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We consider inelastic one-phonon scattering of neutrons by solid solutions or by crystals
containing defects. Phonon scattering by static inhomogeneities in a crystal results in
broadening of the peaks in the energy distribution of coherently scattered neutrons. This
broadening depends strongly on the degree of order in the arrangement of the atoms of the
solution and becomes anomalously large near critical points on the decomposition curve
and near points of second-order phase transitions. We consider the peculiarities of

the broadening in the scattering by vibrations corresponding to extrema of the vibration
spectrum. It is shown that including the effects of defects and correlations in the solution
results in the appearance of an angular dependence of the intensity of incoherent scattering,
and that imperfection of the crystal leads to a smearing out of singularities in the energy
spectrum of this scattering and in the distribution function of the vibration frequencies.
The incoherent scattering increases sharply near critical points on the decomposition
curve. We consider the scattering of neutrons by local vibrations.

IT is known that in the elastic scattering of neu-
trons by imperfect crystals (where the imperfec-
tion of the crystal may be related to the presence
of atoms of different sorts, or of defects at the
sites of some sublattice, or of distortions of the
crystal), in addition to the allowed Bragg reflec-
tions which are characteristic of the ideal crystal,
there appears a diffuse scattering. The fact that
the crystal is not ideal should also lead to impor-
tant peculiarities in the inelastic scattering of
neutrons by the thermal vibrations of the atoms,
resulting in a change not only in the angular dis-
tribution but also in the energy distribution after
scattering. The scattering of neutrons by vibra-
tions of an ideal crystal have been studied in de-
tail, for the harmonic approximation, in many
papers (cf., for example, references 1 — 3, where
references are given to other work). It was found
that, in addition to a smooth distribution, the en-
ergy spectrum of the scattered neutrons contains
terms proportional to § functions which corre-
spond to the case where the energy and momentum
conservation laws are satisfied in the processes
of absorption or emission of a phonon during the
scattering. The investigation of the location of
these peaks in the energy distribution at various
scattering angles is the basis of the widely used
method for determining the energy distribution of
the crystal vibrations.

It is obvious that the 6 functions are associ-

ated with perfectly monochromatic waves propagat-
ing in an ideal crystal. The presence of inhomo-
geneities in the crystal, or interaction of phonons
with one another or with other elementary excita-
tions, leads to scattering and damping of the waves
and to a smearing of the & function distribution in
the energy spectrum. Since the determination of
the vibration spectrum is possible only when the
distribution is sufficiently sharp, it is of interest
to investigate theoretically the width and shape

of the distribution (for the scattering of neutrons
by superfluid He, this problem was studied in
references 4 and 5).

Moreover, the study of the broadening may
give new and valuable information concerning the
interaction of phonons with crystal inhomogeneities
and with one another, concerning their relaxation
times, concerning singularities in the vibration
spectrum, concerning order in the arrangement
of atoms in solution, etc. In addition to a broad-
ening of the peaks, corresponding to one-phonon
coherent scattering, imperfection of the crystal
may also cause a smearing out of the singularities
in the spectrum of incoherent scattering and the
appearance of an angular dependence of this scat-
tering. We shall also consider these questions.

In this paper we consider effects associated
with the influence of the interaction of phonons
with static inhomogeneities in the crystal on the
nuclear scattering of neutrons (effects associated
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with anharmonicity and with phonon-magnon inter-
action in ferromagnets will be discussed else-
where®). Nonideal crystals include solid solu-
tions (including solutions of isotopes) and crys-
tals containing vacancies, interstitial atoms, etc.
Since the scattering depends strongly on the order
in the arrangement of the atoms of different types,
we shall not assume that the solutions are ideal,
and will explicitly include correlations. In par-
ticular, we shall investigate the important special
phenomena which must occur near critical points
on the decomposition curve and near points of
second order phase transition. In most cases the
interaction of phonons with static inhomogeneities
will be assumed to be small, which permits us to
use perturbation theory and to disregard local
vibrations. We shall consider separately the case
where defects have a strong influence on the vibra-
tions and lead to the appearance of new local fre-
quencies.

1. GENERAL FORMULAS FOR THE DIFFEREN-
TIAL SCATTERING CROSS SECTION

For simplicity of presentation, we shall carry
through the treatment for the case of a binary so-
lution A-B. The differential cross section,
d?Z/dQdE =0 (qy, w), for the nuclear scattering
of monochromatic neutrons by a single crystal,
per unit solid angle and per unit energy, is given
by the expression:3*

2
035 = 0 (@1 0) = g P { D) (AsAew + 8i,BE)
ss’vy’

xexp (iq;, Rey — Ryy) €xp (iqy, ORyy — OR;y+)
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Here m is the neutron mass; q; is the difference
of the wave vectors k, and k; of the scattered and
incident waves; q = q; — 27Ky, where K, is the
vector of the reciprocal lattice which is closest to
the end of the vector q,/2m; s is the number label-
ling the elementary cell; y is the number of the
site in the lattice; Rg, is the radius vector to a
site in the ‘‘average’’ periodic lattice; 0Rgy is
the static displacement of the atom from this site;
Agy and Bg, are constants in the expression for
the interaction of the neutron with the nucleus at
the site labelled sy:

Ver (r) = {Asy +2Bsy (Ssy) [Ssy (Ssv + 177 8 (r)

(s and ssy are the operators for the spin of the
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neutron and the spin of the nucleus svy); Asy and
Bgy take on the values Ay, Ay, By, B;, depending
on the sort of atom which is located at the sy site;

E = ho = h* (& — K)/2m

is the change in energy ot the neutron in the scat-
tering; A = (kT)™!; H is the Hamiltonian for the
vibrations of the atoms;

Uy (¢) = exp (iHt/R) us, (0) exp (— iHt/R)

is the operator for the thermal displacement of
the sy atom, in the Heisenberg representation.
In taking the trace in (1), it is understood that we
also average over all configurations correspond-
ing to the given values of the order and correla-
tion parameters.

In the case of a nonideal crystal, the normal
vibrations are no longer described by plane waves,
which complicates the computation of the trace in
(1). Making use of the fact that the imperfection
is small, we can carry out the computation in two
ways. First, by using perturbation theory we can
find the approximate normal coordinates of the
problem, as was done by I. Lifshitz’ in treating
the problem of the absorption of light by imperfect
crystals, and then evaluate the trace in these co-
ordinates. However it is more convenient to solve
the problem by expanding the displacements, not
in the normal coordinates of the nonideal crystal,
but rather in plane waves, and to use perturbation
theory directly for computing the trace. This
method is more general, and is also applicable,
for example, to the treatment of anharmonicity.

We expand the thermal displacement vector in
plane waves describing the normal vibrations in
the zero’th approximation, which corresponds to
an ideal crystal consisting of atoms with the av-
erage (for sites of the particular type) reciprocal
masses and force constants:

h .
Usy = %‘.‘/mm—kiekiv exp (ikRsy) (ax; — aty)),

.
e—-—kjy = - ek/\(y

d
oug,

@y, »
= ;Mv l/z—p;\%ﬁ exjv exp (ikRsv) (akj + aZyj),
- .

[ax; (0) aikj+(0)] = dkkb;je. (2)

Here p is the density of the crystal, N the number
of elementary cells, v the volume of a cell; wKj

is the vibration frequency for the j-th branch with
wave number K; the values k/2w lie inside a unit
cell of the reciprocal lattice; ekj, are polariza-
tion vectors satisfying the normalization condition
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S exjveicyre My exp (i(k — K'), Rey) = MNSwedyy,

sY
are the masses of the atoms at the y sites,
and M is the mass of a cell.
The Hamiltonian for the vibrations of the non-
ideal crystal has the following form, when ex-
pressed in terms of the operators ak;j and aﬁj :8

H= Zﬁmkja.tiak,- + 2 Vijwjakiaxe
kj kjk’j’

—‘;j 2 (Viwrakiair + Vigeragai). (3)

kjk’j’
The quantities V and V’, which characterize the
probability of scattering of phonons by static in-
homogeneities, are determined by the values of
the differences in masses of the atoms, by the
force constants of the interaction and by the static
imperfections. Explicit expressions for these
quantities were obtained earlier® and are given
below for various cases. Here we mention only
that Vkjk'j’ = Vi/jkj’» that Vijkjs = 0, and that
the average of Vkjk’j’ over the configurations of
the atoms is also equal to zero.

The thermal vibrations result in a weakening
of the intensity of the allowed Bragg reflections
and the appearance of inelastic diffuse scattering.
The reduction in intensity of allowed reflections
and the multiphonon diffuse scattering by nonideal
crystals will be treated elsewhere. Here we shall
consider only processes which are accompanied
by the absorption or emission of one (real or
virtual ) phonon, so that in the expansion of
exp (iqy - Ugy) we need keep only the linear terms.
In addition we shall treat the case when there are
no static imperfections present (6Rg = 0) or when
both 6Rs and Ai_
tities, and we can neglect cubic terms in these
quantities. We split the quantities B v and As'y
=A, + (cs.y C'y)(Al A,) into an average value
(for the particular sublattice), A,y = CyAy
+ (1-cy) Ay, and a fluctuating part, (cgy—cy) X
(Aj—A,) (where cg,y take on the values one or
zero, depending on whether the atom at the sy site
is of type A or type B; c, is the concentration of
atoms A at the vy sites). Expanding in 6Rgy and
Ugy, we find the expression for the differential in-
elastic scattering of neutrons

0 (q1, ®) = 61 (41, ®) + 63 (41, ©) 05 (qq, ©), 4)

Qlthl 4

M%W—th = gy (@), ®)

A, can be treated as small quan-
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We have introduced the notation

C = -w-—'gpr , Cky = 7 E (csy — ¢+) exp (ikRsy),
Ryy= — — 2 ORsy exp (ikRsy),
Qg =) A, qreqiy exp (21 K, R.,),
S, (K)

= 2 [(Al — As) Cqiky
Y
—Aq Rq+kv] qiexy exp (20 K,Rsy),

bjjrq, (k) = EBY (qa€xk1v) (‘Ilekl )

Prjir (©) = @i (©) + Piier(w),

S dt e—iSp [e—ay; (£) aif (0)] (Sp e=2H)2,

—oo

Ppjrpr (@) =

Poray = 257 | dte ™ SpIe™ai () awey (0)] (Sp ).
— (8)
In expressions (5) — (7) it is understood that we
average over all configurations of the atoms.
As we see from these formulas, the problem
of determining the energy distribution of the scat-
tered neutrons has been reduced to the computa-
tion of the spectral representations @kjk’j/(w)
for the product of two single-particle operators.
These quantities are most simply found by using
the method of temperature Green’s functions.®
In the following we shall use a variant of this
method, based on the use of spectral representa-
tions of two-time retarded and advanced Green’s
functions?® G(w). For a system with the Hamil-
tonian (3), these functions are given in the Appen-
dix. Remembering that (cf. reference 9e):
q);]k'," (0) = <P;'}'k] (— @) e7e,
Py (@) = (Mo — 1)1 lm [Gyjuery (@ + i2)

ie)l,

Gyjrer (@ —
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and also using the relation (x + ie)™!=Px~!
—im6 (x) (where P denotes the principal value),
we can obtain the expressions for the functions
¢’ and ¢” from formulas (A.4) — (A.7) of the
Appendix:

n (@)

=0y (— ) oy T

n Iy; (©) n(0)
T [0 — @y — Py (@) + Tf; (@)

q;;,'k,' () = (P:(j ((1))

9)

. ) Py @y ()
Ppi; (@) = @y (0) = To—ay
1 Typm (@) ©— g — Py
+? coh—-(o : 2l 2 (for o= 0yj),
ki [® — oy, — Pypl* 4Ty (10)
. Viikr 1
q)k’j’kj ((D) = /hl (Pkrlv ((D) P o= mki (for (D#: (l)ki), (11)
where
n (o) = [eMe— 117,
VierVieray ViaerVierg: |
Puir (@) = 2’ [ 0 — Qg OF O _| ’
Tyjir (@) = > Z Vijkrj"Virkid (0 — @gjr)

— Vi Vierid(© -+ 0] (12)
From (9) and (12) we see that, in the second approx-
imation of perturbation theory, the quantity Pj

= Pk determines the displacement of the (kj)
v1brat10n frequency associated with the imperfec-
tion of the crystal, while I‘kJ I‘k]] determines

the damping.

In the limiting transition to the ideal crystal,
when V and V' — 0, okj(w) goes over into the
6 function, while the other functions CPka' r(w)
vanish. At the same time, the expression (5) for
0y goes over into the usual formula for coherent
inelastic scattering, and the expressions (6) and
(7) for o, and o3 into the formulas for incoherent
scattering. We shall continue to use the conven-
tion, even for the case of nonideal crystals, of
calling the scattering corresponding to oy coher-
ent scattering, and the scattering corresponding
to the sum o, + 03, incoherent scattering. Let us
now separately consider the coherent and inco-
herent scattering.

2. COHERENT INELASTIC SCATTERING

As we see from (5), (9) and (10), the main con-
tribution to the coherent scattering comes from
the diagonal terms 01jj in the sum (5), which cor-
respond to absorption of a phonon,
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, . ko IQ,~q‘|2 I’q, (0) n (@)
% (@ ©) = CN/? Mg [0 — 0g; — Pg; (@)]* + T (@) (132)
or to its emission:
) +1
0;” (qu—©) = CN ks |Q,q‘| q; (@) [n (0) +1] .(13b)

ki 70 [0 — 0y — Pg; (@) + T (0)

For each qy, these terms determine the inten-
sity of the series of peaks in the energy distribu-
tion of the scattered neutrons whose maxima lie
at *w ~ wqj + Pqj, and which correspond to the
different branches of the vibration spectrum. The
peak intensities are proportional to the squares
of the ‘‘structure amplitudes”’ Q]-q [cf. Eq. (8)],
which are different for the different peaks, and
depend on the temperature through the factors
n(w) and n(w) + 1. The peak widths Tgj, ac-
cording to (12), do not depend explicitly on the
temperature, and are essentially determined by
the magnitude of the inhomogeneities and the
amount of order in the arrangement of the atoms.
The temperature dependence of I'y; shows itself
when we include the effects of anharmonicity.® If
the peaks are sufficiently narrow, and T (w) does
not depend very strongly on frequency, so that
dlgj/dw < 1, the shape of each peak is described
by a symmetric Lorentz curve. In the general
case, because of the dependence of I' on w, the
shape of the curve is more complicated.

The nondiagonal terms in (5) correspond to
more complicated scattering processes, in which
phonons belonging to two different zones partici-
pate. As we see from (10), they are also most
important when *w ~ wqj’ + Pqj’, and vanish for
V =V’ =0. These terms lead to a slight change
in the peak intensities [the first term in Eq. (10)]
and to the appearance of an asymmetry of the dis-
tribution, which is associated with the second term
in (10). (Analogous effects also occur in the ex-
citon absorption spectrum.lo). Thedegree of asym-
metry is of order rq_jj’("-’qj' - Wqj )~ (if all the
qu1 are of the same order) and increases rapidly
when the vibration frequencies of different branches
approach one another. For sufficiently small values
of |wqjs —wgqjl, the expression (10) ceases to be
applicable to the most important part of the fre-
quency range, around w ~ wqj’. In this case the
function ‘quqj'( w) can be gotten by starting from
the more exact expression (A.8) for the Green’s
function. Without giving the resulting very com-
plicated formulas, we merely remark that the
values of the displacements and broadenings of the
levels are determined in this case not only by Pgj
and I'gj, but also by Pgjj’ and Igjj’, and depend
strongly on the frequency difference w — wqj
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(since the energy bands begin to ‘‘interact’’
strongly as they approach one another).

Now let us compute the I'qj- To do this we
must have explicit expressions for the Vijk-j’.
We shall assume that quantities like the density
of the crystal and the elastic moduli depend lin-
early on the concentrations Cy. Then the Vkjk’j’
will depend linearly on the Fourier components of
the fluctuations of these concentrations. In the fol-
lowing we shall, for the most part, treat solutions
in which the atoms of the two types can only be at
the sites of one of the sublattices, while there are
identical atoms at the sites of the other sublat-
tices (for example, crystals with one site per
unit cell, solutions like NaKCl with two sites per
unit cell, etc). In this case the quantity ck’-k y
= ckr-k is different from zero for only one value
of y (so that we can drop the index vy), and

Vi = hxjwjce—x, Vijrjr = BrjiejCrr4x (14)

(the expressions for h are given below). Substi-
tuting (14) in formula (12) for the I'yj, dropping
the second term in this formula (which is impor-
tant only for negative w, when the scattering is
very small), and going over from a sum to a sur-
face integral over the surfaces Sjs on which the
conditions w = wkj’ are satisfied, we get

¢ s,
2 S | Vi@ | Figuye[on—al
= ¢

j
If the Cky are different from zero for several sub-

lattices, we must replace thkJ'I Ck—q| in (15) by

IE bjkj’ Ck-q,y l

The average values of the | Ck—ql , and conse-
quently Lqj, are essentially related to the degree
of order of the atomic arrangement. We shall
therefore treat separately the cases of different
types of correlation in the solid solution.

Ideal solutions. In ideal solutions there is no
correlation, and the atoms of different types are
distributed completely at random over the sites
of the particular sublattice. Then the |ck|? are
given by the simple formula:

c(l — )N

uN

i (15)

Ty (0) =

[l = (16)

(where c is the concentration in the particular
sublattice). As we see from (16), in this case
| ek |* does not depend on k, which greatly sim-
plifies the integration in (15). The integral (15)
can be calculated explicitly for the long wave
acoustical and optical vibrations.

In the case of the acoustic vibrations, in the
approximation of an elastic isotropic continuum,
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the quantities hgjk’j and Wkj» according to ref-
erence 8a, are given by the formulas
i

Py = ——
bl 20 mGl-mk,j,

% {ekfek'/'wkfmk'/'P' + (exk) (ex-k’) (K T— % M'_)

+ [(ewewy) (kK') + (Kewr) (K'ews) ' |
Ok = R = ]/K—-*-:”—/s k, Ok = Cok = 1/% k.

Here j =1 corresponds to longitudinal vibrations
(ek Ilk), while j = 2,3 correspond to transverse
v1brat10ns (ekj L k); K and u are the bulk and
shear moduli; p’, K’ and u’ are the derivatives
of the corresponding unprimed quantities with re-
spect to c; cj is the velocity of propagation of the
vibrations. Substituting (16) and (17) in (15) and
carrying out the integration, for j=1 and j = 2,
over the surfaces of the three spheres S (for
the three vibration branches ), we find the widths
I‘q1 and I'g, of the energy distributions for the
longitudinal and transverse acoustic vibrations:

(&0 +oa ()

an

Ty (0) = 5%

24
45K 4 8 (2 + 3x2) 2
+ 2K +15i‘ut o :[C(l—c)
~ 10 (—" )”mazc (1—0) (18)
Im 1 ’
vegt /' © 14 203 /p'\2 | 24 3% /p"\?
fo @) = 52 (o) [ (5) + 55" () |ea—0
9V were(] —
(qm) weic(l —¢). 19)

Here k =cy/cy; wq is the frequency of the q-th
vibration (and, if we can neglect the dependence

of ' on w, w/wq ~ 1); qm is the maximum value
of the phonon wave vector; €; is the largest of the
quantities p’/p, K'/K, u’/u; the last equalities in
(18) and (19) determine the order of magnitude of
I'q. For frequencies of longitudinal vibrations
which are greater than the maximum frequency

of transverse vibration w| mgx, those scattering
processes are excluded in which a longitudinal
phonon is annihilated and a transverse phonon is
created, and we must replace the square bracket
in (18) by the expression (p’/p)* + (45K’% + 16u’%)/
15k%2 [ and also drop the factor 10 in the estimate
given in Eq. (18)].

It is obvious that, except for singular points in
the vibration spectrum, (cf. below) formulas (18)
and (19) give the correct order of the widths Iq
of the distribution for ideal solutions. As we see
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from these formulas, for large q (q ~ qpy ), for
components which differ markedly in their proper-
ties (€4 ~ 1), and for high concentrations (c ~ Y,
I'q is of the same order of magnitude as w, i.e.,
the peak in the energy distribution is almost com-
pletely smeared out. In solutions of isotopes (ex-
cept for the lightest elements) usually €; < %,,
and the broadening of the peaks due to the presence
of different isotopes is usually small (T'q < Yoo w)
and less than the broadening due to anharmonicity.
Since for low frequencies I‘q ~ q4, for the scatter-
ing by the low frequency vibrations, one should in
all cases observe sharp peaks.

A different dependence of I'q on q is obtained
for the case of long-wave optical vibrations. To
avoid giving very involved formulas, we shall re-
strict ourselves to the usually occurring case
where the effects due to the mass difference of
the atoms of the solution are considerably greater
than the effects due to differences in force con-
stants and to imperfections. We then have for all
the vibration branches and all k and k’ (cf. ref-
erence 8b):

1 —_—
ey = 5 B V ox0wy exjeic e, 20)

(where My, M, and M are the masses of the com-
ponent atoms and the average mass per cell).

Let us consider the case when there is an ana-
lytic minimum or maximum of wj (k) at the point
k = 0 andthe other branches have no vibrations
with this frequency. Then for cubic crystals
wj (k) = wy + 1/2 cozk2 (we neglect retardation ef-
fects, which are important only for very small k)
and, according to (15), (16) and (20), I‘q” and I‘qJ_
for the longitudinal and transverse optical vibra-
tions are equal to:

2

0,0qg (0 ,
A )n4ezc(1—c)~A—‘:D

q
Tay (@) = 5z576,7 goec(l—o,

Iq;(0) =110%qm(2ll)n432 c(l —o), (21)
where the quantity n = nj is equal to the length of
the polarization vector ekj, (k—0) for the particu-
lar sublattice (in which the atoms are arranged at
random), q(w) is the wave vector corresponding
to the frequency w (for narrow peaks w = wq>
q(w) ~q), Aw ~ Y| w, | g4, is the width of the
particular frequency band. According to (12), ex-
pressions for the I'gjj’(w), for frequencies w
corresponding to optical vibrations can be obtained
from (21) by replacing o.anJg by v wqjwqj’ iRy’

if the two branches j and j’ both describe longi-
tudinal or transverse (optical or acoustical) vi-
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brations. If one of the branches is longitudinal
and the other transverse, then ch-/(w) = 0.

As we see from (21), now as q decreases the
quantity Fq falls off not like g but like q, i.e.,
the broadening may be sizable even for small q.
For a given €, the broadening is especially large
for narrow zones (small Aw), for example for
optical vibrations in molecular crystals. The

same type of formula for the I'q (w) is also valid
for other minima and maxima in the dependence of
wj (k) (including the case of the maximum fre-
quency of acoustic vibration), so long as only this
one branch occurs near the frequency w. Then q
in (21) denotes the distance to the extremal point
in k space. If other branches have this same fre-
quency, then in evaluating I'y for small q the
terms corresponding to these branches are very
important. Their order of magnitude is given by
formulas (18) or (19).

As Van Hove!l has shown, for each vibration
branch there must exist critical points (c.p.) of
the vibration spectrum, i.e., minima, maxima and
saddle points, at which Vgwk = 0. As follows from
(15), the occurrence of such an analytic c.p. for
one of the branches at the frequency w; leads to
the appearance of a singularity in the dependence
of T' on w of the form |w—w,|Y2 for all the
other vibration branches (whose frequencies co-
incide with w;). Here the term proportional to
| w—wy Il/2 appears only for those frequencies w
which lie on that side of the point w; for which
new poles appear on the surface wj (k) = w. The
same kind of singularity also occurs if a non-
analytic c.p. is a minimum or maximum for not
one but two vibration branches, and Vkwk = 0 at
the point. If however the c.p. is singular, i.e.,
if some of the components Vkwk do not vanish
at it but instead have discontinuities, then the
singularity of the function I'q (w) is weaker.

It should be emphasized that the singularity of
I'q (w) was found only in this particular approxi-
mation of perturbation theory. The next approxi-
mation leads to a smearing out of the singularity
over a frequency interval ~ Ty, analogous to the
smearing of the singularity in the spectrum of in-
coherently scattered neutrons (cf. Sec. 3). For
small values of I'q, the singularity will still
manifest itself in experimental studies of the de-
pendence of I‘q(w), which can be used as an in-
dependent method for locating the frequencies of
c.p.’s.

It is easy to show that for multicomponent ideal
solutions we should make the following replace-
ments in formulas (18), (19), and (21):
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c(l—g¢ e
‘(MI_MZ) 2 CouCo (M —

1 <Pz

=c(l — M) M3,
where ¢, is the concentration of the u-th compo-
nent, whose atoms have mass Mﬂ.

Nonideal solutions. In nonideal solutions the
correlation between positions of atoms is impor-
tant. In this case the expression for |ck|? be-
comes more complicated, and its dependence on
k becomes important. A simple formula for |cy |2
can be given only for small values of k. In this
case, as it follows from the thermodynamic theory
of fluctuations, for disordered solutions

lew [F = ET/Nv (9ec +- Bk™).

Here k is the Boltzmann constant, T is the tem-
perature at which short range order is established
in the solution (and is not necessarily the same

as the temperature at which the experiment is
done), @cc = 8%p/dc? is the second derivative of
the thermodynamic potential per unit volume, B

is a quantity of order kTr}/v (where r, is the
interatomic separation). From a comparison of
(16) and (22), we see that in the case of long wave
acoustical or optical vibrations, when Bq? < @gc,
the formulas obtained above for I‘q can also be
applied to nonideal solutions, if we replace c(1-c)
by kT/vgge. Since @gc is usually greater for or-
dering nonideal solutions (which go over into the
ordered state at low temperatures) than for ideal
solutions, whereas it is smaller in dissociating
solutions, the establishment of short range order
leads to a reduction of I'q in the first case and to
its increase in the second case.*

A marked decrease in the value of I'q should
occur when a high degree of long range order is
established in the solution. In almost completely
ordered solutions having two types of sites, just
as in ideal solutions, the atoms are distributed
chaotically over the sites of each sublattice, and

(22)

*A very sharp increase in I'q should be observed when
large groups of impurity atoms are formed, for example when
particles of a new phase separate out in the crystal. According
to reference 8b, when n atoms are joined into a group, then for
long wave oscillations whose wavelength A, > r (where r is
the linear size of the particles), l"q increases by a factor ~n,
i.e., it may increase by several orders of magnitude. For short-
er waves, for which A, < rand (er/A) < 1, [q increases by
a factor ~n (qm/ q)* compared to the case of 1nd1v1dual impu-
rity atoms. Finally, for vibrations of such short wave length
that Ay << r and (er/A)’ » 1, I'q changes by a factor
~(qm/q)*n"" and falls off with mcreasmg n. The transition
from the I'q ~ q* law to the ¢* law (or to I'q ~ q°) for Ay~ 1
may make it possible to determine experimentally the dimen-
sions of the particles which separate out.

403

in the expressions for |cg|? and I'q we must
simply replace c(1-c) by c(1-c) — v (1-v)n?
where v is the ratio of the number of sites of the
first type to the total number of sites and 7 is the
long range order parameter, which is equal to
unity in an alloy having stoichiometric composi-
tion and complete order. In particular, for this
composition (¢ =v), I'q~ (1-7%), i.e., I‘q
actually falls off rapidly in the transition from a
disordered to an almost completely ordered solu-
tion.

Solutions near a critical point on the decompo-
sition curve. Characteristic features of the energy
distribution of the scattered neutrons should appear
near a critical point on the decomposition curve
(d.p.), i.e., a point at which the decomposition
curve has a maximum. It is known!? that ¢¢e = 0
at a d.p. Therefore, near such a point, as we see
from (22), the probability for scattering of phonons
with a small change in momentum increases mark-
edly, so that I'q should decrease markedly. It fol-
lows from (15), (17) and (22) that for long wave
acoustical vibrations, in the case where K’ =y’
=0, the I'q are equal to:

Fau (@ )_ Clq kBF [ln——l—%(l -+ x?)
1 1
— 12 1n:‘-cf—1] qi wetln 2, (23)
G2 T o[, 2 4o (we—1p %1
qu(m)zg»‘%?&[lnEe——%—? ®3 byt lnx———l]

~ L gerln 2
am ae

(24)

Here e is the base of the natural logarithms, and

a ={Q, +B [q — q (w) ]2}/2!3(7‘] (@), (25)

q (w) is the wave vector for the same branch that
contains q corresponding to the frequency w, and
we have used the fact that w ~ wg, @cc/Bg® < 1.
(For w > w] max, only the first term in the square
brackets in (23) should be kept.)

Comparison of (23), (24) and (18), (19) shows
that the transition from the ideal solution to the
solution in the neighborhood of the d.p. leads to a
considerable increase in I'q (by a factor of

~ (qm /9)? In a~!). This effect makes itself felt
more strongly for long waves, since then, as q
decreases, I‘q falls off not like q but almost
like q For a given q, and for w = wq» the value
of I'q goes to infinity logarithmically as we ap-
proach the d.p. (while ¢pcc — 0).

An especially sharp rise in I'q near the d.p.
should occur for values of q which are in the
neighborhood of a c.p. For example, for the mini-
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mum or maximum points of long wave optical vi-
brations, we obtain from (15), (20) and (22) the
following expressions in place of (21):

W0 BT
Fqy (@) = m—g—n‘ez (1 +a

x[(l +a) In (l —}—%)—— 2] ,

Iqy (@) = EZ%OT% n'e? [(2 + 2a + a?) 1n<1 4+ %)
—2(1 —l—a)};

oy g 1
0 m
Fqn ~I‘q_L~K0~)SZThI?f0r a<1,

19

(00
Fq = Fqi ~ Ao

sz‘lg'_% for a> 1. (26)
From (26) we see that for w = wy and for very
small q, when a > 1 (@c¢ > Bg?), just as in
ideal solutions, I'q is proportional to g, but the
coefficient of proportionality is increased by a
factor ~ Bad, /¢ce, and tends to infinity as we
approach the d.p. Thus, even for small €, near
the d.p. the peaks in the energy distribution which
correspond to values of q in the neighborhood of
the c.p. are smeared out badly. For somewhat
larger values of q (but still small compared with
dm), when a < 1, I'q varies inversely with g
instead of being proportional to it.

As we see from (26) and (25), in this case Tq
depends strongly on w, i.e., the curve describing
the energy distribution may differ markedly from
the Lorentz shape. Since TI'gjj’, just as for for-
mula (21), differs from I'gj’ only by the replace-
ment of nfwgj by \/To@g}— njnj’, the value of
T'qjj’ should also increase sharply, i.e., the role
of two-zone processes becomes more important,
leading to an asymmetry in the energy distribution.

Near a d.p. there should also be a considerable
shift of the vibration frequencies (or of the energy
levels of conduction electrons). In the case of
minimum or maximum points of long wave longi-
tudinal optical vibrations, the value of the shift
Py(wy) as given by (12), (14), (20) and (22), is

0 kTnt oy kT

Py (@) = —'ﬁm gt — — A_%ol/vcpu g?
(and twice this for transverse vibrations), and in-
creases like @é’é as we approach the d.p. It should
be emphasized that near the d.p. the perturbation
expansion is actually not in powers of the small
quantity e, but in the quantity €2 kT/vece ; i-e.,
right near the d.p. the method we are using, which
is based on the application of perturbation theory,

(26a)
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ceases to be valid. In the case of small €, we can
however approach sufficiently close to the d.p.

The same type of expression for I'q(w) is ob-
tained for any analytic minimum or maximum
point (at which Vkwk = 0), where g denotes the
distance from this point in the reciprocal lattice
space, and an additional factor of order unity ap-
pears in the expression for I'q for the case of
nonspherical isofrequency surfaces. In the case
of analytic c.p.’s which are saddle points, again
Vkwk = 0, and T'q increases sharply near the d.p.
In the two limiting cases a < 1 and a >» 1, the
formulas for I'q then have the form

_ @%Tn%? 4
Ty = DT g0y a1, (27)
4 2 VBe, =
Here wyq = |quq |/q; ¥ is the angle between
quq and q; ¢ ~ 1; the constant D ~ w2'1 is de-

fined by the relation

das

Ddte = {(ea ex2)* 5o

where the integral extends over the belt on the
surface S which is cut out by two spheres with
radii k and k+dk. Thus, in this case, for very
small q (Bq? «<@cc) Iy increases like ¢¥& as
we approach the d.p.

As one can show by using the formula which
relates the mean square fluctuations at high tem-
peratures to the corresponding susceptibility at
zero frequency (see Chap. XIII of reference 13),
the integral of the coherent scattering intensity
over frequency near the d.p. has a singularity of
the type vV ¢cc -

Solutions near a point of second-order phase
transition. A marked increase in Tq for certain
values of @ may also occur near points where
there is a second-order phase transition (t.p.).
To be specific, we shall consider processes of
ordering in solutions which in the disordered state
have one sublattice, while in the ordered state
there are two sublattices with the same number
of sites (for example solutions of the type of B-
brass). Effects of anomalously large scattering
of phonons are related to the anomalously large
fluctuations of the degree of long range order, 7,
near the t.p.

First let us treat disordered solutions. In the
neighborhood of values k’ = 27K;, where K, is a
vector of the reciprocal lattice of the ordered
crystal which is absent in the disordered crystal,
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according to references 14 and 15,

|ew]? = [P +a (k" — 2nK1)?]?,
4Nv

where P = d%p/on?. Since ¢ n =0 at the t.p.,%
|ck, |? increases markedly near these values of
k’. As we see from (14) and (15), such a marked
increase in |cy_q |* manifests itself in the value
of I‘q if vibrations with vectors q and k, such
that q —k ~ 27K;, have the same energy. Such a
situation can occur in two cases: first, if the vec-
tor q/2w lies near the surface of a new Brillouin
zone which appears when ordering occurs, and
secondly if the optical and acoustical vibration
branches, which are obtained in the reduction of
the vibration spectrum to the cell of the recipro-
cal lattice of the ordered solution, intersect, and
q lies near the surface of intersection of these
branches. In both cases, after integration we ob-
tain for I'q an estimate of the type of (23) and
(24):
Py + 807
2aq?

’

ag® BT oo ln C ~-1 weﬂn—ac,—, a =

Tq~ 100 o 4,

(28)

where ¢ and ¢’ ~ 1, and q’ is the distance to the
surface of the new Brillouin zone or the surface
of intersection of the branches. If there is a c.p.
near such a surface, then in the neighborhood of
such a point there occurs an even greater broad-
ening as we approach the t.p., and I'q is given by
formulas like (26). The expression (28) is also
valid for certain points and lines in the reciprocal
lattice space which lie on isofrequency surfaces
and are connected by the vector 27K;; however,
in contrast to the case of a d.p., there will not be
a sizable increase of I‘q at arbitrary points of
the reciprocal lattice.

A similar picture exists near a t.p. in an or-
dered solution. Since in this case the ratio
| ekjy | : | ekjy’ | for different v and v’ is not equal
to unity, but differs from it by an amount ~ €2n?,
the probability of scattering of a phonon will con-
tain a term proportional to [¢n, + & (q—k)*]™!
not just when the momentum change q —k is 27K,
but in general (for example, for k ~ q). How-
ever this term contains a factor €’;? which is
small in just that region where go,'ni? is large.
Therefore, in this case, when ordering occurs I‘q
changes only somewhat, without changing its order
of magnitude. In the case of a second-order phase
transition near a critical point on the curve of
t.p.’s, nz can already take on sizable values when
@y is still small,!® and there may be a consider-
able increase in I'q, especially near a c.p., if the
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factor n? which appears in formulas (26) (in which
@cc 1s replaced by ¢y ) 1s not small.

As Landau has shown 8 at the critical point, at
which the curve of t.p.’s changes into the decom-
position curve, we have ¢gc =0 and ¢y =0 for
the ordered phase, while for the disordered phase
only Oy = 0. Therefore in this case, in the or-
dered phase, as we approach the critical point
there should occur a sharp rise in I'g, just as in
the case of an ordinary d.p. In the disordered
phase, the rise in I'g, as it occurs in the neigh-
borhood of an ordinary t.p., will occur only near
the surfaces of new Brillouin zones and the sur-
faces of intersection of the acoustical and optical
branches. We also note that in certain cases, for
example in Rochelle salt crystals, near a t.p. the
frequencies of certain vibration branches (the
transverse optical branches) become extremely
small.l%-188 Then, as we see from formulas (5) —
(7), the intensity of inelastic scattering of neu-
trons by these frequencies increases sharply.

3. INCOHERENT INELASTIC SCATTERING

The cross section oy + o3 for incoherent scat-
tering of neutrons is given by expressions (6) and
(7). These expressions contain terms of zeroth,
first, and second order in the constant V of inter-
action of the phonons with inhomogeneities. Here
we shall consider only the leading terms of zeroth
order (since the first and second order correc-
tions can easily be obtained from the formulas
given). As we see from formulas (A.4) — (A.7) of
the Appendix, we may retain in the sums of (6) and
(7) only those terms which contain functions Pkik’j
with k =k’, j =j’. The expressions for o,, 03
simplify considerably in this case, and take the
form

ks
o: (i, @) = CN gt 3 S0} 14; — A — A(@:Buso) I*
;i k

X (q1€x))? | Citq [*Pij (@), (29)

ky o -~
KBz %—‘ % (Dk}

where we have used the assumption that the lattice
constant is linearly dependent on composition, i.e.,
that Ry depends linearly on ck: Rk = Bg-ck. Ex-
plicit expressions for the By were obtained ear-
lier.!® In particular, in the approximation of an
isotropic elastic continuum,

53 (q1, ©) =C (q1€x)* Px; (©), (30)

P
2N T 3(—o5) vac

(where o is the Poisson ratio).
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The inclusion of defects and imperfections of
the solution and the scattering of phonons by in-
homogeneities leads to two effects which were not
previously considered in treating incoherent scat-
tering. First of all, imperfection of the solution
and defects lead to a change in the value of oy and
to the appearance of a dependence on q. Secondly,
the broadening of the levels results in a smearing
out of the singularities which, according to Placzek
and Van Hove,? should be present in the energy dis-
tribution of oy + 03.

Let us begin by treating the first effect for ideal
solutions, where |ck|? is given by formula (16).
For sufflclently small Vkijk’j and Ty, the func-
tions <Pk]k' + and <pkjkr ¢ can, according to (9),
be replaced by 6 functions (except at the singular
points of the frequency distribution function). We
shall further restrict ourselves to treating a cubic
crystal in the isotropic continuum approximation.
We denote by gj(w) the distribution function for
the vibration frequencies of the j-th branch (nor-
malized to 1/3), and by dwj the length of the wave
vector of the j-th branch which corresponds to the
frequency w. The expression for g, simplifies in
the two limiting cases when q > dwj and q < Aewj-
Then for processes in which a phonon is absorbed,

o (1, ©) = CV 229 q%ﬂ—d2&®)

X [Al—Az—Ab —‘j;‘l]
4> g

o, (q1, ©) — CNk*”("’)

ge(1—0) 3 g o)

i
]
q(,,, ’
1< Goj,

where xj = %, for longitudinal vibrations and Xj
=Y, for transverse vibrations. For arbitrary q,
the expression for o3 has the form

(A‘, — A Ly A%

(31)

0y (q1,0) =CN A 2L0)

g (@) ¢2B%  g(o) = >\gi(@). (32)

7
In the case of processes in which a phonon is
emitted, one should replace n(w) by n(w) + 1
in (31) and (32).

Thus, inclusion of defects leads to the result
that o, depends not only on the vibration frequency
but also on q. The effects associated with defects
are especially large if the change in energy of the
neutron, hw, in the scattering is very small or
close to the energy of the long wave optical vibra-

tions, and if the end of the vector q;/27 lies near

M. A. KRIVOGLAZ

a point of the reciprocal lattice. Then, if q and
and quj are sufficiently small, even in slightly
distorted crystals (small b) the terms in (31)
caused by defects become dominant, and as

a4 Quj — 0 the value of o, goes to infinity like
q~?% or qu This characteristic dependence of o,
on q and w can be used for the experimental de-
termination of the limiting frequencies of optical
vibrations. As we see from (32), o3 is independ-
ent of defects.

It follows from a comparison of (16) and (22),
and from (29), that for small q and Qj the for-
mulas (31) for o, can also be applied to nonideal
solutions, if we replace ¢ (1—c) by kT/vgce.
Thus, in this range of values of q and Qwj> O3
changes when short range order is established in
the solution, increasing in solutions which decom-
pose and decreasing in solutions which become
ordered. When long-range order is established
in an almost completely ordered solution, we must
replace c(1—c) in (31) by c(1-c) — v (1-v)n?2
i.e., 0, decreases sharply. In the case of solu-
tions, close to a d.p. we must keep the second term
in the denominator of (22) even for small k’. It
follows from (29) and (22) that we have (for the
case of absorption of the phonon)

03(q;, ®)
B kz n BT qlq
oV 20 g o )QIWT(A T )
4> qui;
ko n (@) 4T
02 (qu, 0) =CN == 01 218 (@) ————~~
2 (qu, ©) ) qllzg’( ) v (@ + Ba3)

e q2
><ll(A1 — A,)% + %A% -qT‘-] ,
wj

q < Goj- (33)
From (33) we see that for small q and Awj> the
cross section o, increases markedly when we ap-
proach the d.p., when @ge — 0. From the results
obtained above it follows that anomalous changes
should occur not only in the intensity distribution
of the elastic scattering of x-rays and neutrons
near 1;.p.’s“’15’18 and d.p.’s,is’18 and in the mag-
netic scattering of neutrons near the Curie and
Neel points,!? but one should also observe singu-
larities in the energy distribution of neutrons co-
herently scattered by thermal vibrations near
d.p.’s and t.p.’s, and in the energy and angular
distributions of incoherent scattering near a d.p.
Now let us consider the smearing out of singu-
larities in the energy spectrum of the incoherent
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scattering by ideal solutions. If we replace the
®kj(w) in (29) and (30) by 6 functions, then for
frequencies w; corresponding to c.p.’s, at which
Vkwk = 0, the quantities g(w), o, and o3 will,
according to the results of Placzek and Van Hove,?
have singularities of the type | w—w,|¥2. The
change from the 6 functions to the smoothed func-
tions (9) obviously leads to a smearing out of these
singularities. Except for cases where there are
no vibrations of other branches at the frequency
wy corresponding to the minimum or maximum
for a particular branch, we can neglect the change
in I‘q(w) over the narrow frequency range w
—wq ~ I'q. Integrating with respect to k in (29)
and (30), and using (9), we find that the term
A(w—-wy )1/ 2, which describes the singularity near
a minimum, must when we include damping be re-
placed by

A (@ — o) — ATy/2 [(© — o)? + T3 %sin2-,

0<0<m. (34)*

(0]

r
— q
tg 6 = —or

Here w; is the frequency at the particular c.p.
when we include the shift by an amount p (w;) and
drop terms of the form P(w;)/w;. For w—w; >
I'q the expression (34) goes over into A (w—w; )1/2,
i.e., the damping is unimportant. For w-—-w; =0,
the right side is however equal to AVI'q/2, and
does not vanish. For negative w — w;, when

wy—w > I'q, the right side of (34) is equal to
ATq/2Vwy—w, i.e., it falls off like (w;—w)¥2.
Thus the singularity in g (w) and in the spectrum
of incoherent scattering is smeared out over an
interval of frequencies ~I'q. Obviously such a
smearing may also be associated with anharmon-
icity, electron-phonon interaction, etc. If other
branches have no vibrations at the frequency of
the minimum or maximum w,, then according to
(21), 'q(w) — 0 for w — w4, and in this approxi-
mation g(w) has a singularity of the type

| w—w, | Y2,

In the discussion given above it was assumed
that no local oscillations occur in the crystal. For
small €, local vibrations in the neighborhood of
impurity atoms actually do not occur.2’ However,
no matter how small €, if a sufficiently large
group of impurity atoms is formed which are lo-
cated close to one another, such levels must nec-
essarily appear. As a result of the concentration
fluctuations in the large crystal, there is a finite
(though small) probability of formation of large
groups of impurity atoms. Since the groups differ
from one another in the number and location of the

*tg = tan
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impurity atoms, and since the local vibrations of
the different groups interacting with one another
are split up in a very complicated way, the local
levels associated with the different groups will
give a resultant continuous spectrum which lies
either below or above the point of minimum or
maximum frequency w; (and has a very rapidly
decreasing level density). Thus, in concentrated
solutions the smearing out of extremal points oc-
curs because of fluctuational deviations from the
average concentration, and because of the local
levels which appear in regions where there are
such concentration changes. It can be shown that
the smearing associated with this effect in ideal
solutions leads to a smearing out of the singular-
ity |w—w,;|Y? over a very narrow range (for
small €) of frequencies ~A’w;, where

M = e (1 — o)t (@r/@ug?, )"

As we move away from the point w;, at large
distances the level density first falls off exponen-
tially according to the law exp [— (w —w;)¥/A"2w}],
and then even faster. This level density goes to
zero only at the frequency w’ which is equal to the
frequency of vibration of a crystal containing only
the atoms of the heavier element (in the case of a
minimum frequency) or of the lighter element
(in the case of a maximum frequency). The same
argument is obviously equally applicable to the
energy levels of conduction electrons in a crystal.

4. SCATTERING OF NEUTRONS BY LOCAL
VIBRATIONS

Now let us consider the case when the impurity
atoms (or other defects) strongly perturb the
crystal vibrations and lead to the appearance of
local levels.”2? We shall assume that the concen-
tration of defects is small. For determining the
scattering cross section from formula (1), it is
more convenient in this case to expand not in
plane waves but in exact normal coordinates. We
shall denote by

V RI2 prsesy (ax — aty)

the term in the expansion of the displacement of
the sy atom corresponding to the local vibration
k. Then the cross section for scattering with ab-
sorption or emission of a phonon k is equal to

ky 1 s .
0x (41,0) = C5 .- [| 3 4sy exp (10:0Rsr) exp (i Rer)ess s [
sY

k1 (.l)N
+ 2 BE'Y (euqul)z] P (©), (35)
sy

where Ag, and Bg, are now fixed, oyi(w) is
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given by formula (8) with akj replaced by a,, and
we have dropped the small terms corresponding to
@xx’(w) with k # k’. In the harmonic approxima-
tion, the Hamiltonian is diagonal in the variables
ag, ax, sothat @y k(w) reduces to & (+w —wy)
(and ngK) =0). However, because.of anharmon-
icity, there is an interaction between the vibrations
which leads to a broadening of the distribution. We
shall assume that the frequency w, is such that
processes are possible in which a local phonon «
is annihilated and two phonons kj and k’j’ are
created. The Hamiltonian describing such proc-
esses can be written in the form

.
D Vi@ awjaiey Vi pauaisjaie)
WKik'j?

1
H = ho.a} a, +"§‘

+ D) howakiaw. (36)

ki
Setting up the equations for the Green’s function
corresponding to this Hamiltonian and breaking
off the chain of equations in the second approxi-
mation of perturbation theory, as is done in the
Appendix for the Hamiltonian (3), we find that
¢rx(w) is given by a formula of the type of (9),
in which T'kj and Pgj must be replaced by I'y
and Py, where

=

Ie= 45 Zn Wity [* 8 (@ — o) — o)
kik’j

X[l + n (k) + n (0x)],

1 Al | ka,k;
P2 =0, oy

From (35), (9), and (37), it follows that the width
of the distribution in this case depends on tempera-
ture (and is proportional to T for high tempera-
tures). It can be shown that as wy approaches the
edge of the frequency band, I'y increases rapidly
and the distribution is smeared out. On the other
hand, with increasing w, the processes treated
here, in which one local vibration is changed into
two crystal vibrations, cease to be possible, and
broadening can occur only because of multiphonon
thermal transitions, whose probability is small and
very strongly dependent on temperature (cf., for
example, reference 21). The essential point is that
when the scattering angle changes the position of
the coherent scattering peaks changes in general,
while the position of peaks associated with local
vibrations remains unchanged.

P, = [1 4 n (ok) + n(owp)]. (37)

APPENDIX

According to reference 9e, the retarded Green’s
function for the operators ag; ag i’ is given by

M. A. KRIVOGLAZ

the expression
Gjiy (£, 0) = —i8 () Sp {e™™ lay; (t) ai-y (0)

—aij (0) ax; ()1} (Spe™ )~ (A.1)

(where 0(t) =1 for t >0 and 6(t) =0 for t< 0),
while the advanced Green’s function differs in sign
and has —t in place of t. Similarly we can intro-
duce a Green’s function Fkjk’j» for akj and aj:j.
If the Hamiltonian is given by formula (3), the
equations of motion for these functions have the
form

dGyiyrir
. dGyjx
i- dlt L =8 () du0jir + 0k;Gujiejr
4 == (Vk/ #Grpricrir — Ve F o),
. dF 1
Kk’
— AT — —ouFuer — - 2 ViepiFiewr
e
— Vi Gierprer ). (A.2)

For the Fourier components we get the integral
equations

1
2 2 Wiy G ()

k"

. 1
— Vi Fiopmey (@)1 = 5

(@) —

(0 — ok;) Gijwy7
duekrdji,
, 1
(© + k) Fiey (©) + 5 2 WiepiiFijicr (©)
| S
— Vi Gy (@)1 = 0. (A.3)
These equations can be solved by the method of

successive approximations, assuming that V and
V’ are small quantities. The result is

1%
Guir (0) = 5y Our (@), kK, j+], (A4)
Rk// (® ) . .
Gjkjr (@) = Gjjr (0) = — oy ki (@), j=F ], o=eyp,
(A.5)
Gyjij (0) = Gij (@) = 1/2 [0 — wy; — Ryjj(0)], (A.6)
where
[ ViV ki Vk/k Vieriour
Rujp (0] = h22 S — L] @

If the levels wgj and wgj- are close to one an-
other, perturbation theory is no longer applicable.
The convergence can be improved in the same way
as one does in ordinary perturbation theory when
there are two close levels, by treating both Gkj
and Gkjjs as zeroth order quantities. We then obtain

1 ® — O ;r — Ryirpe
Grv: (®) — i i’
K (©) = 50 @ =g — R @ — 0 — Rigy) — Ry Rugs
Gyj (0) = RyjyGijr (0) [ (@ — ox; — Ryjy).  (A.8)
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