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The emission of low energy y quanta in ep scattering is considered. It is shown that the 
first terms of the expansion of the amplitude in powers of the photon energy can be expressed 
through the electromagnetic form factors of the proton. The differential cross section for the 
process is derived in this approximation. 

1. INTRODUCTION 

T~E study of elastic scattering of high -energy 
electrons by protons and nuclei is, at present, a 
basic source of information on the electromag
netic structure of nucleons. The experiments 
performed have made it possible to draw impor
tant conclusions on the behavior of the electro
magnetic form factors of nucleons Ff;n and Ff;n 
as functions of the square of the four-momentum 
transfer. Great interest attaches also to other 
processes, the study of which will make it pos
sible to obtain additional information on the form 
factors F1 and F2•1•2 In the present article, we 
consider the emission of low energy bremsstrahl
ung in ep scattering. It will be shown that the 
first two terms of the expansion of the differential 
cross section for this process in powers of the 
photon energy are expressed through the electro
magnetic form factors of the proton and their 
derivatives with respect to the momentum transfer. 

To obtain the amplitude of the process, we em
ploy the general method of considering the radia
tion of low-energy y quanta suggested by Low. 3•4 

Following this method, we first consider that part 
of the amplitude of the process which has a pole 
at k = 0 ( k is the photon momentum ) . It is then 
shown that the product of the exact renormalized 
vertex operator corresponding to the radiation of 
a real y quantum and the exact renormalized 
propagation function of the nucleon is expressed, 
according to Ward's identity, to an accuracy of 
terms of the order 1/k and constants, through 
the charge, mass, and anomalous magnetic mo
ment of a physical nucleon. On the basis of gauge 
invariance, we then find the part of the amplitude 
not containing the pole. In the concluding part of 
the article, we derive an expression for the dif
ferential cross section of the process. 

2. AMPLITUDE OF THE PROCESS 

The process of the radiation of y quanta in the 
scattering of electrons by protons in the lowest
order approximation in e, but with allowance for 
strong interactions of the nucleon, is described by 
the diagrams of Figs. 1 and 2. In the figures, q 
and q' denote the electron 4-momenta before and 
after the collision; p and p' denote the proton 
momenta, and k is the y-quantum momentum. It 
is obvious that the nucleon vertex part of Figs. 1a 
and 1b is determined by the form factors describ
ing the elastic scattering of electrons by protons 
with a corresponding momentum transfer. 
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Fig. 1 Fig. 2 

We write the S matrix in the form 

S(p', q', k; p, q) = - (2:n:) 4 i (M1m2/2kop~p0q~qo)'1• El'-

x (T~ + T~1) 6 (p' + q' + k- p- q), (1) 

where M and m are the masses of the proton and 
electron, Ef..L is the polarization vector of the pho
ton, Po= - ip4, q0 = - i~, etc, and TA and TJ} 
represent the respective contributions of the dia
grams of Figs. 1a, band 2. 

For TA we have 

T I - ( ') [. 1 . 
1'- = u q terl'- iy (q' + k) + m ter. 

575 

+ ier. iy (q _! k) + m ier~'-] u (q) v (p') ie [F 1 ((p'- p)2) r. 

- + !lPM-1F 2 ((p'-p) 2 ) Ovp (p'-p)p] V (p) (p'-pf2. (2) 
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Here !Jp, F 1, and F 2 are the anomalous moment 
(in nuclear magnetons) and the electromagnetic 
form factors of the proton; a !JP = ( 1/2i )( 'Y!J'Yp 
- y p'Y!J). The spinors u and v are normalized 
by the conditions U:u = 1, vv = 1. 

We shall now consider diagrams of the type in 
Fig. 2. We separate these diagrams into two 
classes A and B. 5 In class A we include all dia
grams in which the vertex with the emission of a 
real quantum is connected with the remaining part 
of the diagram by a nucleon line. In class B we 
include all other diagrams. We write T~I in the 
following way: 

T~1 = - u (q') ieyv u (q) [T4. + T~p.] (q'- q)-2• (3) 

TJ}/J and T&/J describe the contribution of diagrams 
of classes A and B. For T~ we have the follow
ing expression: 

T~p. = V (p')[ief 1'- (p', p' + k) S (p' + k) iefv (p' +k, p) 
+ iefv(p', p-k)s(p-k)iefp.(p-k, p)l v(p). (4) 

Here S and r are the exact renormalized propa
gation function and electromagnetic vertex oper
ator of the proton. 

We are interested in the radiation of low-energy 
y quanta. We therefore expand the operators oc
curring in (4) in powers of k and limit ourselves 
to the first two terms of the expansion. We con
sider first S ( p - k) r fJ ( p - k, p ) v ( p ) . The general 
expression for the propagation function can be writ
ten in the form 

S(t) = [iytG(t2) + MF(t2)]-1 . (5) 

The values of the functions G ( t2 ) and F ( t2 ) 

and their derivatives F' ( t2 ) and G' ( t2 ) at t2 = - M2 

are, as is known, 5 related in the following way: 

F = G, F +2M 2 (F'- G') = 1. (6) 

Expanding S ( p - k) in a series in powers of k, 
using (6), and retaining the first two terms of the 
expansion, we obtain 

S (p- k) = - (2pkF)-1 {(- iyp + M) F 

+ iykF- 2pk (- iypG' + MF') 

+ 2pkM 2F(- iyp + M) [2G'/M2 

+ F"- G" + (F' 2 - G'2)/F]}. (7) 

The operator r fJ ( t', t) has the transformation 
properties of a 4-vector and, under charge conju
gation, transforms like a current vector: 

c-1rp.(t', t)C'=-r;(-t, -t'). (8) 

We thus obtain the expansion of r fJ in a series 
in powers of k:4•5 

r 1'- (p- k, p) = r 1'- (p, p) 

- tkpar ~'- (p, p)!app + pkM- 3Gt(p2)apppp 

+ + M-1 G2 (p2) crppkp-i- G3 (p2) M-3a).pkAPPPP. 

+ + G4 (p2) M-2ep.ApoPI.kpYoYa· (9) 

The first two terms of this expansion are expressed 
through the functions F and G and their deriva
tives by means of Ward's identity: 

(10) 

The terms in (9) containing G1 and G3 do not 
make any contribution to S ( p - k) r fJ ( p - k, p ) v ( p ) 
in the required order, since (-iyp + M)a!JpPpV(p) 
= 0. Using also the relation 

(- iyp + M) ep.ApSpAkp·{syw (p) 

(11) 

and discarding, by the Lorentz condition, terms 
proportional to kw we obtain, to an accuracy of 
terms of the order 1/k and constants, the follow
ing expression: 

s (p - k) r 1'- (p - k, p) v (p) 

=- (2pk)-1 [- 2ip~'-+ (- iyp + M) ap.pkp 

x(F- 1 + G2- G4)/2M + i(Tk)yp.] v (p). (12) 

If we consider the scattering of a proton by an 
external constant magnetic field, then it can be 
shown, by means of (9), that the quantity F -1 
+ G2 - G4 is equal to the anomalous magnetic mo
ment ofthe proton /Jp· 5 It is obvious that expres
sion (12) can also be written in the following form: 

S (p- k) ief1, (p- k, p) v (p) 

1 (· ie k) ( ) = ir (p- k) + M zeyp. + flp 2M <Jp.p P v P · (13) 

Hence S(p-k)ier/J(p-k, p)v(p) is expressed 
through the charge, magnetic moment, and mass 
of a physical proton if we consider only terms of 
the order 1/k and constants. 

We note that the exact expression (13) obtained 
by us is of the same form as the corresponding ex
pression obtained in the lowest-order approxima
tion of perturbation theory for a point proton with 
a Pauli anomalous magnetic moment. Similarly, 
it can be shown that, in the approximation we are 
considering, 

v (p') ief 1'- (p', p' + k) S (p' + k) 

= v (p') (ieyp. + llP ;~ <Jp.pkp) ir (p' /k) + M · (14) 

For what follows, it will be convenient to intro-
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duce the invariants 

Mi = - (p- k) 2 = M 2 + 2pk, 

M~ =- (p' + k) 2 = M2 -2p'k. 

With an accuracy to terms of the order 1/k and 
constants, we have the relations 

(- iy (p - k) + M) /2pk 

= (- iy (p- k) + MI) I 2pk - 112M, 

(- iy (p' ~t-~ k) + M) /2p'k 

= (- iy (p' +k) -\-M 2)/2p'k +112M. 

Noting that 

y (p- k) [- iy (p - k) 

+ M1l = iM1l- iy (p- k) + M1l. 

r- iy (p' + k) + M2J y (p' -+- k) 

(15) 

(16) 

M~~> = v (p') [ iere (p', p - k) 

1 (· , ie k · 
X ir (p- k) + M teyJl T 2M fLJl<JW P) 

Owing to guage invariance, 

kp.(T~ +T~) = 0. 

(20) 

(21) 

It is readily seen from formula (2) that kJ.l TA = 0. 
Hence it follows from (20) and (21) that 

k11M~V =- k11M~~ ~~ ev(p') liere (p', p- k) 

- iere(p' + k. p)l v (p). (22) 

By the law of conservation of energy-momentum 
(p' -p + k = q -q' ), the operators rt occurring 
in (20) and (22) can be written in the form 

= iM 2 [- iy (p' + k) + M2l. (17) ( K = q- q' ) 

we obtain the following expression for T~J.l: 

T~p. = v (p') [iere (p', p- k) ir <P _ 1kl + M (iey~'- + 2i~ t-tpo1,pkp) 

+ (ieyp.+ 2i~ (-tp<Jp.pkp) ij(p'+\ + M iefv (p' -\-k, p) J v (p) 

+ v (p') {[ierv (p' ,p - k) 

- iere (p', p- k)J ierp./ 2M} v (p) 

+ ti(p') {(ieyp. I 2M) [ ie[ v (p' + k, p) 

- iere (p' + k, p)]} v (p), 

where 

(18) 

re (t', t) = ayv -\- b<Jvp (t' - i)p -\- C<Jvp (t'-\- t)p· (19) 

This operator is obtained from the general expres
sion for the vertex part r v ( t', t) by putting i ...;-:::t'i 
in place of the operator yt on the right and i .J- t'2 
in place of the operator yt' on the left. In formula 
(19), the quantities a, b, and c are functions of 
-t2, -t'2, and (t' -t)2, where a and b do not 
change when t is replaced by t', while c changes 
sign. We note that, for t2 = t' 2 = - M2, the func
tions a and b are equal to F 1[(t'- t)2] and 
- (JJ.p/2M) F2[(t' -t)2], and the function c van
ishes. 

We now consider the contribution to the ampli
tude from diagrams of class B. The contribution 
of TplJ.l of these diagrams, as k- 0, tends to a 
constant, while the limit does not depend on the way 
in which k tends to zero. 3 The last two terms in 
(18) also have this property. We denote the sum 
of these terms and TB by M(2)· by M(i) we VJ.l VJ.l' VJ.l 
understand the sum of the first two terms: 

re(p', p- k) =a (M 2 , M 2 + 2pk, x 2) Yv 

+b (M 2 , M 2 + 2pk, x2) <JvpXp 

+ c (M2, M2 + 2pk, x2) <Jvp (p' + p- k)p, 

re (p' + k, p) =a (M2 - 2p'k, M 2 , x 2) Yv 

+ b (M2 - 2p'k, M 2 , x2) <Jvpx~ 

+ C (M 2 - 2p'k, M 2 , x2} <Jvp (p' + p + k)~. (23) 

The absence of a pole in M~~ as k - 0 allows 
one to use (22) for a single-valued determination 
of M~J accurate to constant terms. Indeed, ex
panding M~J in a series of k and retaining the 
first term of the expansion, we obtain 

M ~~ = - ev(p') [ ieare (p', p - k) l ak..,_ 

-1- ieare (p' -i-- k, p) I ak 11 ] ik=nv (p). (24) 

Retaining the corresponding terms in the expansion 
of M1/J in k, we find, by means of relation (23) that 
in the sum M~U + M~J the derivatives with respect 
to the masses drop out, and we finally obtain the 
following expression for Tbi: 

T~1 =- x-2 u (q') iey.u (q) v (p') {[ieF1 (x2) '{v 

ie F ( 2) J 1 ( . __L ie ~ k ) 
-2MfLP 2 X <JvpXp ij(p-k)+M\teyJl, 2Mf1P'-'I'-P P 

+ ( ieyv. + ;~ fLp<Jp.pkp) ir (p'/k) + M 

X [ ieF I{x2) Yv- 2i~ fLp<JvpXpF2 (x2) ]} V (p). (25) 

In obtaining this formula, we used the above-
mentioned properties of the functions a, b, and 
c. Hence the amplitude for the process of radiation 
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of low energy y quanta in ep scattering is entirely 
expressed through the electromagnetic form factors 
of the proton with an accuracy of terms of the order 
1/k and constants. We note that formula (25) agrees 
with the expression obtained by the dispersion 
method in the one-nucleon approximation. 6 

CONCLUSION 

In conclusion, we derive an expression for the 
differential cross section for the emission of low 
energy bremsstrahlung by means of the amplitude 
we have found [formulas (1), (2), and (25)]. As the 
independent variables, we choose the energy of the 
incident electron q0, the energy of the y quantum 
w, and the following three angles: the angle 8 be
tween the directions of the momenta k and q, the 
angle 8' between k and q', and the angle cp be
tween the directions of the normals to the planes 
( k , q) and ( k, q' ) (laboratory system ) . All the 
remaining variables should be expressed in terms 
of the independent ones; the cross section should 
then be expanded in a series in w. 

Since the obtained amplitude is valid only to an 
accuracy of terms of the order 1/ w and constants, 
we should retain only the first two terms in this 
expansion. 

Hence 

da = da0/w + da1 • (26) 

We obtain the following expression for da0: 

da = wda/ = ct (2:rt)-~w2 [(-~:_- _g_ \. 
0 oo=O q k qk) 

(27) 

Here dap is the elastic scattering cross section 
for electrons of energy q0 on protons, and a 
= e2/47r = 1/137. The factor in front of dap in 
formula (27) represents the probability of the ra
diation of a photon when electrons are scattered 
and goes over, for nonrelativistic particles, into 
the general expression for the probability of dipole 
radiation:* 

a. { 1 I , I 1 [ , I }2 dw dQ (2n)2 m q - q, 0 - M p - p, 0 w k, 

where n is a unit vector in the direction of flight 
of the photon. 

In the case of ultrarelativistic electrons in 
which we are interested, we have the following 
well-known expression for dap:7 

dap = [f~ + (rtpf2 I 2M)2x~ 

+ (xU2M2) (f1 +fLpf2) 2 tg2 (61/2)1 da0 • (28)t 

*[q'- q, n] "' ( q'- q') x n. ttg =tan. 

Here 81 is the angle between q and q', 

dao = <X2 cos2 ~i [ 4q~ ( 1 + ~0 sin2 ~i) sin4 ~ r1 dQq', 

X2 =x2 1 = 4q2 sin2 .fli [1 + 2q0 sin2 fhJ- 1 . 
1 iw=o o 2 M 2. 

Expression (27) for da0 is quite obvious; it is 
determined by the polar term of the amplitude. The 
method employed by us actually permits one to find 
the next term of the expansion da1• After rather 
lengthy calculations, we obtain (all quantities are 
taken for w = 0 ) 

- 2AqAp(xk) (f1M 2-f2x 2) 

+ f1 (pq + pq') (Aq- Ap) [(q~~ + f,.) (p'k + pk) 

- (L + _e__) (qk + q'k) - 4 (p- q') J p'k pk 

- 2 (Aq - Ap)2 f1 [(pq) (kq') + (p!,J') (kq) + ~ (pk) x2J 
-2(xk) (Aq- Ap)Aq [4(2FIF1' + 2 (~~rF2F~x2 

+ (~~ f 2 Y) (pq) (pq') cos2 ~1 +ff'x4 J 

+(Aq- Ap)2 [ 4 ( 2f1f\x2 

+ 2 (~~ rf2f~xi+ (~,~ f 2 rx2 + f1) (pq) (pq') cos2 ~ 

+ fx4 (f'x2-! f) J dq~ _.;_ w} q' w [x4qoM2 (1 + 2qo sin2 .!!I)' J-1/ 
dwq0 o M -2 oo=o 

x dQkdwdQq, + (2~)• [4:.k (Aq- Ap) Aqw + (Aq-Ap) 2 q~ 

( 1 2qo . 2 e ') 2 + 2 J I d dQ d 2ct 
X . + M sm 2 CY p'kw oo=o w ·k ap + (2n)• 

[( m2ro ') ( m2 p'q' (p'q) (q'k)) m2w cos 6' 
X 1 +-,-,-COS 6 ( 'k)•- ( 'k)• + ( 'k)• k + 2 • 

qoq k q P P q (q'k) qo 

( qq' p'q' pq') M 2q'k pq' (pp') (q'k) 
X qk + p'k - pk - (p'k)S + .(pk) (p'k) - (pk) (p'k)2 

m• qq' J dq~ . 1 2 1 + (q'k) (p'k)- (p'k) (qkj' ({00 q~ (J) oo=O dwdQkdap. 

Here 

Aq = q' I (q'k)- q I (qk), Ap = p' I (p'k)- pI (pk), 

f=FI+IlPF2, fi=f~+(!lpf212M)2x2 ; 

= 2 [M (1 + 2qo sin2 Jl!-)]-1 sin2 _!_- _!_ (1 + 2q0 sin2 JL ). 
M 2 2 q0 M 2; 

' dFt 
FI = dx• , etc. 

Hence the differential cross section for the ra
diation of y quanta in ep scattering is fully deter-
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mined in our approximation by the electromagnetic 
form factors of the proton F 1 and F 2 and their 
derivatives with respect to the 4-momentum. 
Therefore the experimental investigation of the 
radiation of low energy y quanta would allow one 
to obtain additional information on the behavior 
of these important quantities. 

The authors thank S. S. Gershte!n, P. S. Isaev, 
A. A. Logunov, and Ya. A. Smorodinskii for help
ful discussions of the problems considered here. 

1w. K. H. Panofsky and E. A. Allton, Phys. Rev. 
110, 1155 (1958). 

2 A. A. Logunov, Doklady Akad. Nauk SSSR 117, 

792 (1957), Soviet Phys.-Doklady 2, 540 (1957); 
A. A. Logunov and L. D. Solovyov, Nuclear Phys. 
10, 60 (1959); Fubini, Nambu, and Wataghin, Phys. 
Rev. 111, 329 (1958). 

3 F. E. Low, Phys. Rev. 110, 974 (1958). 
4 E. Kazes, Nuovo cimento 13, 1226 (1959). 
5 M. Gell-Mann and M. L. Goldberger, Phys. 

Rev. 96, 1433 (1954). 
6 P. S. Isaev and I. S. Zlatev, Nuclear Phys. 16, 

608 (1960). 
7 M. Rosenbluth, Phys. Rev. 79, 615 (1950). 

Translated by E. Marquit 
133 


