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It is shown that the calculation of the statistical averages of a series of physical quantities 
can be carried out with the help of the distribution function instead of the probability density. 
The distribution function is the mathematical expectation of the particle density and is pro
portional to the probability density for a single particle only if all particles are absolutely 
identical. For a set of particles and antiparticles (with respect to some single property) 
the distribution function can also assume negative values. In this case it is no longer pro
portional to the probability, but it can be used to compute the averages of a number of phys
ical quantities. It is shown that in the field theory of elementary particles the average values 
of some quantities characterizing the entire field (energy, momentum, charge, etc.) can be 
computed with the help of the corresponding distribution function. 

1. INTRODUCTION 

IT is known that many attempts at a generaliza
tion or a new interpretation of the apparatus of 
quantum mechanics have led to negative or even 
complex "probabilities." Thus, for example, the 
density matrix in the mixed (coordinate-momentum) 
representation, which plays the role of the quantum 
mechanic:rl probability density in the phase space, 
must either be complex1•2 or a real quantity which 
can assume negative values.3•4 Negative "proba
bility'' densities appeared to be inevitable in rela
tivistic quantum mechanics which includes states 
with negative energies.5•6 Finally, quantum me
chanics in Feynman's functional representation 7 in
volves complex (or real, but sometimes negative) 
"probability" densities in the functional space of 
the particle paths. 8 

The problem of the physical meaning of complex 
or negative "probabilities" also turns up in the 
new interpretation of quantum theory as the clas
sical statistical theory of systems which interact 
with an "imaginary" thermostatic oven, i.e., with 
a thermostatic oven that has an imaginary tem
perature, as has been proposed by one of us.9 

Since it is possible, in all cases known to us, to 
avoid the appearance of imaginary parts in the 
"probabilities" by an appropriate reformulation, 
the question of principal interest is that of the 
meaning of "probabilities" which can have nega
tive as well as positive values. The discussion 
of this question forms the subject of the present 
paper. 

If "probability" is understood as a quantitative 
measure of the possibility of the presence of some 
object or of the occurrence of some process, where 
probability one implies certainty and probability 
zero corresponds to impossibility, negative values 
of the probability have no real meaning whatsoever. 
Thus, if the quantity which plays the role of a prob
ability in a physical theory is not positive definite, 
it cannot be an actual "probability"; it only fulfills 
the function of the genuine probability in the compu
tation of certain average values. This quantity is 
more accurately called the formal probability or 
quasiprobability. 

The quasiprobability (more precisely, the den
sity of the quasiprobability) is, in general, a dis
tribution function, i.e., the mathematical expecta
tion of the particle density. If the particles are 
completely identical and indistinguishable, the 
probability density function for a single particle 
differs from the distribution function only by nor
malization factor. However, for a set of positive 
and negative (with respect to some property, e.g., 
the charge) particles which otherwise have iden
tical properties, the distribution function can take 
positive as well as negative values, since it repre
sents the average "charge" density. This distri
bution function does not coincide with the proba
bility density; however, it can be used in place of 
the probability density for the computation of cer
tain average values. 

The appearance of negative "probabilities" in 
a physical theory may therefore mean that we are 
actually not dealing with a probability density but 
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with a distribution function which plays the role of 
a probability density in the computation of average 
values of certain quantities. Let us now consider 
these questions in more detail. 

2. PROBABILITY DENSITY AS MATHEMATICAL 
EXPECTATION 

In every physical theory one always ignores 
some physical quantities and only focusses atten
tion on certain chosen ones, namely, the observ
ables for which the theory has been formulated. 
Let X denote the set of observable quantities and 
Y, the set of ignored quantities. We can introduce 
a probability density W (X, Y) for the whole set of 
physical quantities (X, Y) in such a way that 
WdXdY has all the properties of a probability. 
With the help of this probability density we can 
also compute the probability density for the ob
served quantities 

W(X) = ~ W (X, Y) dY. 
(Y) 

(1) 

On the other hand, expression (1) can also be writ
ten in the form 

W(X)= ~ 6(X-X')W(X',Y')dX'dY', (2) 
(X',Y') 

where 6 (X -X') stands for the corresponding 
product of 6 functions if X denotes more than one 
variable. Now the last integral is the mathematical 
expectation of the quantity 

F = 6(X -X'). (3) 

The probability density of the observed quantities 
can therefore be regarded as the average value 
of a quantity of the type (3). 

In the above-mentioned example W (X) cannot 
take negative values, sin.ce W (X, Y) ::::: 0 and 
F ::::: 0; W, therefore, has all the properties of a 
probability density. 

3. DISTRIBUTION FUNCTION AND PROBABILITY 
DENSITY 

If the physical system under consideration con
sists of a set of N identical particles (i.e., the 
matter density is distributed over the three
dimensional space in the form of a set of N 
6-function-like maxima), its statistical behavior 
is sufficiently, completely described by a distribu
tion function defined as the average of the particle 
density. 

In the classical statistical theory of gases the 
distribution function is defined as the average of 

N 

o= ~ 6(rk-r)6(pk- p), (4) 
k=l 

in the six-dimensional phase space of coordinates 
and momenta; rk and Pk are the coordinates and 
momenta of the individual mass points. This 
means we have 

f (r, p) = ;; = ~ aW (r1, p1; r 2 , pz; ... ; r N' pN) dr1 ... dpN, 

(5) 

where W ( r 1, ••• , PN) is the probability density in 
the ( 6N) -dimensional phase space. If all particles 
are identical, the function W must be symmetric 
under the interchange of the particles, and there
fore 

f(r, p)=N~6(r-rl)6(p-p1)W(rl>···· pN)dr1 ... dpN, 

(6) 

i.e., the distribution function is, according to (2), 
equal to N times the probability density that a 
single particle has the given coordinates r and 
momenta p. Thus the average value of any phys
ical quantity which is the sum of identical functions 
of the coordinates and momenta of the individual 
particles can with equal success be computed either 
with the help of f or with the help of W, for obvi
ously 

N 

2J cp (r k' pk) = N ~ cp (r1, PI) W (r11 ... , pN) dr1 ... dpN 
k=l 

= ~cp(r, p)f(r. p)drdp. (7) 

In the computation of average values of physical 
quantities of a certain form, the distribution func
tion can therefore fulfill the same function as the 
probability density. It is clear that this result 
holds not only for the distribution function in the 
theory of gases, but also in all other cases (for 
example, for the distribution function in configu
ration space ) . 

4. DISTRIBUTION FUNCTION FOR A SYSTEM 
OF OPPOSITELY CHARGED IDENTICAL 
PARTICLES 

In the preceding example the distribution func
tion, just like the probability density, cannot take 
negative values, since always a::::: 0. It can there
fore replace the probability density in all respects, 
as it differs from the latter only by a normaliza
tion factor. The situation is different for a set of 
identical but oppositely charged particles. Here 
"charge" must be understood in the widest sense, 
i.e., as a certain property which distinguishes be
tween particles and antiparticles which are iden-
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tical to each other in all other respects. The 
"charge" can thus be interpreted as the electric 
charge in the case of electrons and positrons, as 
the baryon number in the case of nucleons and 
antinucleons, and, finally, as the rest mass in the 
case of Dirac particles with positive and negative 
masses. 

Let us consider the case of a system of oppo
sitely charged particles. Let it contain N+ posi
tive and N- negative particles. Together there 
are N = N+ + N- particles described by a set of 
generalized coordinates x1, x2, ••• xN+, xN++1• ... , 
xN. The first N+ coordinates, which can also be 
denoted by xk = xk, are the coordinates of the 
positive particles, and the remaining N- coordi
nates xN++i = xf are the coordinates of the nega
tive particles. The total probability density de
scribing the statistical behavior of the total en
semble of particles must be a function of all 
coordinates: 

= W (x~, x; , ...• x~+;~, x;, ... , x~_). (8) 

Since the particles are indistinguishable, the func
tion (8) is evidently symmetric with respect to in
terchanges of particles of the same sign, but may 
not, in general, be symmetric with respect to in
terchanges of a positive and a negative particle. 
Hence 

W+ (X)=~ 0 (X- X~) W (x;, ... , X~_) dX~ . .. dX~-

=f= W_ (x) = ~ 0 (X- X~) 

x W (x~ , ... , x~_) dx; ... dx~-· (9) 

i.e., the probability density for a positive particle 
is not equal to the probability density for a nega
tive particle. 

The role of the distribution function for the 
considered system of oppositely charged particles 
will, obviously, be played by the average "charge" 
density, i.e., by the average value of the quantity 

N 

p = ~ f\0 (x- xk). 
k=l 

If we set I Ek I = 1, this expression can also be 
written in the form 

N+ N-

(10) 

p = ~ 6 (X - X~) - ~ 0 (X - X7 ) • (11) 
h=l i=l 

The average value of p is, according to (9)- (11), 
equal to 

p = N '"W+ (x)- N_W_ (x). (12) 

Because of (9), this quantity can take both positive 
and negative values. 

It is easy to see that we can use the average 
density to compute the average values of quantities 
of the form 

N 

F = ~ ~vr<xk) (13) 
k=l 

with the help of the usual formula for the mathe
matical expectation. Indeed, 

N 

F = ~ ~ BkiJ! (Xh) W (x1, ... , xN) dx1 • •• dxN 
k=l 

= ~IJ! (x) [N+W}(x)- N_W_(x)l dx = ~ljJ (x) p(x) dx 
(14) 

hence, if we substitute the quantity Ncp ( x) instead 
of F, the quantity p (x)/N will play the role of the 
probability density in x space. 

One might think that the situation is analogous 
in those cases where negative "probabilities" 
appear. If the formal apparatus of the theory 
leads to a negative probability for some particle 
coordinate, this may indicate that we are actually 
dealing with an ensemble of particles and anti
particles (with respect to some property) and 
that we are actually computing the average value 
of a quantity of the type (13), and not a function of 
the coordinate of a single particle. 

5. AVERAGE VALUES IN THE FIELD THEORY 
OF PARTICLES 

If the elementary particles are regarded as 
particular solutions of nonlinear field equations 
(for example, as the particle-like solutions of 
references 9 - 11 ) , only quantities characterizing 
the whole field, not those referring to the individ
ual particles, have a physical meaning. 

In the example considered above, such a quan
tity is the "charge" of a given volume. A theory 
which uses the distribution function instead of the 
probability allows us to calculate the average 
"charge" of the unit volume, but says nothing 
about the average "charge" of a given particle. 
In the case of a set of Dirac particles with posi
tive and negative masses, we can compute the 
average energy and momentum in a given volume 
with the help of the distribution function. Many 
basic average values in the field theory of ele
mentary particles can thus be computed with the 
help of the corresponding distribution function, 
using the same rules that apply if the probabil
ity density is used. The distribution function 
may take negative values; but it is not correct 
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to interpret this as the appearance so to speak 
of negative probabilities. 
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