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Neutron transfer in nuclear collisions is investigated in the case when the effect of the 
Coulomb field is significant. At energies above the Coulomb barrier the possibility of 
formation of a compound nucleus is taken into account. The differential cross section 
attains a maximum which shifts towards smaller angles as the energy is increased. The 
angular dependence of the cross section depends weakly on the angular momentum of the 
state into which the neutron is captured. The calculation is restricted to the case when 
the Q of the reaction is small compared to the energy of the colliding nuclei. 

NEUTRON transfer occurring in the bombard­
ment of atomic nuclei by nitrogen ions has been 
studied in recent years in a number of experimen­
tal papers (cf. references 1-4). A study was 
made of the energy dependence of the neutron 
transfer cross section5- 7 and of the angular dis­
tribution in the reaction N14 ( N14N13 ) N15 at ener­
gies of 23.3, 21.1, 19.2, and 16.3 Mev. 1 At an en­
ergy of 23.3 Mev, Reynolds and Zucker1 have ob­
served a maximum at 50° in the center of mass 
system (c.m.s.). The angle corresponding to the 
maximum number of scattered particles was found 
to increase as the energy was decreased. 

At energies below the Coulomb barrier the 
transfer of a nucleon can be due to· the penetra­
tion through the Coulomb barrier. At high ener­
gies when the distance of closest approach of the 
colliding nuclei becomes equal to or less than the 
sum of the nuclear radii the formation of a com­
pound nucleus becomes possible. In this case the 
angular distribution of the inelastic scattering of 
nuclei accompanied by nucleon transfer is charac­
terized by a sharp falling off at large angles cor­
responding to small nuclear impact parameters. 

Good ag~eement with experimental data on the 
elastic scattering of charged particles was ob­
tained by means of the semiclassical theory based 
on the assumption according to which the l-th par­
tial wave is completely absorbed if the impact pa­
rameter associated with it is less than or equal to 
the sum of the radii of the colliding nuclei, while 
the wave whose impact parameter is greater than 
the sum of the nuclear radii remains unperturbed 
and has the phase corresponding to Coulomb scat­
tering. 8•9 Such a semiclassical theory was first 
proposed by Akhiezer and Pomeranchuk10 in the 

study of diffraction scattering of fast charged 
particles. 

We can assume that the hypothesis just quoted 
holds also in the case of inelastic scattering. We 
shall investigate in the c.m.s. collisions of nuclei 
of mass numbers A1 and A2 as a result of which 
a neutron is transferred from the nucleus A1 to 
the nucleus A2 ( A1 » 1, A2 » 1 ) . The problem 
is considerably simplified in the limiting case 
71i = Z1Z2e2/nvi > 1, 7)f = Z1Z2e2/li.vf > 1, when the 
quasiclassical approximation is applicable. 

The amplitude for neutron transfer, similarly 
to the amplitude for stripping, lt can be written in 
the form 

f = - 4:n• ~ <t>;, (p') 'Pk{> • (r') V (p) 'Pkt) (r) <:p1 (p) drdp. (1) 

Here p is the position vector of the neutron with 
respect to the core A1 - 1 in the nucleus A1, p' is 
the position vector of the neutron with respect to 
the core A2 in the nucleus A2 + 1, r and r' are 
respectively the position vectors of the center of 
mass of the nucleus At and of the core At - 1 with 
respect to the center of mass of the nucleus A2, JJ. 
is the reduced mass of the colliding nuclei, V (p) 
is the potential for the nuclear interaction between 
the neutron and the core A1-1, cpz(p) is the wave 
function for the neutron of angular momentum l in 
the nucleus A1, iPz' ( p') is the wave function for 
the neutron of angular momentum l' in the nucleus 
A2 + 1. ¢ft7 ( r) denotes the Coulomb wave function 

for the relative motion of the nuclei Ai and A2 
which at infinity consists of a plane wave with the 
propagation vector ki and a spherical diverging 
wave; lf!~f>(r') is the Coulomb wave function for 

the relative motion of the nuclei A1 -1 and A2 + 1, 
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which at infinity contains a wave with propagation 
vector kf and a converging spherical wave 

'ljl~+>(r) = exp(-{nTJ; + ik1r)f(1 
l 

+ i'1'] 1) F (-iT];, 1; i (k1r - k;r)), 

l{lLf> (r') = exp (- in'llt+ iktr') f(1- iTJt) F (i'l']f. 1; 

-i (k1r' + k1r')). (2) 

If we take the neutron mass M to be much 
smaller than the mass of the core A1 -1, we can 
set r' ~ r and p' ~ r + p. Further, on noting that 
if the energy of the relative motion of the colliding 
nuclei is not great (lower than the Coulomb bar­
rier), then in the evaluation of (1) the region in­
side the nucleus A2 + 1 is not important, we see 
that, therefore, the function <I>z' ( r + p) in (1) can 
be replaced by its value in the exterior region 

ci>r(r + p) = Nt•Yt•m•W, ci>')kl'(a lr + p\), 

lr + PI>R', (3) 

where kz,(x) = v 1r/2x Kz'+~(x) is Macdonald's 
spherical harmonic, 0! = v 2M€' In ( €' is the bind­
ing energy of the captured neutron in the nucleus 
A2 + 1), Yz'm' ( 8', <I>') is the spherical harmonic 
corresponding to the state of angular momentum 
l'; e', <I>' are the angles specifying the orientation 
of the vector r + p, Nz• is a normalization con­
stant, R' is the radius of the nucleus A2 + 1. 

If aR' exceeds l' ( Z' + 1 )/2, then the function 
in (3) can be replaced by its asymptotic expression 

kl' (x} = ne-"12x. 

For example, in the case of neutron transfer 
from a N14 nucleus to another N14 nucleus aR' 

(4) 

= 2.8, l' = 1, and, therefore, formula (4) is a good 
approximation. 

By choosing for the potential V ( p ) the rectan­
gular well model 

{ -Vn, 
V(p)= o, 

( R is the radius of the nucleus A1 ) , the function 
cpz(p) can be written in the form 

<i't (p) = Nddxr)Ytm"Cfrp, <pp}, P < R, 

% = V2M (Vo - e)lii2 , (5) 

where jz( XP) is the spherical Bessel function of 
order l, ( E is the neutron binding energy in the 
nucleus A1) and Nz is a normalization constant. 

By utilizing the well known expansion 

exp (-a! r + r I) 
I r+p I 

= 4~ ~ (-1)Ah.+'f,(ap)K1+'!z(ar)Y~v(tt, <p) 
Vrp 1.. • 

(6) 

where Ii\+.!.(x) is a Bessel function of imaginary 
argument, 2~, cp are the angles specifying the ori­
entation of the vector r and ~P• 'Pp are the angles 
specifying the orientation of the vector p, we re­
write the amplitude f in the following form: 

R 

f=NtN• :rq.tVo ~ (-J)i.\ _1_Ji.+'f,(ap)lt+'f,('Xp) 
2h2 v ax L.J J p 

A, v o 

X Y1m(l'tp,(jlp)Y~v (l'tp,<pp)dp ~ 'ljlk{l * (r) kA(ar) 'ljl~;~ (r) 

x,Y;·m·(S', <D')Y~.v(tt, qJ)dr. (7) 

It should be noted that the angles 8', <I>' are 
functions of ~. cp, ~P• 'Pp• p, r. However, approxi­
mately we can set e' ~ ~ and <I>' ~ cp. Such a re­
placement is valid if the effective value of p is 
small in comparison with the effective value of r. 
We can make an estimate of the error made as the 
result of such replacement in the case of the ex­
ample l = l' = 0. In this case the exactly calcu­
lated amplitude can be compared with the ampli­
tude obtained if we neglect in the function <I>;'( r + p) 
of formula (1) the quantity p compared to r. It 
can be easily seen that the replacement of <I>ti(r+p) 
by <I> 0( r) does not affect the nature of the angular 
distribution for l' = 0. We should, therefore, ex­
pect that the replacement e' - ~ and <I>' - cp in 
the general case l' ~ 0 will also not lead t? any 
significant change in the angular distribution. 

Thus, for the amplitude of the reaction we ob­
tain the following expression: 

f=NzN;. n~.tVoBz (-l)z\ 'ljll,-l*(r)k1 (ar)'ljJL+>(r)Yz·m•(l't, cp) 
2;,2 Yax J t • 

X Y lm (it, (jl) dr, 

Bz = xz: az {lz+'!, (%R) d~ lz+'!, (aR) 

-lz+'f, (aR) d~ Jl+'/, (xR)} · (8) 

In evaluating the integral remaining in (8) we 
can again make use of the asymptotic expression 
(4) for kz(ar) if the condition areff > l (l + 1)/2 
is satisfied. If in making the estimate we make 
use of the value 

r eff = ZtZ2e2/E + [e'(A- 1)- eAJ2/4e'A, 

A= A 1A2/(A1 +A2), 

obtained in evaluating the integral in (8) by the 
saddle point method, it can be easily seen that at 
energies of the order of the Coulomb barrier 

3 3 

areff~.f(VA1 + VA2). 

In the case of the reaction N14 ( N14N13 ) N15 at 
E ~ 9 Mev, E' = 10.8 Mev, E = 10.6 Mev (cf. ref­
erence 11) we have areff ~ 5. 
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When this condition is satisfied the integral (8) 
can be written in the form 11 

~ 'ljlf.7l* (r) kz (11-r) 'ljllt) (r) Yz'm' ({}, cp) Yzm ({}, cp) dr 

= 21t Yzm ({to, (j)o) Yz'm' ({to, (j)o) \' e-ra 'ljlj.-l* (r) '\jlk; (r) dr. 
cr J r J (9) 

Here r 0 ( r 0, J 0, cp 0 ) is the saddle point, where the 
function F ( r ) = - ar + In ( I/Jft1 * ( r ) 1/Jt> ( r ) ) has an 
extremum. 

We expand the Coulomb wave functions lj;~'_l(r) 
and 1/Jt/<r) into partial waves:13 1 

'ljlk±l(r) = 4:rt~iZexp [ ±io 1 (1])] (kr)-1Y;m(k) Yzm 
lm 

X({}, cp) F1 (kr), (10) 

where oz ( 1)) = arg r ( l + 1 + i7J) is the Coulomb 
phase shift, and Fz(kr) is the regular solution of 
the radial wave equation for angular momentum Z: 

F (kr) = e-"11/2 I r (I+ 1 + i1'])i (2kr)Z+1 e-ikr F (l + 1 
z 2r (21 + 2) 

- i1], 2l + 2, 2ikr). (11) 

On substituting (10) into the integral (9) and on 
carrying out the integration over the angles we ob­
tain 

~ e-,ar 'ljllT (r) 'ljll:) (r) dr = 4:rt f (2l + 1) 

xexp [ioz ('11;) + ioz ('llt)l Pz (cos 8) k;1k1 
00 

>< (' Fz (kir) e-ar Fz (kt r) dr J r 
0 

( Pz( cos 8) is a Legendre polynomial, 8 is the 
angle between the vectors ki and kf). 

(12) 

In the quasiclassical case ( 7Ji• 7)f > 1) we can 
utilize the following approximate expression for 
the radial functions: 14 

r 

F z (kr) = [' k~T'f, sin cp, cp = ~ + ~ [f (r) ]'f, dr, 
r 

f (r) = k2- 2~1'] - l (I ;t' 1) ' (13) 

where r is the classical turning point determined 
by the condition f (r) = 0. If we restrict ourselves 
to the consideration of the case when the Q of the 
reaction Q = EAc1- EA1 = E'- E is much smaller 
than the kinetic energy of the colliding nuclei we 
have 

1 r -a.r 
k;kf J, F1 (ki r) 7 F, (ktr) dr 

Oc 

= 2~2 exp (- cr~ + £ arctg ;~) K;~ (ec), 

£ = 'llt- 'Y];, '11 = ('Y}; + 'llt)/2, 

For ~ « 1 and 1) » 1 we have 

exp [£arctg(£k/a1J)] = 1, K;dec) =(:rt/2ec)'l·e-•c 

(cf. reference 15). 
Therefore 

1 r -a.r 
k; kf J F z (k;r) 7 F z (ktr) dr 

0 

= 2~2 c:aetexp[-aa(1 +sin-1(6/2))], (15) 

where a= 1)/k = Z1Z2e2/J..tv2• Thus, on substituting 
(15) into (12) we obtain the following expression for 
the amplitude for neutron transfer in nuclear col­
lisions: 

. 'I j----;[,'1 N z N;, V oil 1 
f(S) =tV 2xa kfiJcr2 Bz(-1) Yzm({}0 , (j)o) 

xY;,m,({}o,cpo)'}/sin ~ fo'(8)exp{-11-a(1 +sin-1(6/2)}, 
(16) 

f0 (6)=~ 2~k(2l+ 1)exp[2ioz('ll)]P1 (cos6). (17) 
l 

At energies much lower than the Coulomb barrier 
f0( 8) is the ordinary amplitude for Coulomb scat­
tering. As can be seen from (16) the angular de­
pendence of the cross section is given by the ex­
pression sin-3 ( 8/2) exp (- 2aa/sin ( 8/2 )) (cf. also 
reference 7). This expression increases with in­
creasing angle 8 reaching a maximum,* after which 
a falling off begins determined by the factor 
sin-3 ( 8/2 ). As the energy increases the maxi­
mum of the angular distribution shifts towards 
smaller angles. 

At energies greater than the Coulomb barrier 
it is necessary to take into account the possibility 
of formation of a compound system in nuclear col­
lisions. In the quasiclassical case the formation 
of the system is possible if the orbital angular 
momentum l is less than lmax determined by 
the condition 
lmax Umax + 1) 

(18) 

In this case in formula (17) which determines the 
elastic scattering amplitude we must restrict our 
summation to values of l =::: l max· 

Owing to the possibility of formation of a com­
pound system, the angular distribution of nuclei 
in the case of neutron transfer will fall off sharply 
at angles greater than 8 = 80, where 80 can be 
roughly estimated by means of the following for­
mula: 

(19) 

(14) * *The angle Bm ax is determined by the condition 
*arctg = tan-1 • sin (Bmax/2) = 2a. a/3. 
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In a similar manner Reynolds and Zucker9 have 
succeeded in explaining the angular distribution 
of the elastically scattered particles in the reac­
tion N14 ( N14N14 ) N14 at an energy in the laboratory 
system (l.s.) of 21.5 Mev, by setting Zmax = 6 
and R = 4 x 10-13 em. 

Thus, at energies above the Coulomb barrier 
the angular dependence of the neutron transfer 
cross section will be given by the expression 

~; (0) ~ I sin-'!. ~ exp (- iT] In sin2 ~ + 2U)0 - cx.afsin ~ ) 

l=lmax 

+ i~ sin'/• ~ exp (- cwjsin ~) 2J (2! + 1) 
1=0 

X exp (2ill1) Pc (cos 8)12. (20) 

In collisions of identical nuclei it is necessary 
to take recoil into account. In this case the angu­
lar distribution can be roughly obtained in the fol­
lowing manner: 

(21) 

Evidently there will be observed two maxima, sym­
metric with respect to (} = 1r/2, the separation be­
tween which increases with increasing energy. 

A more exact result can be obtained by treating 
the identical nuclei quantum mechanically. In the 
case of the reaction N14 ( N14N13 ) N15 the angular 
distribution is given by the following expression7 

da/dQ =-} (2da0 jdQ + da.ldQ), (22) 

where daa/dQ and das/dQ are the cross sections 
for the antisymmetric and the symmetric states: 

dcra .• ldQ =! f (0) =F f (n:- 0) 12 • (23) 

On substituting (16) into (23), on noting that l = l' 
= 1, and on taking into account the weak dependence 
of J 0 on the scattering angle (} we obtain 

d:; •. a = _1_~ sl N [2[ N' [2 (!!.__)' V2 "3 M-'1, '-'iV - )-'/, 
dQ VZ 2048 n: 1 I \ E o n e ' o e 

:< Bie-2'xa I sin-'1• ~ exp (- ir1ln sin2 ~ + 2i60 

- cwfsin ~)±cos-'/, ~ exp (- i11ln ccs2 ~ + 2i60 

I e),1.,1 e ( 1 . e) - aa cos 2 , il]sm •2- exp - aa sm 2 

l=lmax 

X ~ (2/ + 1) exp (2i61) P1 (cos 0) 
l=t. 

l=lma:J,: 

The energy dependence of the neutron transfer 
cross section can be roughly estimated by integrat­
ing I f ( e ) 12 from (} = 0 to e = (} 0• We obtain the 
result 

(£) 1 [ aZ,Z,e2 ('I , . -1 8o )] c; ~Eexp ---£-, -r-sm 2 . (25) 

In order to improve the results given by formula 
(25) we can utilize the experimentally observed 
dependence of e0 on energy. 

It should be noted that at energies below the 
Coulomb barrier formula (25) leads to too rapid 
a falling off of the cross section with decreasing 
energy (cf., reference 7). 

In conclusion the author wishes to take this op­
portunity of expressing his sincere gratitude to 
A. G. Sitenko for his assistance in this work. 
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