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It is shown that the Bogolyubov causality condition and the condition of local commutativity 
of the operators cp(x) of an interacting field lead to identical expressions for the matrix 
elements of the S matrix on the mass shell. In the study of this problem the necessary and 
sufficient conditions are found for the local solubility of the equation for the Heisenberg op
erators cp(x) on the assumption that the commutator of the currents, [j (x), j (y)], vanishes 
outside the light cone; that is, the so-called Wightman problem is solved. 

1. INTRODUCTION 

THE fundamental problem of relativistic quantum 
field theory is that of finding the properties of the 
matrix elements of the S matrix on the mass shell 
of real particles, i.e., for free-particle values of 
the four-momenta of all incident and scattered par
ticles, Pi= mi (here pf = (pV2 - (pi)2, and i in
dicates the type of particle ) . In the case of the 
Lagrangian formulation these properties are a 
consequence of the Heisenberg equations for the 
operators of the interacting field and the commu
tation relations. For a formulation of the local 
properties of the theory without the assumption 
of the existence of a Lagrangian (i.e., a dynam
ical principle), however, it is necessary to go 
outside the limits of the mass shell in the S ma
trix. In the axiomatic approach there are two 
main methods for accomplishing such an extrapo
lation. 

The first method was proposed by Bogolyubov1•2 

and is as follows.* The S matrix is represented 
in the form of a functional of the free-field oper
ators [CfJin(x) and CfJout<x)] 

Here the colon indicates the normal product. For 
simplicity we shall consider the case of a neutral 
scalar field of mass m and assume that it does not 
form any bound states. The operators CfJin,out(x) 

*A detailed formulation of the initial axioms in the two 
methods can be found in papers by Bogolyubov and his co
workers2 and by Lehmann, Symanzik, and Zimmermann (here
after for brevity called LSZ)!'4 Here we are interested mainly 
in the difference between the two methods in the formulation 
of the local properties of the theory. 

satisfy the homogeneous Klein-Gordon equation 

(0- m2) '-Ptn, out (x) = 0 

and obey the commutation relations 

(2) 

['-Pin, out (x), (jlin, out (y)] =-ill (x- y, m) . (3) 

The S matrix is assumed unitary, 

s+s = 1. 

and we have 
~Pout (x) = s+IPtn (x) S. 

(4) 

(5) 

For the passage beyond the mass shell one defines 
the variational derivatives 

6S/6(jl;n (x) = (6S (TJ)/6T](x)) 11=o· 

Here S ( '1) ) is obtained from S by the replacement 
CfJin(x) __. CfJin(x) + '1) (x), where '1) (x) is an arbi
trary external field. 

Even though this departure from the mass shell 
is accomplished with preservation of Lorentz in
variance, unitarity, and other necessary symmetry 
properties, it does not determine Sn (x1, ..• xn) 
unambiguously. To secure uniqueness and bring 
out the local properties of Sn ( x1, •.. xn) one for
mulates the causality condition in the Bogolyubov 
method in the form 

6j(x)/6qJtn (y) = 0, (6) 

x ~ y means that x0 <Yo or (x-y)2 < 0, and x,... y 
means that (x-y)2 < 0.) The current j (x) is de
fined in the following way: 

. ( ) ·s+ 6s _ . 6s s+. (7) 
J X = t 6<pin (x) - t {Jr:pout (x) 

In the other method, that of LSZ,3•4 the current 
operator is also defined by means of Eq. (7). * The 

*We disregard differences between the two approaches that 
are not important in this problem: 
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interacting-field operator qJ ( x) is introduced in 
terms of j ( x) as the retarded solution of the in
homogeneous Klein-Gordon equation 

+oo 
(jl (x) = (jlin (x)- ~ 1'11<. (x- x' ,m) j (x') d4x' (8) 

(the advanced solution is written in an analogous 
way). The requirement of causality, instead of 
being written as in Eq. (6), is formulated in this 
method as the vanishing of all the commutators 
of qJ.(x) and j (x) outside the light cone; that is, 
for x ~ y we must have 

[j (x), j (y)l = 0, 

[qJ(x), j(y)l = 0, 

(qJ(X),qJ(y)) = 0. 

(9a) 

(9b) 

(9c) 

In addition, in both methods one assumes the sta
bility of the vacuum state and of the one-particle 
states. 

It is not obvious that these two methods of go
ing beyond the mass shell for the determination 
of the local properties of the S matrix are iden
tical. Moreover, it has been asserted (cf. e.g., 
references 5, 6) that there are differences in 
principle between the two approaches (cf. end of 
Sec. 3). 

The main purpose of the present paper is to 
show, without bringing in supplementary hypothe
ses (of the type of the adiabatic hypothesis ) that 
the two methods are equivalent from the point of 
view of the properties of the matrix elements of 
the S matrix on the mass shell, but lead in gen
eral to different Sn ( x1, ••• xn). It is important 
to emphasize that in the solution of this problem 
the need does not arise to make special use of 
the asymptotic conditions of LSZ.3 The paper also 
contains the necessary and sufficient conditions 
for the existence of a causal [in the sense of Eqs. 
(9a)- (9c)] solution of Eq. (8) on the assumption 
that j ( x) obeys the condition (9a), without resort 
to the S matrix and to the connection (7) of the 
current j ( x) with S. This is the solution of a 
problem posed by Wightman. 1 

2. THE CONDITIONS FOR THE EXISTENCE OF 
LOCAL SOLUTIONS OF THE EQUATION (8) 

In this section we shall study the local proper
ties of Eq. (8), assuming that all of the operators 
that appear are the renormalized ones. Before 
proceeding to an exact statement of the problem, 
let us make two important remarks. Equation (8) 
has a number of remarkable properties. 

First, owing to the relation 

(0- m2 ) (jl (x) = j (x), (10) 

it follows from (8) that if [qJ(x), qJ(y)] = 0 for 
x ~ y, then [ j ( x), j ( y)] also vanishes outside the 
cone, (x- y )2 < 0; that is, the local property of 
j ( x) follows from that of qJ ( x). The converse 
is in general untrue: the vanishing outside the 
light cone of the bracket [j ( x ), j (y )] is not a 
sufficient condition for the local character of 
qJ ( x). This fact will be of important use in what 
follows. 

Second, the adiabatic hypothesis, which has 
been brought in particularly by Kaschluhn, 6 is in 
contradiction with Eq. (8) (on this point see papers 
by Haag, Hall and Wightman, and also Greenberg8 ). 

Moreover, even if this were not so, the adiaba~ic 
condition [in the sense of strong convergence: 
lim [qJ(x) - (/Jin(x)] = 0 for x0 - -oo] would be an 
additional assumption on the existence of a unitary 
connection between qJ(x) and (/Jin(x), which does 
not contain the assumption of the local character 
of qJ ( x) [in the sense of Eq. (9)] and contains an 
implicit assumption of the finiteness of the renor
malization in the theory.* Therefore we shall not 
resort to the adiabatic hypothesis. 

Let us now state in its most general form the 
problem of the local properties of (8). In this con
nection we shall not use the connection (7) of the 
current j ( x) with the S matrix, and shall deter
mine the necessary and sufficient conditions to 
be satisfied by the operator j ( x) in order for the 
solution of (8) for qJ(x) to be local, on the assump
tion that j ( x) commutes outside the light cone. 
This statement of the problem is equivalent to the 
Wightman problem. 7 

First we shall show (for later use ) that the 
Bogolyubov causality condition (6), together with 
Eq. (7), is sufficient for the local properties (9a) 
- (9c) of the operators qJ ( x) and j ( x) to hold. In 
fact, it follows from Eqs. (6) and (7) that 

6j(x)N>(jlin (y) - 6j(y)/6(jlin (x) 

=- i lj (x), j (y)l = 0, :: ~ y, (11) 

6j (x)!fJqJin (y) =- ie (xo- Yo) [j (x), j (y)], (12) 

apart from quasi-local terms, which will always be 
omitted in what follows. 

*Finally, there is an argument against the introducti~n of 
the adiabatic hypothesis in the original idea of formulahng. 
the theory in the language of matrix elements of the S matnx, 
which from the very beginning avoids as far as possible all 
"unobservable" quantities such as unrenormalized operators, 
masses, charges, and so on. 
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Let us now take the simplest commutator [ (/1 ( x), 
j (y)]. Using Eqs. (8), (11), and (12) and the for
mula* 

we transform [(/l(x), j (x)] to the form t 

[<p (x), j (y)] =- i~ Li (x-x',m) 6:;n(tl') d4x' 

- ~ LiR (x- x', m) [j (x'), j (y)l d4x' 

=- ~LiR(x- x', m) 8 (x~- y0) [j (x'), j (y)]d4x' 

- ~ LiA (x- x', m) e (Yo- x~)[j (x'), j (y)] d4x. (14) 

From this expression it can be seen that [ (/1 ( x ), 
j ( x)] = 0 when x ~ y, since the first and second 
terms on the right in Eq. (14) contribute only in
side the upper and lower light cones, respectively. 
In an entirely analogous way it can be shown that 
[(/l(x), (/l(y)] = 0 when x ~ y. 

Let us now return to the problem stated earlier. 
The causality condition (6) suggests that in the gen
eral case it is convenient to try to find o j ( x) I 
O(/lin ( y) in the form 

o j (x)jo <rin (y) =- i 6 (x0 - y0) [j (x), j (y)] + A (x, y), 
(15) 

where A (x,y) is an as yet arbitrary operator, 
whose properties must be established on the basis 
of the requirement (9b) of commutativity of the op
erators (/'(X) and j (x) outside the light cone. 
Using (13) and (15), we get 

[<p(x), j(y)]=-i~Li(x-x', m)A(y, x')d4x' 

.=_ ~ fj,R (x- x', m) 8 (x~- y0) [j (x'), j (y)] d4x' 

- ~ Li A (x- x', m) B (y0 - x~) [i (x'), i(tJ)] d4x'. (16) 

Unlike (14), Eq. (16) has on the right an additional 
operator term 

F(x, y)=-i~j'j,(x-x', m)A(y, x')d4x'. (17) 

In the spacelike region x ~ y the second and third 
terms in (16) drop out for the same reasons as in 
the case of (14). From this it immediately follows 
that the vanishing of F ( x, y) outside the cone 
(x-y)2 = 0 is the necessary and sufficient condi
tion for the existence of a causal solution of (8) 
[causal in the sense of (9a) and (9b)].t 

*This formula is a consequence of Eq. (3) and the assump
tion that all operators are functionals of cp. (x) [or of crout(x)]. 

twe have USed the relation /'j, (X, m) = /'j, \f(x, m) - /'j, A (x, m). 
:\lNaturally we assume that the solution in the form (8) ex

ists, i.e., that the integral in (8) converges for an arbitrary 
matrix element of j (x). 

It is convenient to consider instead of A ( x, y) 
an arbitrary matrix element ( p I A ( x, y) I p') 
between states with total four-momenta p and p'. 
These states are also characterized by the mo
menta of the particles that occur in them. Invari
ance under translations gives 
(p !A (x, y) I p') = exp (iQy) (p !A (x- y, 0) I o') 

== exp (iQ y) A (x- y), (18) 

where Q = p -p'. (We do not write out the other 
variables on which A (x) depends.) Introducing 
the notation 

(pI F (x, y) I p') = exp (iQy) f (x - y), 

we get instead of (7) 

f (x) = ~ Li (x - x' ,m) A (x') d4 x'. (19) 

We shall now show that f (x) vanishes outside 
the light cone ( x2 < 0 ) if and only if the Fourier 
transform ~ ( k) of the function A ( x) is a poly
nomial of finite degree in k on both sheets of the 
hyperboloid 

k2 - m2 = 0. (20) 
The sufficiency of the condition is easily proved. 

By hypothesis, on the hyperboloid (20) 

n 
(21) 

1=0 

where Pz(k) are polynomials in k,* and the co
efficients 'li.z do not depend on k. 

Substituting (21) in (19), we at once find that 

The proof of the necessity of the condition can 
be given on the basis of the following theorem of 
Bogolyubov and Vladimirov9 on the analytic con
tinuation of generalized functions, t which we shall 
formulate suitably for the application to our case. 

Let there be given two generalized functions 
fR ( x) and fA ( x), which vanish in the respective 
regions 

(23) 

Let their Fourier transforms fR A ( k) coincide in 
' the region 

(24) 

Then one can find a positive integer n such that in 

*Frotn considerations of in variance, P l (k) can be repre
sented as a polynomial in the various invariants that can be 
constructed from k and the other four-vectors that occur in 
A(k). 

ti take occasion to express my sincere gratitude to V. S. 
Vladimirov, who called my attention to the proof given here. 
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the region (24) these functions can be represented 
in the form 

n 

IE<. (k) =fA (k) = ~ Pz(k) c:I>z(k2) ... , (25) 
1=0 

where Pz(k) are polynomials, and the functions 
tllz( k2 ) admit of analytic continuation to the entire 
plane of the complex variable z except the cut* 

Im z = 0, (26) 

The important points for us in this theorem are, 
first, that the tllz( k2 ) depend on k only through the 
invariant k2, and second, that from the analytic 
character of tllz( z) there follows the representa
tion 

<Dz (z) = ~ Pzl;(~ ~I; • 
m' 

Furthermore, 
n 

fR. A (k) = lim ~ P1 (k) <1>1 (z) 
1=0 

for z ...... k2 ± ik0e; e > 0 

and, consequently, 
n 

fR (k) -fA (k) = 2:rti ~ Pz (k) e (ko) Pt (k2) 

in the region k2 ~ m 2• 

If we now set 

1=0 

fR. A (x) = ± 6 (± x0) f (x), 

(27) 

(28) 

(29) 

(30) 

where f (x) is defined by (19), then these functions 
satisfy all of the conditions of the theorem. The 
conditions (23) are satisfied owing to the fact that 
f (x) = 0 for x2 < 0. The Fourier transform f(k) 
of the function f (x) = fR(x) - fA(x) is of the form 

7 (k) = 2rcie(k0)b (k2 - m2) X (k), (31) 

i.e., it clearly satisfies the condition (24). Now, 
comparing (29) and (31), we find 

the light cone, automatically assure also that the 
commutator (9c) is zero outside the light cone. 

Let us point out two consequences of the condi
tions (15) and (21) for the local solubility of (8). 

1. On the mass shell A ( x, y) behaves like a 
quasi-local operator. Let us consider 

I = ~ exp (- ikx) (pI A (x, y) I p') d4x, (32) 

for k2 = m 2• Transforming I by means of (18) and 
(21), we find 

n 

I= exp [i (Q - k) y] ~ f-1P1 (k). (33) 
1=0 

On the other hand, we can get (33) from (32) if we 
set 

(p lA (x, y) I p') = exp (iQy) ~ X1P1(- i :x )b (x- y). 
1=0 (34) 

2. Owing to the different natures of the terms 
i e ( x0 - Yo )[ j ( x ) , j ( y ) ] and A ( x, y ) in the right 
member of (15) it is obvious that they cannot com
pensate each other. In particular this means that 
if oj (x)/ocpin(Y) = 0, or in other words if the op
erator j (x) does not depend on 'Pin(y), Eq. (8) 
has no local solutions for cp ( x). The examples 
considered by Wightman and Epstein7 refer to just 
this class of operators j (x), and consequently do 
not satisfy the conditions for local solubility of (8). 

3. THE EQUIVALENCE OF THE TWO AP
PROACHES ON THE MASS SHELL 

Let us find the additional restrictions on the 
operator A ( x, y) in (15) that are required by the 
unitarity of the S matrix and the relation (7) be
tween j ( x) and S. Substitution of (15) in (11) 
gives 

A(x,y) =A(y, x). (35) 

Taking the second variational derivative of s+s = 1 
n . with respect to 'Pin(x) and using (7) and (15), we 

(2:rtif1 f{k) = e (k0) (J (k2 - m2) X (k) =~ Pz (k) Pt (k2) e(ko). get 
!=O 

From this it follows that pz( k2 ) = o (k2 - m 2 ) ~z. 
This proves the necessity of the representation 
(21) for ~ (k) on the hyperboloid (20). t 

It is easily verified that the necessary and suf
ficient restrictions on A ( x, y) in (15) which we 
have found, and which follow from the requirement 
that the commutator ['Pin ( x), j ( y)] vanish outside 

*In what follows we shall assume for simplicity that the 
<1>1(z) fall off for lzl ... ""· 

twe note that the representation (21) also follows from the 
integral representation of Jost, Lehmann, and Dyson. 10 

A (x, y)* =A (x, y). (36) 

Thus the necessary conditions for the local solu
bility of the equation (8) along with a unitary S 
matrix and the connection (7) between j (x) and 
S are (15), (21), (35), and (36). 

Let us now compare the reduction formulas in 
the two methods. If we start from the causality 
conditions (6), then according to (11) 

I {' iqYd4y 
lain (q), j (x) l =- i (2rc)-'' .)--,-1 6 (x0 - Yo) [j(x), j(y) L 

(2qo) ' (3 7) 

where 
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qo = + (q + m2)'1•. 

From the local solubility of (8) it follows that 

[ 'I ~ iqy d4y atn(q), j (x)l = {2:rt)- 2 --,-1 {-iS (x0- y0) [j (x), j (y)l 
(2qo) ' 

+A (x, y)}. (38) 

But when q2 = m 2 [cf. Eqs. (32)- (34)] A (x, y) 
in Eq. (38) behaves like a quasi-local operator, 
which we have not taken into account in (37). 
Therefore the reduction formulas (37) and (38) in 
the two methods give identical results. Similarly 
it can be shown that in both methods 

[ 6S J '/ ~ /QY d•y a;n (q), {Jm (x) =- (2:rt)- 2 --,-1 ST {j (x),j {y)). (39) 
Tin (2qo) '2 

From this we quickly find that an arbitrary 
matrix element ( Pi• ... , Pn I S I qi, ... , ~) can 
be put in the form (Pi ~ qj ) 

3 (n+m) n m 
{- i)m+n {2:rt)- -2 -II {2p~) -•;, II {2q~) -•;, 

i=l i=l 

n m 

x~exp (2; PtXt- ~ qiYi) 
i=l i=l 

X (0 I Tj (xt) .. . j (xn) j (yl) ... j (Ym) I 0) II d4X; II d4yj, 
i 
(40) 

where we have dropped quasi-local terms. 
We summarize briefly the results that have 

been obtained. First, the Bogolyubov causality 
condition (6) and the causality conditions in the 
form (9a)- (9c) together with Eq. (8) lead to iden
tical expressions (40) for the matrix elements of 
the S matrix on the mass shell. Second, in solving 
this problem there is no need to use the asymptotic 
conditions in the form proposed by LSZ.4 This is 
a sharpening of the initial postulates in the second 
method of extrapolation as compared with the orig
inal formulation of LSZ.3•4 Third and last, it is 
important to note that the addition to Sn ( x1, ... xn ) 
= ( - i )n ( 0 I Tj (xi ) ... j ( Xn ) I 0) of terms 
An(xi, ... xn) which behave like quasi-local terms 
on the mass shell (and owing to the unitarity of S 
have the property Ari = An and are symmetric 
under interchange of any pair, xi - Xj ) does not 
destroy the local [in the sense of Eq. (9)] proper
ties of the operators cp ( x ) and j ( x) constructed 
from this S matrix by means of (7) and (8), but 
does contradict the causality condition in the form 
(6). 

It is interesting to compare these results with 
those of other papers. In the papers of LSZ3•4 the 
basic initial postulates include along with the caus
ality conditions (9a)- (9c) the asymptotic condi
tions 

( 1¥ Ia ( q, Xo) I <P) ---> (1¥ I ain, out ( q) I <P) • Xo --" + oo, (41) 

where I 'I<) and I ~) are arbitrary states and 

•; \ { • am (x) a( (x) } 
a {q, x0) - (2:rt)- 'J dx {q (x) ~ -- (jl (x) -Jx;- , 

{q (x) = (2q0)-'1'exp (iqx), q0 ~ + (q2 -1 m2)'1•. 

The causality conditions (9a)- (9c) are never 
used explicity in references 3, 4, 11, and 12 to obtain 
covariant expressions for the matrix elements of 
S, nor to derive the various relations between the 
Green's functions, the multiple retarded commu
tators, and the expansions of cp ( x) and j ( x) in 
functional series in cp in ( x ) or cp out< x ) . This has 
created the illusion that the asymptotic conditions 
(41), without causality, are sufficient for the ob
taining of these relations, and that in general such 
relations can also be correct in a nonlocal theory. 
Kaschluhn5 was the first to show that the applica
tion of the asymptotic conditions in the papers of 
LSZ is not sufficiently well defined, and the expres
sion for the matrix elements ( p I S I p') in the 
form (40) does not follow from the asymptotic con
ditions alone. If, however, one uses the asymptotic 
conditions as they are used in the papers of LSZ3• 
4• 11 then the operators cp ( x) of the interacting 
field must necessarily commute outside the light 
cone, in order that there be no contradictions 
with relativistic invariance. 

These conclusions of Kaschluhn are fully con
firmed by the results of the present paper. Fur
thermore, if we start from Eqs. (8) and (9a)- (9c), 
then, as has already been remarked, there is no 
need to use the asymptotic conditions (41). As for 
the possibility that there exist nonlocal solutions 
of (8), without resorting to Eqs. (9a)- (9c) or to 
Eq. (6), and to additional assumptions of the type 
of the adiabatic hypothesis, in our opinion the 
question remains an open one.* Whereas the role 
of the asymptotic conditions (41) in the derivation 
of Eq. (40) from Eqs. (8)- (9c) is not an essential 
one, the requirements of causality, Eqs. (9a) and 
(9b) are of decisive importance. 

Here it is necessary to emphasize once more 
that the condition (9a) on one hand, and the condi
tions (9b) and (9c) on the other, are not equivalent. 
This result of the present paper contradicts 
Kaschluhn's conclusion6 that "the commutation 
condition for the operators of the interacting field 

*We note that if we start from Eq. (8), without assuming 
the connection (7) between j (x) and the S matrix, the pos
sibility of the existence of nonlocal solutions can be settled 
in a trivial way (see the analysis given for the Wightman ex
ample). This possibility, it is true, is of no interest from the 
physical point of view. 
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cannot be interpreted as a condition on the re
duced elements of the D matrix, from which fol
low some analytical consequences for the theory 
of dispersion relations" (cf. pages 4, 5, and 33 
in reference 6). The mistake in this conclusion 
comes from the fact that in studying the various 
expressions involving operators cp ( x) of the in
teracting field Kaschluhn has actually nowhere 
taken into account the additional restrictions on 
the operators cp ( x ) and j ( x ) that arise from the 
conditions (9a) and (9b) for local behavior. 

In connection with the equivalence of the two 
methods from the point of view of the properties 
of Sn(x1, ••. Xn) in the S matrix (1) on the mass 
shell the question can arise: Where is the retar
dation condition imposed in the formation of caus
ality in the form (9a) and (9b)? Essentially, it is 
contained in the expression of cp ( x) in terms of 
j (x) in Eq. (8) by means of retarded (or ad
vanced) Green's functions~R(x,m) [or ~A(x,m) 
of the homogeneous Klein-Gordon equation. In this 
connection, however, it must hold apart from terms 
that vanish on the mass shell, i.e., it does not have 
to hold rigorously. 

Comparing the two methods that have been con
sidered, we note an important advantage of the 
Bogolyubov method, which is that the condition 
(6) is formulated and can be used without any re
sort to the operators cp ( x) of the interacting field 
and Eq. (8) for these operators. Moreover, for ob
taining the expressions for S2(x1, x2 ) and S3(x1, 

x2, x3 ) in Eq. (1), which correspond to the single
particle and vertex Green's functions, in the forms 

S2 = - (0 I Tj (xt), j (x2) I 0), 

Sa= - i (0 I Tj (xi), j (x2), j (xa) I 0) 

and for studying their analytical properties, the 
causality conditions (6) are not only sufficient, but 
also necessary conditions. This is so because the 
contributions from ~(x1 , x2 ) and S3(x1, x2, x3 ) 

in Eq. (1) drop out on the mass shell. Therefore 
one cannot get unambiguous expressions for these 
functions by means of the conditions (9a) and (9b). 

On the other hand, all of the difficulties of pres
ent quantum field theory in its Lagrangian formu
lation have their roots, as a rule, in the properties 
of just these simplest Green's functions. There
fore the existence of an additional arbitrariness 
in their definition, which does not contradict the 
local character in the sense of Eq. (9), may be 
due to deep causes. In any case the requirement 
(9) is weaker than Eq. (6), and in general widens 
the range of possibilities. 

In conclusion we point out an interesting conse
quence of the theorem proved in Sec. 2: the commu
tators [<Pin, out( x ), j (y )], [<Pin, out( x ), <P (y )], and 
[<Pin(x), <Pout(Y )] do not vanish outside the light 
cone,* ( x- y )2 < 0, if we exclude the trivial case 
in which <Pin(x) = <Pout(x) or cp(x) and j (x) do 
not depend on <Pin(x) [or <Pout(x)]. For example, 

[cpi1(x), j (y)l 

= s Ll (x-x', m) 0 (y0 -x~) [j (x'), j (y)] d4 x' 

=1= 0 for x ~ 11 

since otherwise it would be necessary for an arbi
trary matrix element (pI [j(x ), j(y )] I p') to be
have on the mass shell like a quasi-local operator 
["" o ( x - y ) and its covariant deri va ti ve ] . 

The method used in the present paper can be 
extended without particular difficulty to the case 
of several interacting fields and the presence of 
bound states. 
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