ANTIPROTONIUM LEVEL SHIFTS FOR LARGE ORBITAL ANGULAR MOMENTA

A. F. GRASHIN

Submitted to JETP editor September 15, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 652-653 (February, 1961)

Level shifts due to a single-meson interaction are calculated for the proton-antiproton system.

STRONG interactions of particles in states with large orbital angular momentum l are determined by the exchange of the smallest possible number of mesons. An estimate of the two-meson nucleonnucleon scattering phase shifts¹ showed that for energies of $E \leq 20$ Mev the interactions in states with $l \geq 1$ are quite accurately described by the single-meson interaction.* Similar estimations should be valid for the interaction between a nucleon and an antinucleon. This permits the use of the single-meson approximation for the calculation of the level shifts of the proton-antiproton system (antiprotonium) with $l \geq 1$, which are due to the nuclear interaction.

In the single-meson approximation, the peripheral interaction between the proton and antiproton coincides with the proton-proton interaction, and is described well by the tensor potential $U^{(1)}$. In the calculation of the shifts, one can use the main terms of the expansion of Coulomb functions at the origin of the coordinate system, which ensures an accuracy of $\sim me^2/\mu$ (m and μ are the masses of the nucleon and π meson, $e^2 = 1/137$, $\hbar = c = 1$). For the singlet levels and the "unmixed" triplet levels (states with J = l, and also ${}^{3}P_{0}$) we obtain

$$\Delta E_{l} = -\frac{1}{2} \mu f^{2} \frac{(n+l)! (me^{2}/\mu)^{2l+3}}{(2l+1)! (n-l-1)! n^{2l+4}},$$

$$\Delta E_{l}^{l} = -\frac{l+1}{l} \Delta E_{l}, \quad \Delta E_{1}^{0} = 3\Delta E_{1},$$

where $f^2 = 0.08$ is the square of the renormalization constant of the interaction between the nucleon (antinucleon) and the π meson and n is the principal quantum number. For the "mixed" triplet levels we have

$$\Delta E_{J-1}^{J} = -\mu f^{2} \frac{(n+J-1)! (me^{2}/\mu)^{2J+2}}{(4J^{2}-1) (2J-1)! (n-J)! n^{2J+2}} \quad \text{for } J \ge 2,$$

$$\Delta E_{J+1}^{J} = \frac{1}{4} \mu f^{2} \frac{(4J^{2}-1) (n+J+1)! (me^{2}/\mu)^{2J+4}}{(2J+2)! (n-J-2)! n^{2J+6}} \quad \text{for } J \ge 1.$$

The largest of the calculated shifts is $E_1^0 = -0.08$ ev (for n = 2), and the ratio $\Delta E_1^0/E_1$ is equal to 2.5×10^{-5} .

The contribution to the level shifts from the next approximation in "degree of peripherality" (two-meson approximation) has an additional smallness of 4^{-l-1} . However, owing to the anomalous smallness of the matrix element

$$\langle J, J-1 | U^{(1)} | J, J-1 \rangle \sim (me^2 / \mu)^{2J+2}$$

(additional power of me²/ μ) the shifts $\Delta E_{J\mp 1}^{J}$ have an anomalous dependence on the parameter me²/ μ (ΔE_{J-1}^{J} is anomalously small and ΔE_{J+1}^{J} is anomalously large). For this reason, the twomeson approximation gives a correction to these shifts of ~ $\mu/4^{l+1}$ me².

We shall compare the obtained shifts with the broadening due to annihilation. Since the annihilation occurs at distances $\leq \alpha/m$ ($1 \leq \alpha \leq 3$), the nuclear widths should have a smallness ($\alpha\mu/m$)^{2l} in comparison with the nuclear shifts. This simple estimate is in agreement with the results obtained by Desai for the S- and P-level widths.² Thus, for comparatively small *l*, the widths should already be less than the shifts.

The author is grateful to A. A. Tyapkin for suggesting the problem and to I. Ya. Pomeranchuk for helpful comments.

²B. R. Desai, Phys. Rev. **119**, 1385 (1960).

Translated by E. Marquit 100

455

^{*}An exception are states with a total angular momentum J = l + 1, for which the single-meson phase shifts have an anomalous energy dependence for small momenta $\sim p^{2l+3}$ and cannot make a basic contribution.

¹Galanin, Grashin, Ioffe, and Pomeranchuk, JETP **37**, 1663 (1959), Soviet Phys. JETP **10**, 1179 (1960), JETP **38**, 475 (1960), Soviet Phys. JETP **11**, 347 (1960).