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We give a classical and quantum mechanical treatment of the influence of the Doppler effect 
on line shape. We consider the possibility of experimental observation of resonance absorp
tion of y rays in liquids. 

THE purpose of the present work is to discuss 
certain features of the resonance absorption of 
y rays and slow neutrons in liquids, where, since 
we have as our purpose only the formulation of 
the problems, we consider a highly idealized model 
of the liquid. 

For a more pictorial description of the funda
mental features of the phenomenon, it is logical 
to begin the treatment from the classical point of 
view. Let us assume that a certain system (an 
atom, nucleus, or other object) is part of a mac
roscopic system, and that it radiates electromag
netic waves of frequency w0• Then if the projec
tion of its radius vector on the direction of emis
sion changes as x = x ( t ), the electromagnetic field 
can be written as 

A~ exp [- iw0t- 'J..tj2 + ixx (t)], (1) 

where 1/A. is the mean life, and K is the wave 
number. Here it is assumed that a collision of the 
radiating atom with other atoms does not change 
its internal state, i.e., does not lead to collision 
broadening. 

The corresponding Fourier component is 
00 

B- ~ dt exp [iQt + ixx (t)- ~ J, 
0 

where ~ = w - w0, and the spectral intensity is 
0000 

J (Q) ~~ ~dtdt' exp{iQ (t- t') 
0 0 

- ~ (t + t')} exp {ix!x (t)- X (t')]}. 

The quantity exp { iK [ x ( t) - x ( t' ) ]} is given by 

exp {ix [(x (t) - x (t'))} = 1 + ix [x (t) - x (t')l 

--~(X (t) -X (t') J2- i;~ (X (t)- X (t')) 3 + • · ·. 
Assuming that the stochastic quantity x ( t) - x ( t' ) 
has a Gaussian distribution, we obtain 

exp {ix [x (t) - x (t')]} = 1- ~~ [x (t)- x (t')]2 

+ :;rx(t)-x(t')J4-... = 1- [x•cr•(jt4-t'll] 

1 r x2cr2 (It- t' !) .]. 2 2 I + 2f L 4 - ... = exp {- x a (It-t [)I 4}, 

where 
a2 (!t-t'i)/2 =[x(t) -x(t')l". 

For the spectral intensity, we have the expres
sion 

0000 

J (Q)- ~ ~ dt dt' exp {it! (t- t') --} (t + t') 
0 0 

- -:=-a2 (! t- t' D}, 
which, after some simple transformations, can be 
written as 

00 

J (Q)- Re ~ dl'exp {- iQ't'- ~ 'J..'t'- -1 x2cr2 ('t')}. (2) 
0 

This relation describes the shape of the absorption 
line. In the classical case in which we are inter
ested, it also follows immediately from Kirchhoff's 
theorem.* Relations like (2) can not only be used 
for the emission, absorption and scattering of pho
tons, but also are applicable to particles, for ex
ample neutr6ns. However at this point it is more 
appropriate to go over to a quantum treatment, 
which we shall carry through for the case of ab
sorption. t 

It is well known1 that the probability, per nu
cleus, for resonance absorption of a neutron (or 
y quantum) can be written in the following form: 

*In the quantum treatment one must take into account the 
fact that the emission of a photon, in general, results in a re

coil which changes the state of motion of the radiating system 
and thus destroys the thermodynamic equilibrium (cf. later on 
p. 395). Under these conditions Kirschhoff's theorem is no 
longer valid. 

tEmission can be treated analogously. 
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W (E) ~ . ~ I (m I vIi) 12 ( 3) (/) f q, ~ (E- Eo+ ef- em)2 + f2/4 ' 

Here E = p2/2m is the energy of the incident neu
tron; Eo and r are the energy and width of the 
resonance level of the absorbing nucleus; V 
= V ( rn- rN) is the operator for the interaction 
between the neutron and the nucleus, and depends 
on the difference rn- rN between the radius vec
tors of the neutron and nucleus; Ei and Eo + Em 
are the initial and final energies of the absorbing 
system. The summation over i corresponds to 
an averaging over initial states, each of which is 
taken with weight qi. 

Assuming that the motion of the incident neu
tron is described by the plane wave 

'¥ n (r o) <='l exp ( iprn/li) 

and using the standard representation of the 6 
function 

+oo 
6 ( p) = in ~ ei'Pd-c, 

-oo 

we can transform the expression for W (E) as 
follows: 

+oo 

W (E) C'l I Mo 1
2 L; q; L; 2~ ~ (E- Eo :~p)2 + f2/4 

i m -oo 
+oo 

x ~ dt: exp{ it: [P + em;; e' ]} / ~ dnp1 (r) cp~ (r) eixr 1
2

, 

-oo 

where K = p/li, M0 is the matrix element of the 
interaction of the neutron with an isolated nucleus, 
and the functions cpi ( r) and (/Jm ( r) determine the 
"molecular" states of the absorbing system. 

Writing the operator for the coordinate of the 
nucleus in the Heisenberg representation, and 
carrying out the summation over m, we obtain 

+r +r ei"Pdp 
W(E) ~ ~ dt: J (E _Eo+ lip)2 + r 2; 4 fs (~, t:), 

-00 -oo 

where 

Fs (~, t:) = 2; q, (i I exp {- i~RN(O)} exp {i~RN(t:)} I i). 
i 

The quantity F s ( t<, T) can be expressed in 
terms of the function int-roduced by Van Hove:2 

which has the significance of a self-diffusion func
tion.* Namely 

*We should remind the reader that the argument of the 8 
function contains the quantum mechanical operator RN(T) in 
the Heisenberg representation; since these are taken at differ
ent times, they do not commute with one another. 

Fs (~, -r) = ~ dr eixrGs (r, -r). 

For the majority of isotropic dynamical systems, 
the function Gs ( r, T) has a Gaussian shape with a 
dispersion which depends on the time. 3 Then 

Fs (~. t:) = :n-'l•a-3 (-r) ~ dr exp {i~r- G2r;-r)}= exp {-x2G:(-r)}, 

which gives 
+oo +oo 

\' dp \ {. x2cr2 (-r) } 
W (E) <='l j (E _Eo+ lip)• + f2/4 j dt: exp tpt:- - 4-- . 

-oo -co 

Calculating the integral over p, and using the 
relation2 a* ( T ) = a ( - T), which guarantees the 
reality of the expression for W (E), we finally 
obtain 

"" i { E -E f-r G2(-r)} W (h)(/) Re) dt: ~xp_ i --7;- -r - 2Ji- x2 - 4 - • 

0 

(4) 

For r = 0, the expression analogous to (4) deter
mines the angular and energy distribution of neu
trons in incoherent scattering. Computing W (E) 
in the semiclassical approximation, i.e., treating 
the motion of the atoms of the material classically, 
one can show that formula (4) is identical with the 
result (2) of the consistently classical computation. 

The information concerning the nature of the 
motion of the absorbing nuclei is contained in the 
quantity a-2( T ), which can, in particular, be de
termined from experimental data on potential scat
tering of neutrons and from the shape of the reso
nance absorption line for neutrons and y quanta. 
It is also not difficult to compute a-2{ T) for cer
tain simple models of the material. 3•4 Thus for 
an ideal gas, 

a2 (t:) = v~ (-r2 - ilit:jkT), 

where v~ = 2kT/M, where M is the mass of the 
atom, k is the Boitzmann constant and T is the 
temperature. 

For a harmonic oscillator of frequency fl, 

(5) 

a2 (-r) = __ E!_ {exp {liQfkT} + 1 (1 -cos fl-r) - i sin flt:) ~ (6) 
M~~ exp {liQjkT}- 1 

and finally, for an atom in a crystal lattice with 
cubic symmetry, 

00 

2 ( ) _ 2/i (' v (Q) dQ {exp {liQjkT} + 1 (1 _cos flt:) 
a -r - M j Q exp {liQjkT}- 1 

0 

- i sin"flt:}, (7) 

where v ( 0) is the normalized spectrum of eigen
frequencies of the crystal. Formulas (5)- (7) 
were obtained quantum mechanically. 

The classical calculation3 gives a somewhat 
different result in each of these cases: 
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cr~1 ('r) = (2v~/Q2) ( 1 - cos Q-r), 

00 

2 2 > v (Q) dQ 
O'c1 ('t) = 2v0 ~ 02 (1 -cos Q-r). 

0 

(5') 

(6') 

(7') 

The main difference between the quantum mechan
ical and classical formulas is the appearance in 
the former of an imaginary part, which arises as 
a result of the noncommutativity of the operators. 
Physically, as it is not difficult to show for the 
example of the ideal gas, the imaginary part takes 
account of the recoil of the atom, i.e., the back re
action of the radiation on the matter. From their 
physical meaning, the classical expressions must 

be real ( aJ1 ( T) ,..., I r ( T) - r ( 0) 12 ) . 
It is not difficult to show that at high tempera

tures and after long times ( T » :11/kT in the case 
of a gas, and T » 1/Qav for the case of a crystal) 
the imaginary part is small. It should be men
tioned that in the case of the oscillator and the 
crystal, the quantum effects do not disappear com
pletely for T-oo, since formulas (6) and (7) con
tain the effective temperature 

FiQ exp {FiQjkT} + 1 
T eff (Q) = 2k exp {nQjkT}- 1 • 

At short times, the imaginary part dominates in 
a2(T). 

Substituting in (4) the values of a2( T) for the 
gas and the crystal, we arrive at the well known 
expressions for the probability of absorption of 
slow neutrons which were obtained by Bethe and 
Placzek5 and Lamb. 6 These same formulas are 
also suitable for describing the resonance absorp
tion of y quanta in gaseous and crystalline sam
ples. 7 ,s 

Let us now consider an absorbing system which 
is diffusing inside a compressed gas or a liquid 
(which for simplicity we treat as a highly com
pressed gas ) . Because of the complexity of a 
consistent quantum mechanical approach, we shall 
compute the quantity a2( T) classically, using the 
Langevin equation 

r. + 11r = t, 
where f is the random force, 11 = kT/MD, and D 
is the diffusion coefficient. Then, as shown by 
Chandrasekhar, 9 

o2 (-r) = 4D ['t'- ( 1 - e-11~)/TJ]. (8) 

Substituting (8) in (2), we get 
00 

J (Q) ~ Re ~ d-r exp {in-r- "A-r/2- x2D [ 't'- 1 -TJe-11
']}. 

0 

(9) 

If collisions are not important, formula (9) leads 
to the usual formula, which is valid for an ideal gas. 
In the opposite limiting case, the condition 

(10) 

is satisfied, where A is the wave length and L is 
the mean free path. Then (9) goes over into 

00 

J ( Q) ~ Re ~ d-r exr{in-r- (4- + x 2D) 't'}, 
0 

which leads to* 

(11) 

If the damping is weak, the width of the line is 
of the order of K2D, which differs from the usual 
Doppler width K (kT/M) by the small factor L/ A. 

Under conditions where collisions are unimpor
tant, the absorbing atom can be assumed to be free, 
and the absorption of the y quantum is accompa
nied by a recoil 

(12) 

If the absorption takes place in the presence of an 
interaction between the absorbing system and some 
other body, the recoil momentum is distributed 
over the two bodies, which results in an increase 
of the effective mass and a consequent reduction 
of the shift ~w. 

As the ratio L/ A decreases, the collisions be
come more important, and the absorbed photon in
teracts effectively with more and more of the 
atoms in the material, which results in a further 
increase in the effective mass Meff· The latter 
in turn is associated with a reduction in the Dop
pler width, which is of order M~ff , and with a 
much more rapid drop in the shift due to recoil, 
which is of order M~f£. One may therefore expect 
that when condition (10) is satisfied the recoil leads 
to practically no shift of the center of the line. 

For soft y rays, condition (10) may be satisfied 
in liquids, if we assume that the diffusion model of 
the liquid gives any sort of description of the situ
ation. 12 It then follows that it may be possible to 
observe resonance absorption of y rays when 
working with a liquid source and absorber. We 
may expE}ct that the conditions for observing reso
nance absorption in this case will be much more 
favorable than in a gas, disregarding for the mo
ment the fact that it will be possible to use much 
stronger sources. First of all, in working with 
gases one must somehow compensate the recoil, 

*For the case of A= 0 this formula was given in the paper 
of Wittke and Dicke,10 A more detailed analysis of the limiting 
cases of formula (9) was given by Podgoretski'i and Stepanov." 
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which makes the experiment more difficult. This 
is not necessary in liquids. Secondly the intensity 
of resonance absorption in liquids should be con
siderably stronger than in gases, since the line 
width is much smaller. 

The resonance absorption of y quanta and neu
trons can be used to study the mechanism of trans
fer in the liquid. Of particular interest in this 
connection are experiments of the type of reso
nance absorption of y quanta in Kr83 ( Ey = 9.3 
kev, Ne/Ny ..... 10, 'fb=-151°C, Tm=-157°C). 
The fact that the boiling point is close to the melt
ing point enables us to eliminate temperature ef
fects and to investigate the dependence of reso
nance absorption on the state of aggregation. 

The authors thank F. L. Shapiro for many stim
ulating discussions, and also M. V. Kazarnovskii 
and I. I. Sobel'man for help in this work. 

Note added in proof (January 16, 1961). After 
this paper was sent to press, we saw a preprint 
of the paper of Singwi and Sjolander, which con
tains similar results. [See Phys. Rev. 120, 1093 
(1960); trans!. note.] 
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