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A nonlinear spinor equation of the Heisenberg type1 is considered. A procedure for the de
termination of the "mass" values of the eigenstates of the spinor field is proposed which is 
based on the following assumptions: a) the number of "incoming" and "outgoing" lines in 
the diagrams describing the eigenstates of the field are sufficiently large, and b) only irre
ducible diagrams are taken into account. The procedure is carried out by means of the self
consistent field method. 

1. INTRODUCTION 

ONE of the fundamental problems of present-day 
elementary particle theory is the determination of 
the eigenmasses of the particles. 

Recently, Heisenberg1 proposed to describe all 
elementary particles as eigenstates of a single 
spinor field If!. In the general case, this problem 
consists in the determination of a functional <PpJ..! 
which satisfies the equation 

P:/Dp = p <D, 
' [1. [J. ,!J.' 

(1) 

where PJ..! is the operator of the four-momentum 
which is related to the energy-momentum tensor 
Tik and the Lagrangian in the usual way. The 
eigenvalues PJ..L• or more precisely, the quantities 
.../- p~ = ~- represent the eigenmasses of the sta
tionary states. The lowest states with the lowest 
values of the eigenmass and spin will correspond 
to the "elementary" particles. However, in cal
culating the mass values \m Heisenberg was con
fronted with the usual difficulty in this type of 
problem: the appearance of divergent expressions.* 

We note that, in solving the problem of the ei
genmass of the particle, one usually (and in the 
paper of Heisenberg, too) makes the additional 
assumption that the interaction is adiabatically 
switched on and off at t = ± oo. That is, the func
tional <PpJ..! is written in the form 

<Dp1, = rD1, = '\JT (P) (Do for t = - x , 

<D;,1, <D:ut =.c (D~,'IJ- (p1J for t = -: x 

(here <Po is the functional of the vacuum ) . In the 
language of diagrams, this means that one consid
ers a diagram of the type shown in Fig. 1, in which 

*To circumvent this difficulty, Heisenberg proposed to use 
a Hilbert space for the functionals <l>p .u with an indefinite 
metric. 2 

FIG. 1. Diagram of the energy for an interaction whiph is 
switched on adiabatically. 

there is only a single thin line on the left ( t = - oo), 

depicting a single "undressed" particle. It is well 
known that attempts to calculate the eigenvalue of 
the energy lead to infinities in this case. 

It is of interest to try to consider this problem 
without the assumption of the adiabatic switching
on of the interaction. It is, of course, impossible 
to solve this problem without any additional as
sumptions whatsoever. However, one can make 
different assumptions. Thus let us assume that 
the occupation numbers characterizing the func
tional <PpJ..! are always (i.e., also fort= -oo) 

large.* In the language of diagrams this means 
that the number of incoming lines (on the left) as 
well as the number of outgoing lines (on the right) 
is sufficiently large, i.e., the diagram is "many
tailed.'' 

We note that the "many-tailed" diagrams can 
also be divided into the class of completely irre
ducible diagrams (Fig. 2a) and the class of reduc
ible diagrams (Fig. 2b). !n the latter, one of the 
lines contains a self-energy part of lower order 
(Fig. 2c). It is therefore of interest to consider 
the problem of the eigenvalue of the energy by 
taking only the completely irreducible many-tailed 
diagrams into account. This will be the subject of 
the present paper. 

It is impossible at present to justify convinc
ingly the procedure of separating out the irreduc
ible many-tailed diagrams. However, arguments. 
can be advanced which make it more or less likely 
that this procedure is sound. First of all, it is 

*This assumption is, in a certain sense, the opposite of the 
assertion that the functional <I>P~-t = .p+<I>0 for t = - ""· 
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a b 

0 

L (x) = :;p (x) y1"CJI' 'ljJ (x) -'- m1j; (x) 'ljJ (x) 

+ A2 ('\i (x) 0'\jJ (x)) (\I) (x) 0'\jJ (x)), (2) 
where "¢ ( x) and 1/J ( x) are operators of a spin or 
field; m is a constant with the dimensions of a 
mass; A. is a coupling constant (with the dimension 

c of a length); and 0 is a spinor operator which de-
FIG. 2. a - "many-tailed" irreducible diagram for the energy, pends on the form of the interaction: in the case of 

b - many-tailed reducible diagram, c - self-energy diagram of al 1 . O _ 1 f t 1· 0 _ 
the lowest order. sc ar coup 1ng, - , or vee or coup 1ng, - YJ1.' 

relativistically invariant. Second, it can easily be 
shown that the number of reducible many-tailed 
diagrams is only a small fraction ("' 1/v, where 
v is the number of external lines) of the number 
of completely irreducible diagrams (it is true, 
however, that this does not necessarily imply that 
their contribution will also be small). Third, in 
renormalizable theories (to which, unfortunately, 
the Heisenberg theory does not belong) the re
ducible diagrams are automatically excluded after 
renormalization. * In order to carry out this pro
gram, it is convenient to use the method of the 
self-consistent field ( Hartree-Fock method): 
first, this method has proved its usefulness in the 
investigation of nonrelativistic systems consisting 
of many particles and second, it is comparatively 
simple to exclude the reducible diagrams within 
the framework of this method.t 

. It should be noted that what we propose is basi
cally only a program of action. The aim of this 
program, so far, is only to determine the func
tionals which correspond to the lowest states. We 
do not pretend to be able to describe the scatter
ing and the interaction among "real" particles. 
In our formulation, the scattering problem will be 
analogous to the problem of the interaction of com
posite particles. It can be said beforehand that the 
phenomenological operator for the interaction of 
real particles (if it can be written down at all ) 
will be complicated and nonlocal, and will differ 
greatly from the Lagrangian describing the inter
action between quanta of the field 1/J. 

2. METHOD 

Let us consider a Lagrangian density of the 
form (n = c = 1) 

*We note that the meaning of the renormalization of the bare 
constants (e.g., the mass m0 and the charge g.) is. in our case 
different from the usual one. For even after renormalization, the 
quantities m and g do not represent the observed values, but 
have the meaning of "bare" constants as before. The observed 
"mass" is in this case given only by the quantity ~. 

tStrictly speaking, the large number of particles in the sys
tem is a necessary condition for the applicability of the Hartree
Fock method, not a sufficient one. But at the present moment it 
is difficult to justify the application of this method more rigor
ously. It is possible that this can be done more easily later on. 

etc. We note that the expression (2) is a generali
zation of the Lagrangian of Heisenberg and reduces 
to it for m = 0. 

Our discussion will be in the "rest" system, 
where 

P1 = 0, Po = E = 9)1, ClJP~'- = ClJ~. (3) 
It is entirely possible that one can develop a co

variant method of solving the problem under the 
assumptions made. For the moment, however, it 
is more convenient to work in the Schrodinger rep
resentation in the "rest" system. We note that 
the time and the space coordinates are not treated 
in the same way in the "rest" system. This should 
not worry us, however, since the four space-time 
coordinates are in general not completely equiva
lent in our problem, which is characterized by the 
constant vector Pw Indeed, in an arbitrary sys
tem of coordinates we can choose as the four inde
pendent variables the quantity T = - pJlxJl I~ and 
the three quantities ~Jl = xJl + XvPvPJl /rol 2• It is 
easily seen that the variables ~Jl represent the 
projection of the vector xJl on the plane perpen
dicular to pJl., so that only three of them are inde
pendent. It is natural that the variables T and ~Jl 

do not necessarily enter in the solution in the same 
way in an arbitrary system of coordinates. In our 
"rest" system, T = t, ~4 = 0, and ~i =Xi·* 

Let us formulate the problem in the Schrodinger 
representation, where 

<D~ = eiEt cp £, 'ljJ (x) cc.c eiHt 'ljJ (x) e -dlt. (4) 

Here H is the Hamiltonian, which is equal to 

ft = ~d3x'li (x) y,-8,'\jJ(x) + m ~ d3 x\p (x) 'ljJ(x) 

-~ +A2 ~d3x('Ji(x)O'IjJ(x)) (\P(x)O\jJ(x)) (i = 1' 2, 3). 

The equation which determines the functional rl>E 
ist 

*We note, incidentally, that the possibility of choosing 
such variables was ignored in the solution of the "classical" 
equation (i.e., assuming that if and 1/J commute) in the papers 
of Heisenberg et al. 2 and Kurdgelaidze. 3 These authors, there
fore, left a whole class of solutions out of consideration. 

tit is, in general, necessary that the functional <I>E satisfy 
the condition F'i<I>E ~ 0 besides the equation (5) (I\ is the op
erator of the space components of the momentum). However, if 
the number of "external" lines is large, Y » 1, this condition 
is not important and does not affect the final result. This can 
be seen by considering the problem in momentum space. 
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(5) 

We shall asswne that the commutation relations 
have the usual form 

{\ji (x), 1jJ (x')} = 6 (x- x'). (6) 

In this connection, the question of the value of the 
anticommutator for different times comes up. We 
shall not discuss this point, since these commuta
tors do not appear either in the final expression or 
in the course of the investigation (see below). 

The solution of Eq. (5) is conveniently found by 
the variational method. Let us write down the av
erage value of the energy 

E = <l>~H<l> E = ~ d3x £(-\j) (x) (m +Vi a,) 1jJ (x))£ 

++i-.2 ~dax£(('t)(x)61jl(x)) (1ji(x)01jl(x)))E' (7) 

where ) E = <I>E and E( = <I>f;. It is seen that 
minimizing this expression with respect to the 
functional <I>f; (with account of the normalization) 
is equivalent to solving Eq. (5). 

For the following it is convenient to expand the 
functions 1/J ( x) in terms of some complete ortho
normal system of spinors ..Yn (X): 

1jJ (x) =~[a;'¥~,+> (x) + b~ '¥~-> (x)], 

" 

n 

(Here -q,~+> and ..y[> are the positive and negative 
frequency parts of the system of functions ..Yn.) 
The operators an and bn satisfy the usual com
mutation relations 

We shall not specify the form of the functions 
..Yn(X) any further, since it will be determined 
by (5). 

Up to this point the discussion has been rigor
ous. In accordance with what has been said above, 
let us now apply the method of the self-consistent 
field ( Hartree-Fock method) and choose the func
tional <l>E of the form* 

v' v" 

<l>E = L; C, n a7 I1 b; <Do, (8) 

where <I>o is the functional of the vacuum. The fac
tors ai and bj are distributed such that the indices 
i and j are in natural order; v' and v" are occu
pation numbers such that v' + V 11 = v. They are 
connected with one another in the following way: 

*It is easily shown that this form of the functional is equiv
alent to the usual form of an antisymmetrized product, employ• 
ing the usual method of quantization in momentum space. 

if the functional <l>E describes a state with integer 
spin and zero "charge," v' = v" = vI 2; if it de
scribes a state with half-integer spin and "charge" 
± 1, then v' = v" ± 1. 

The functions Cv must satisfy the condition 
~I Cv 12 = 1 and must, according to the asswnption 
made above, be different from zero only in the re
gion v ...... v0 » 1. In view of this circumstance, we 
shall in the following neglect terms of order 1/ v 
as compared to unity. Moreover, we shall not take 
into account terms which correspond to reducible 
diagrams. 

Substituting the functional (8) in (7), we obtain 
(we omit the intermediary calculations in view of 
their complexity) 

E ~c ~ i Cv :2 {\d~x ~ Wh+> (x) (m '-vAl '¥f,+> (x) 
., k 

-~d'lx~w;-> (x)(m f-y,o1)'¥)->(x) 
I 

-+ ~"- 2 ~dax[~r(Wr) 6'¥;,)(1¥)+> 6'¥;\ 
k, I 

' 
-f ~ r(o/r) o'l't-)) (o/\-) 6 '¥;-)) 

h. I 

v' v" 

-2 ~ ~ r(W}+> o '¥f:f)) (WI-~ 6 '¥;-)) 
k l 

- (o/};l o '¥;-: l cwr) o 'rr) ll]}· (9) 

We note that we have omitted terms of the type 
( + +) ( + + + + ) t * . d . . th' akaz , akaz ak'al' , e c., m er1vmg 1s ex-

pression, since their contribution turned out to be 
small ( ...... 1/v) in comparison with the contribution 
from the remaining terms. Another important step 
in the derivation of the expression above is the 
omission of terms of the type ( afakakaz ). These 
terms are related to the reducible diagrams of the 
form shown in Fig. 2b. The nwnber of such terms 
is small ( ...... 1/ v) in comparison with the nwnber 
of the remaining terms, but the contribution from 
each of these terms may be infinite. These terms 
have been discarded on the basis of the considera
tions above. The terms remaining in (9) do not 
any more contain the self-interaction (i.e., reduc
ible diagrams of the type shown in Fig. 2c); for 

*Terms of this type describe the change of the energy if 
there is additional creation (or absorption) of particle pairs. 
The circumstance that their contribution is small is, apparently, 
connected with the fact that the chemical potential of a pair is 
equal to zero. 
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k = l, the interaction terms reduce to zero by vir
tue of the antisymmetrization. 

Expression (9) must be varied with respect to 
two physically distinct groups of parameters: ex
pression (9) must be minimized 1) with respect to 
the occupation numbers (i.e., with respect to the 
parameters of the function Cv ), and 2) with re
spect to the parameters which determine the sys
tem of functions 'lin( X). As a result of these vari
ations we determine the specific form of the func
tions 'l'n(x) and the function Cv. For example, 
in the crudest approximation we may write Cv 
= Ovvo (where v0 is the variational parameter) 
and take for the complete system of functions 
'l'n(x) the system of spinor functions for a par
ticle with mass m 0 in a potential well with depth 
U0 and width r 0 (m0, U0, and r 0 are the varia
tional parameters ) . 

CONCLUSION 

We have seen that the problem of the eigen
mass of an elementary particle reduces in our 
case to the problem of the formation of a bound 
state of a system of many "virtual" particles. 
Analogous problems concerning the formation of 
a bound state through the interaction of several 
particles with one another have been discussed 
many times. They usually lead to a finite expres-

sion for the energy of the system. We therefore 
hope that the minimization of expression (9) leads 
in our case also to a finite result. 

We hope to carry out this program in the future 
and also to discuss other problems related to it 
(for example, the problem of the properties of the 
physical vacuum). 

We also note that an analogous program can 
also be applied to the "usual" theory which starts 
with two interacting fields ( fermions and bosons ) 
with the "usual" linear coupling between them. 

In conclusion, I take this opportunity to express 
my gratitude to E. L. Feinberg, D. A. Kirzhnits, 
V. Ya. Fa!nberg, and G. A. Milekhin for valuable 
advice and fruitful discussions. 
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