
of the broad component in the energy distribution 
cannot be obtained by means of the macroscopic 
theory which does not take into account the diffu­
sion mechanism. 

It is not difficult to show that the broad curve 
in the energy distribution, in addition to the nar­
row curve for small q, should be observed in all 
cases where the defects can go from positions of 
one type to positions of another type, where the 
different quantities F~v' are not the same. In 

addition to the examples given above, the defects 
may also make such transitions between positions 
of different types in the case of injected atoms at 
tetrahedral or dodecahedral interstices of body­
centered cubic lattices, in the case of atoms of 
vacancies injected into ordered alloys of different 
structures, in the case of a pair of vacancies, a 
pair of injected atoms, or an impurity atom­
vacancy pair (where differently oriented pairs 
may be regarded as defects of different types ) 
etc. 

From the results obtained it follows that for 
each mechanism of diffusion of defects of a given 
type there should be a characteristic dependence 
of the width and shape of the energy distribution 
of scattered neutrons on the magnitude and orien­
tation of the vector q. If the type of defects giving 
rise to the scattering is known, this makes it pos­
sible in principle to make a choice between the 
various possible mechanisms of diffusion of de­
fects, by comparing the dependence on q of the 
width, as calculated for these mechanisms, with 
the result of experiment. Thus one can, for ex­
ample, study whether the diffuse jumps of the in­
jected atoms and vacancies to nearest positions 
occurs as assumed in deriving the formulas given 
above, or to more remote locations; whether the 
diffusion in a given crystal occurs by means of 
vacancies or interstitial atoms. A comparison 
of calculated and measured energy distributions 
also makes it possible in principle to choose be­
tween various assumptions concerning the type 
of defects giving rise to the scattering. Thus, for 
example, the energy distribution, as shown above, 
is found to be qualitatively different (for small q) 
for vacancies and for injected atoms in body­
centered cubic lattices, for atoms injected at 
octahedral and tetrahedral holes in face-centered 
cubic lattices, for isolated vacancies, for pairs 
of vacancies, etc. 

If the coefficients .Pvv'k in formula (6) are 
different from zero, the analysis of the energy 
distribution is made more complicated (where 
for small q the width of the energy distribution 
of the second sum in (6) always tends to a non­
zero value), but can also be carried out in each 
specific case. 

To estimate the order of magnitude of the 
broadening of the energy distributions, let us 
consider the case where D"' 3 x 10-5 cm2/sec 
(diffusion of vacancies and injected atoms at 
temperatures close to the melting point; in the 
case of diffusion of H atoms, D may be 10-100 
times greater). Setting a2 "' 10-15 cm2, we find 
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that formulas (12), (13), and (20) in this case give 
a maximum value of the width of the distribution 
of the order of ( 3 - 6) x 10-4 ev. Such a broad­
ening can be detected experimentally. Obviously 
the difficulty in experimental investigation, aside 
from the need for obtaining a high resolution in 
the energy distribution, is related to the presence 
of an intense elastic scattering resulting from iso­
topes and spins of nuclei in the crystal, and also 
the presence of inelastic scattering by thermal 
vibrations which is especially intense in the case 
we are considering of high temperature. 

The separating out of the scattering by defects 
from the total cross section for scattering is made 
easier by the fact that the energy distribution of 
the isotopic scattering for monochromatic incident 
neutrons is extremely narrow (its width is propor­
tional to the self-diffusion coefficient which is much 
smaller than the coefficient of diffusion of the de­
fects), while the energy distribution of the scatter­
ing by vibrations, on the other hand, is much 
broader than the distribution of scattering by de­
fects. Obviously the defect concentration must be 
sufficiently high. It appears that with present-day 
technique of experiment the smearing of the energy 
distribution of neutrons scattered by injected atoms 
can be studied, for example, in Pd-H solutions. To 
study the scattering by vacancies, it may be con­
venient to use substitutional solutions (for example, 
Co-Al, Ni-Al ), where the concentration of "struc­
tural'' vacancies is high, or to introduce into the 
crystal impurities to increase the concentration 
of vacancies. 

3. INFLUENCE OF DIFFUSION ON SCATTERING 
OF PHOTONS BY CRYSTAL DEFECTS 

The diffusion of defects may lead to a similar 
broadening of the energy distribution of the elas­
tic scattering of monochromatic photons ( x rays 
or y quanta) as for the case of neutron scatter­
ing. Just as before, let us consider the case where 
W « w0 and w ~ W and disregard the scattering 
by thermal vibrations. Then, in electron units, 
the intensity of the diffuse scattering of monochro­
matic photons by defects I ( q1, w), per unit solid 
angle and per unit frequency range, is given by a 
formula analogous to formula (6): 

Here <Pv is given by formula (1), if we make the 
substitution As- fs, where fs is the atomic scat­
tering factor of the s-th atom multiplied by the 
De bye attenuation factor e-Ms. The functions 

fvv'(q, w) in (22) are again determined by formu­
las (7), (10), and (16) (where it is obvious that in 
the case of scattering of photons <I>vv'k = 0 ). 

Thus the investigation of the function f ( q, w ) 
which we carried out above for various specific 
cases is also applicable for the treatment of scat­
tering of photons. In this case the energy distri­
bution is obtained more simply because of the fact 
that <I>vv'k = 0. As shown above, the magnitude of 
the broadening associated with diffusion of defects 
is less than or of the order of 10-3 ev. Therefore, 
as already pointed out in Sec. 1, this broadening 
cannot be observed if one uses ordinary x rays. 
However, by using the Mossbauer effect one can 
obtain photons with a very narrow energy distri­
bution, and investigate their scattering by defects 
of another crystal which is used as a resonance 
absorption detector. Here the width of the energy 
distribution may be very small. For example, for 
Fe 57 it amounts to approximately 6 x 10-9 ev. As 
a result, one can detect and study much smaller 
broadenings than by using neutrons. Even at low 
temperatures, where the diffusion coefficient of 
the defects considered above is D ~ 10-9 cm2/sec, 
the diffusion will give rise to a broadening "'10-8 

ev, which is comparable with the natural width. 
If the broadening as a result of diffusion is of 

the same order as the natural width, then one must 
take into account the non-monochromatic nature 
of the incident radiation. Since in the case of 
monochromatic radiation the energy distribution 
of the scattered photons is described by a sum of 
Lorentz functions (16), for the case where the 
shape of the spectral line of the incident radiation 
is Lorentzian, the distribution of the scattered 
radiation will also be described by a sum of 
Lorentz functions with widths of the correspond­
ing curves, each of which is equal to the sum of 
aqi and the width of the line of the incident radi­
ation. 

In the same way as for neutron scattering, the 
study of the dependence of the width of the energy 
distribution of scattered photons as a function of 
q enables one to investigate the mechanism of 
diffusion and to establish the nature of the defects 
(cf. Sec. 2). In the case of scattering of photons 
the analysis of the distribution is somewhat sim­
pler, since <I>vv'k = 0. Because of the higher res­
olution, the separation of the scattering into that 
by defects and that by vibrations also can be car­
ried out more precisely than for the case of neu­
trons. 

Formula (22) is also applicable to the case of 
scattering of light waves, but the expressions for 
the constants 'Pv are then changed ( 'Pv will be 
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,..., A.2, where A. is the wavelength). If the defects 
are located at positions of just one type, the width 
of the energy distribution is Dq2 = 167r2DA. - 2 sin2 8, 
and even for the very highest values of D is sev­
eral orders of magnitude smaller than the width 
of the spectral distribution of the incident radia­
tion. If, however, the defect can undergo diffusion 
jumps between positions of different types, and 
the values of qJv for different v are different, 
then there will be a term in the expression for 
I ( q, w ) whose graph is a Lorentz curve with a 
large width independent of A.. For example, in 
the case of scattering of light by injected atoms 
in a body-centered cubic lattice, according to (22) 
and (20), for D > 10-7 cm2/sec, this width is 
greater than 2 x 10-6 ev, i.e., it may be of the 
order of (or greater than) the width of the spec­
tral distribution of the incident radiation. The 
intensity of the broad spectral curve in the scat­
tered spectrum should depend in a characteristic­
ally strong way on the polarization of the light, but 
we shall not consider this question here. 

4. INFLUENCE OF DIFFUSION ON THE MOSS­
BAUER EFFECT 

The diffuse motion of the atoms may not only 
lead to a broadening of the spectrum of elastic 
scattering, but also to a broadening of the absorp­
tion and emission spectra. This effect should be 
observed in the spectra of resonant absorption 
and emission of photons by nuclei in a crystal 
which is at high temperature. The intensity of 
such a recoilless emission of photons is propor­
tional to the Debye attenuation factor e-Ms for 
q1 equal to the wave vector of the emitted wave. 
In various cases where relatively soft photons 
are emitted, this factor is not very small even 
at high temperatures, which enables one to inves­
tigate the Mossbauer effect at such temperatures. 
For example, for Fe57 (with a photon energy of 
14.4 kev) at T = 2000° K, Ms = 1.4 if the Debye 
temperature is equal to 430° K. 

Let us first consider the spectral distribution 
of the emitted (or absorbed) photons for the case 
where the natural width r = 0 and the emitting 
nuclei are located at sites of one sublattice. We 
shall denote by w the difference between this fre­
quency and the frequency of the radiation emitted 
in the absence of diffusion. Since we are consid­
ering recoilless radiation, we shall limit ourselves 
to the range of values w ~ W, where W is the 
probability of a diffusion jump of an atom. The 
expression for the spectral distribution of the 
photons emitted without recoil when we include 

diffusion of the atoms over sites of their own sub­
lattice is not hard to obtain by using the adiabatic 
approximation and noting that the inter-nuclear 
motion is incomparably faster than the motion of 
the center of gravity of the nucleus. Denoting by 
ap( q1) the integral cross section (over energy) 
of the resonance absorption of photons with wave 
vector q1 (and a given polarization) by a single 
nucleus, by Np the total number of absorbing nu­
clei at the sites of the given sublattice, and by N 
the number of sites of the s ublattice ( Np « N), 
we write the expression for the differential cross 
section of absorption ap ( q1, w) (per unit solid 
angle and per unit frequency range ) in the form 

00 

Clp (ql> w) = ;; Clp (q1) ~ dt e -irot <cq (t) c~ (0)) 
-oo 

(23) 

Here cq is determined by formula (5), in which 
Crv now refers not to defects, but to nuclei of the 
absorbing isotope on the v-th sublattice. 

In order to obtain the differential equation de­
scribing the time behavior of cq ( t) for the va­
cancy mechanism of diffusion, we shall choose a 
"physically infinitesimal" time interval dt, which 
is much smaller than the interval between two dif­
fusion jumps of an atom and much greater than the 
interval between two diffusion jumps of a vacancy. 
Because of the fact that for the vacancy mechanism 
there is a correlation between successive diffusion 
jumps of the atoms, 8 there exists a finite probabil­
ity of transition of an atom during this infinitesi­
mal time interval not only to the neighboring atoms, 
but also to more remote sites. Therefore our 
equation has the form 

dck (t) 
---;If = - Ol:kCk ( t), 

(1) (2) 
01:k = w1 ~ (1- cos kp1) + W 2 ~ (I- cos kp 2) 

(24) 
p, 

Here the summations are extended over sites of 
the first, second, etc. coordination spheres, Wi is 
the probability of transition to a particular site of 
the i-th sphere. The approximate equation is 
written for cases of simple, body-centered, and 
face-centered cubic lattices. In deriving it, we 
use the fact that the self-diffusion coefficient Ds 
is equal to 
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error we need keep only the first term in the sum 
over i. 

From (23) and (24) it follows that for r = 0 
the spectral distribution is described by the 
Lorentz function 

ap(q1 , w) = Npap(qt) n-1aq/(a: +w2). (25) 

For r ,.._ 0 there is also a Lorentz distribution, but 
its width is equal to aq + r. * 

From (24), (25), and (12)- (14) it follows that 
the broadening of the spectral distribution result­
ing from diffusion at high temperatures may be 
appreciable. For example, assuming that near 
the melting point Ds = 10-8 cm2/sec and that a2 

= 10-15 cm2, we find that for a body-centered cubic 
lattice for qx = qy = qz = 1r/a, the broadening is 
equal to 10-7 ev, i.e., much larger than the width 
r for Fe57 • This broadening should depend ex­
ponentially on temperature and be strongly depend­
ent on the direction of the vector q1• It is obvious 
that the investigation of such a dependence would 
enable one to establish whether the self-diffusion 
occurs via a vacancy mechanism or by diffusion 
jumps to neighboring lattice sites, as was assumed 
in deriving the formulas given above, or by some 
other mechanism, (for example, by means of dif­
fusion over interstices ) . t 

In various cases the resonance radiation may 
be emitted by nuclei which, because of the energy 
transfer in the preceding radioactive decay, have 
been ejected from lattice sites and are located in 
interstices. Then the broadening will be deter­
mined by the diffusion coefficient of interstitials, 
which is several orders of magnitude greater than 
the self-diffusion coefficient. A significantly 
larger broadening should therefore occur when the 
radiating atoms are close to grain boundaries (in 
a sample consisting of very tiny crystals prepared 
by diffusion methods at low temperatures ) because 

*It is not difficult to see that in a more detailed calcula­
tion, which does not use the concept of a "physically infinites­
imal" time interval, in the expression for ap(<h, w) there is an 
additional small term corresponding to a broad spectral distribu­
tion with a width greater than aq by the factor Ds/Dv (where 
Dv is the coefficient of diffusion of the vacancies). The ratio 
of this term to the term considered in (25) is of the order of 
Nv/N, where Nv is the number of vacancies. 

tThe height of the potential barrier for the transition of an 
atom from a site to an interstitial position is usually much 
greater than the barrier height for transition from one intersti­
tial position to another. Therefore if the diffusion occurs via a 
mechanism in which atoms move through interstices, then aqi 
does not depend on q and is equal to the probability of transi­
tion of an atom from a site to an interstitial position. The tem­
perature dependence of aqi is then different from the tempera­
ture dependence of 0 8 • 

of the large value of the coefficient of grain bound­
ary diffusion. Apparently a larger broadening than 
for ordinary crystals should be observed in sub­
stitutional alloys. Finally, a large broadening 
(although much smaller than for gases) should 
be observed in the case of liquids. 

In the absorption and emission of light by crys­
tal defects which can undergo diffusion jumps be­
tween non-equivalent positions, there can also 
occur a diffusion broadening of the spectral curves 
(cf. Sec. 3). This effect may be appreciable, how­
ever, only if the electron-phonon interaction is 
sufficiently small (so that one can separate a 
line of a purely electronic transition) and the 
probability of thermal radiationless transitions 
from the excited state is small at these high 
temperatures. 

Note added in proof (May 16, 1961): After this paper was sent 
to press, papers appeared which also consider the influence of 
diffusion on the Moss bauer effect in solids9 and in liquids, 10 

which obtain results overlapping the results of Sec. 4 of this 
paper. By using a quasi-classical model, the influence of dif­
fusion on the scattering of neutrons by a liquid has also been 
treated 11 recently. 

1 L. Van Hove, Phys. Rev. 95, 249 (1954). 
2 G. H. Vineyard, Phys. Rev. 110, 999 (1958). 
3 P. Schofield, Phys. Rev. Letters 4, 239 (1960). 
4 R. L. Mossbauer, Z. Physik 151, 124 (1958); 

Naturwissenschaften 45, 538 (1958); Z. Naturforsch. 
14a, 211 (1959). 

5 G. N. Belozerskii and Yu. A. Nemilov, Usp. 
Fiz. Nauk 72, 433 (1960), Soviet Phys.-Uspekhi 3, 
813 (1961). 

6 L. Landau and E. Lifshitz, Statistical Physics, 
Pergamon Press, 1958. 

7 M. A. Krivoglaz, JETP 34, 204 (1958), Soviet 
Phys. JETP 7, 139 (1958). 

8 J. Bardeen and C. Herring, Imperfections in 
Nearly Perfect Crystals, J. Wiley and Sons, New 
York, 1952. K. Compaan and Y. Haven, Trans. 
Faraday Soc. 52, 786 (1956). 

9 K. S. Singwi and A. SjOlander, Phys. Rev. 120, 
1093 (1960). 

10 M. I. Podgoretskii and A. V. Stepanov, JETP 
40, 561 (1961), Soviet Phys. JETP 13, 393 (1961). 

11 C. T. Chudley and R. J. Elliot, Proc. Phys. 
Soc. (London) 77, 353 (1961). 

Translated by M. Hamermesh 
306 


