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The asymptotic behavior of the position of the singularities of the "open envelope" (Fig. 3) 
perturbation-theory diagram is studied for one of the invariants that tend to infinity. It is 
shown that in the general case the "open envelope" has two singular curves. A method is 
developed for reducing the problem of determining the singularities of any perturbation 
theory diagram with four external lines to the problem of the "open envelope" diagram 
(Fig. 1) with certain effective masses of virtual particles. Minorants are established for 
the effective masses. The results are applied to a perturbation-theoretical analysis of 7!"7!", 

KK and NN scattering in the case when one of the invariants that characterize the scatter­
ing amplitude tends to infinity. It is found that under these conditions the 7!"7!" scattering 
amplitude has no anomalous singularities in any perturbation-theory approximation. Con­
ditions are indicated under which the absence of anomalous singularities in the perturbation­
theory diagram can be established in a number of cases for KK and NN scattering ampli­
tudes. 

1. INTRODUCTION 

THE present work is devoted to an investigation of 
the status of the singularities of the scattering 
amplitude in perturbation theory. For greater 
clarity in formulation, we recall the properties 
possessed by the singular curves of the simplest 
diagram of perturbation theory (Fig. 1), which has 
been analyzed in detail by Karplus, Sommerfeld, 
and Wichman, 1 Landau, 2 Mandelstam, 3 Kolkunov, 4 

Tarski, 5 and Vladimirov. 6 

In view of the conservation of the 4-momenta of 
the scattered particles, the 4-momenta of the 
scattered and virtual particles for any perturba­
tion-theory diagram will lie in a 3-dimensional 
space. 2• 7 It is convenient to use as the basis vec­
tors of this space the following three linearly­
independent 4-vectors: 

W = P1 + P2, Q = P1 + p3, P = P1 + P4· (1.1) 

If we put PI= MI ( i = 1, ... , 4 ), then 

2QW = Mi- M~- M; + M!, 

2W P = Mi- M~ + M;- M!, 2QP = Mi + M~- M~- M!, 

Q2 + W2 + P 2 = Mi + M~ + M; + M;. (1. 2) 

As follows from (1.2), the vectors W, Q, and P 
are orthogonal if M1 = M2 = M3 = M4• 

The scattering amplitude is characterized in 
general by six parameters. It is convenient to use 
as these parameters the four quantities MI and 
two invariants, say W2 and Q2• We shall consider 
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the singularities only with real invariants. At the 
singularity, a certain connection exists between 
W2, Q2, and the masses of the virtual particles. 
Figure 2 shows cases of singular curves for the 
diagram of Fig. 1 (the mass mik corresponds to 
a virtual particle going from the vertex i to the 
vertex k). In accordance with the standard termi­
nology, we shall call singular curves of type a 
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(Fig. 2) normal, while singular curves of type b, 
c, and d will be called anomalous. We note that 
a characteristic of normal singular curves is that 
they are completely contained in the domain I Q2 I 
> ( m12 + m34 )2; I W2 1 > ( m13 + m 24 )2, while ano­
malous curves are partially located outside this 
domain. 

The question arises of the conditions under 
which anomalous singularities occur for perturba­
tion-theory diagrams that are more complicated 
than Fig. 1. An attempt to answer this question is 
made in the present paper. The analysis is car­
ried out in the asymptotic case, when one of the 
invariants tends to infinity. As a criterion of an 
anomalous singular curve we use the condition 
I W2 (Q2 >I< I W2 < oo > 1. 

We investigate first the singularities of a dia­
gram of the "open envelope" type (Fig. 3) and es­
tablish the asymptotic conditions for the existence 
of anomalous singularities. It is shown that, unlike 
the diagram of Fig. 1, the singular curve of the 
"open envelope" has several branches. 

FIG. 3 

We then consider an arbitrary complicated per­
turbation-theory diagram. It is shown that its 
singularities coincide in the general case (and not 
only asymptotically) with the singularities of an 
"open envelope" diagram, in which the masses of 
the virtual particles are replaced by certain effec­
tive masses that depend on W2 and Q2. In the gen­
eral case one succeeds in finding a minorant, in­
dependent of the values W2 and Q2, for these 
effective masses. This makes it possible to verify 
in the asymptotic case the conditions of existence 
of anomalous singularities for several classes of 
perturbation-theory diagrams. The method de­
veloped is applied to the analysis of pion-pion, 
kaon-kaon, and nucleon-nucleon scattering ampli­
tudes. 

2. METHOD OF DETERMINING THE 
SINGULARITIES 

The singular curves of perturbation-theory dia­
grams are determined by a method proposed by 
Landau. 2 It will be found more convenient, however, 
to modify somewhat the original Landau equations 
of references 2 and 7. Instead of the 4-momentum 
~k of the virtual particle travelling from the ver-

tex i to the vertex k, we introduce the 4-vector 
aik = aikqik ( aik = - aki ), where aik is the Feyn­
man parameter of the virtual line "ik." In addi­
tion we introduce instead of aik the quantity ~ik 
= 1/ aik ( 1 ::s ~ik ::s oo ). Then the initial equations 
for finding the singularities of any perturbation­
theory diagram have the following form 

~~~n,atk = p;, 
(k) 

~atk = 0, 
(c) 

m~k = ~~ka~k· 

(2.1) 

(2.2) 

(2.3) 

Equations (2.1) express the law of conservation 
of 4-momenta at each of the vertices of the dia­
gram (for internal vertices Pi = 0 ). The summa­
tion in (2.2) is over each independent contour of 
the diagram. Equations (2.3) signify that the vir­
tual particles lie on the energy surface at the 
singularity. Simultaneous solution of the system 
(2.1)- (2.3) yields the dependence of Q2 on W2 at 
the singular point of the diagram. The prime at 
the summation sign in (2.1) indicates the absence 
of the term with i = k. 

3. THE "OPEN ENVELOPE" DIAGRAM 

Let us consider the system (2.1)- (2.3) for the 
"open envelope." In this case there are four ver­
tices and six 4-vectors aik• viz. a12, aw a34, a24, 
a 13, and a 23. Using (2.2) for three independent 
contours, we can express the vectors a24, a 13, and 
a 23 in terms of a12, aw and a34. Next, introducing 
in lieu of Pi the vectors W, Q, and P [according 
to (1.1)], we transform (2.1) into 

a12 (~12 + P2a) + a14 (~14- P2a)- aa4 (~a<~. -l- B2a) =- Q, 

- a12 (~2a + ~24) + a14 (~1a + ~14 + ~2a + ~24) 

+ aa4 (~1a +~a)= W, 

a12 (~12 + ~24) + a14 (~1a - ~24) + aa4 (~1a + ~a4) = P. (3.1) 

Using (3.1) in conjunction with (2.2) we can ex­
press all the aik in terms of ~. P, and the vec­
tors Q, and W. The appropriate formulas are 
given in Appendix I. Using these values of aik we 

obtain, after substituting in (2.3) and eliminating ~, 
the singular curve Q 2 = Q 2 (W2 ). However, the 
process of eliminating is in general exceedingly 
cumbersome.* We therefore confine ourselves 
merely to a consideration of the asymptotic case 
Q 2- oo. This of necessity implies ~12 - oo and 
~34- oo.9 

*The system (2.3) can be solved easily only if the "open 
envelope" has a high degree of symmetry.• 
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Introducing 

Y;k = ~ik I (~1a + ~14 + ~2s + ~24) (Yta + Yt4 + Y2s + Y24 = I) 

we obtain from equations (A 1.2), (A 1.3) and (2.3), 
accurate to terms that tend to zero, 

m:2 + W2 (Yts + Yu)(Y2s + Y24)- [Mi (r2s + Y24) 

+ M; (Yta + Y14)] = Q2 (itaY24- Y14Y2a) I YB4• (3.2) 

m:4 + W2 (Yta + Y2a)(Y14 + Y24)- [M; (Y14 + Y24) 

+ M! (Yta + Y2a)l = Q2 (YtaY24- Yl4Y2a) I Y12· (3.3) 

Before we use the remaining equations of (2.3), 
let us note the following important fact. Generally 
sp9aking, the system (2.1)- (2.3) for the "open 
envelope" is on the whole a complicated algebraic 
system of thirty-sixth order. There is therefore 
no a priori guarantee that the solution of this sys­
tem is unique. In fact, even for the simplest per­
turbation-theory diagram, that of Fig. 1, there are 
two solution branches. To be sure, one of these 
branches is fictitious in view of the condition {3 :::: 1. 
But in the case of an "open envelope," for which 
the system (2.1)- (2.3) is more complicated than 
that for Fig. 1, it turns out that the condition {3 :::: 1 
is not sufficient to single out one branch of the 
solution. We shall determine all the possible solu­
tions for the "open envelope" under the condition 
Q2 - co. The various solutions differ in the manner 
by which Q2 = Q2 ( {312, {334 ) - co as {312 - co and 
{334- co, It is obvious from (2.3) and from (A 1.4) 
-(A 1.6) that Q2/({312, {334 ) cannot tend to a con­
stant value as {312 - co and {334 - co and when 
K > 1. Consequently, only the following two princi­
pally different cases are possible: K < 1 and K = 1. 

We consider first the case K < 1. Then, as 
shown in Appendix I 

I W I = I + ____g:_ lt•l•4- 114'123 
m13 + m14 + m23 + m24 2it•l34 (mta + m14 + m23 + m24)2 

(3.4) 

'ltaY24- Y14Y23 = (m + m +. m + )" 13 ·14 23 m24 

(3.5) 

The value of K depends on the value of 
€ = m13m24 - m14m23. There are two possibilities: 
a) € ~ 0 and b) E = 0. 

a) If € ~ 0, we can neglect the second term in 
(3.5) and the third term in (3.4). It follows then 
from (3.2) and (3.3) that K =% and Qo/y 12 (or 
Qo/y34 ) remains constant as {312 - co and [334 - co,* 

Since the right halves of (3.2) and (3.3) are propor-
*The connection between {3 12 and {3 34 can be readily ob­

tained from (3.2) and (3.3). 

tional here to the deviation of the quantity 
IW l/(m13 + m14 + m23 + m 24 ) from unity, the fol­
lowing conditions should be satisfied for the case 
of the anomalous singular curve, when I WI < ( m13 
+ m14 + m22 + m 23 ) [the quantities y 13, 'Y14> y 23 , 
and y 24 in (3.2) and (3.3) are now replaced by their 
values given in (A 1.14)]: 

mi. + (mta + ml4)(m2a + m24) < Mi (m.s + m24) + Mi (ml3 + ml4) 
m13 + m1, + m23 + m24 ' 

(3.6) 

m~4 + (mta + m2a)(ml4 + m24) < M; (ml4 + m24) + M~ (mt• + m •• ) . 
m1a+ m14 + m23 + m24 

(3.7) 

Let us analyze the inequalities (3.6) and (3. 7). 
When both inequalities are satisfied, the "open 
envelope" has asymptotically anomalous singular­
ities. It is obvious that as the masses of the vir­
tual particles are increased these inequalities are 
less and less satisfied. When both inequalities 
(3. 6) and (3. 7) are violated, the singular curves 
are of the normal type. Finally, when one of the 
inequalities, either (3.6) or (3. 7), is satisfied while 
the other is violated, the "open envelope" has no 
singularities as Q 2- co, 

b) If € = 0, it follows from (3.5), (3.2), and 
(3.3) that K = 3,{ and Q'Y'y 12 y~3 (or Qo/y~2 y34 ) re­
main finite as {312 - co and [334 - co, Further, it 
follows from (3.4) and (3.5) that when € = 0 the 
value of I W I/ ( m13 + m 14 + m 23 + m 24 ) is always 
greater than unity: 

I WI = 1 + 3Q4 mtsm24 
mts + mu + m23 + m24 8 (m1s+m14 + m23 + m24)6 (r12 134)• ' 

(3.8) 

that is, in case b) the singular curves are of the 
normal type. 

Let us note another fact. As follows from the 
derivation of all the formulas in the present sec­
tion, the results obtained for the "open envelope" 
can be directly generalized to the case of the 
simpler diagrams shown in Figs. 1 and 4. For 
this purpose it is necessary to put {314 = [323 = 0 for 
the diagram of Fig. 1, and {3 14 = 0 for the diagram 
of Fig. 4. Now the case b) becomes impossible for 
the diagrams of Figs. 1 and 4, by virtue of the 
condition {313{324 ~ 0, and the solution obtained is 
unique: Qo/ f3t2 (or Qo/ {334 ) tends to a constant value 
as f3t2- co and {334 - co, The conditions for the 
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existence of anomalous singularities are obtained 
for the diagram of Fig. 1 from (3.6) and (3. 7) with 
m14 = m 23 = 0, and for the diagram of Fig. 4 with 
m 14 = 0. 

4. SPECIFIC CASE OF "OPEN ENVELOPE" 
SINGULARITY 

Let us consider now the case when K = 1. As 
follows from (3.2) and (3.3), this is possible only 
when YtaY24- Yt4Y23- 0, as 1/ya4 or 1/yt2·* 

Generally speaking, we readily obtain from 
(2.3) and (A 1.3)- (A 1. 7) an equation to relate Q2, 
W2 and {32 when K = 1. In the general case, how­
ever, these equations are much more complicated 
then (A 1.8)- (A 1.11). We therefore confine our­
selves only to the case in which 

Under these conditions, the expansions used to 
derive (A 1. 8) - (A 1.11) are valid, and expressions 
(3.4) and (3.5) hold accordingly. Recognizing that 
Yt3Y24- Yt4Y23- 0, we obtain from (3.4) and (3.5) 

I W I = l + _!_ (m13 m24- mu m2s)2 

m1s + mu + m23 + m24 2 m1s m24 (m13 + m14 + m2s + m24)2 • 

(4.1) 

We find therefore that in the case of the "open 
envelope" there can exist, in addition to the 
asymptote W2 = ( m 13 + m 14 + m 23 + m 24 ) 2, also an 
asymptote at a larger value of W2, as determined 
by (4.1). This is the first example known to us in 
which, as Q2 - oo, the asymptotic value of W2( Q2) 
does not coincide for some perturbation-theory 
diagram with the square of the sum of the masses 
over any section of the diagram perpendicular to 
the vector W. 

The asymptotic form of the dependence W2 

= W2 ( Q2) is obtained in Appendix I for K = 1, f3t2 
- oo, and {334 - oo, It follows from Fig. 5, that 
here, too, the singular curves are of the anomalous 
type if the inequalities (3.6) and (3. 7) are satisfied. 

We note that although the solution K = 1 has been 
obtained subject to the condition I m13m24 - m14m2al 
« W2, there are no grounds for assuming that it 
will vanish when this condition is violated. 

The foregoing analysis of the asymptotic form 
of singular curves for the "open envelope" indi­
cates that the system (2.1)- (2.3) has in this 
case three solutions. The first corresponds to the 
condition E ~ 0 and leads to K = %. The second 

*It is obvious that the case K = 0 cannot be realized for 
Figs. 1 and 4. 
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solution corresponds to the particular case E = 0 
and leads to K = %. (The singular curves are in 
this case asymptotically of normal form).* The 
third solution is obtained under the assumption 
E/W2 « 1 and leads to K = 1. Here the value of 
W2 ( oo) is determined by Eq. (4.1) and does not 
coincide with W2 ( oo ) = ( m 13 + m 14 + m 23 + m 24 )2. 
The singularities of the first and third solutions 
are of the anomalous types if conditions (3. 6) and 
(3. 7) are satisfied. 

5. REDUCTION OF SINGULARITIES OF ANY 
PERTURBATION-THEORY DIAGRAM TO THE 
SINGULARITIES OF THE "OPEN ENVELOPE" 
DIAGRAM 

Let us analyze the original Landau equations for 
the determination of the singular curves of an ar­
bitrary perturbation-theory diagram, written in the 
form (2.1)- ( 2.3). 

Equations (2.1) and (2.2) determine completely 
the 4-vectors aik in terms of {3 and Pi. 7 By virtue 
of its linearity, the system (2.1) and (2.2) has a 
unique solution. We seek aik in the form 

(5.1) 

Let us consider an arbitrary perturbation­
theory diagram with v vertices. For this diagram, 
the sum over k in (2.1) contains only terms with 
indices ik corresponding to vertices ik joined on 
the diagram. It is more convenient, however, to 
assume that all the vertices are pairwise inter­
connected on the diagram but the values of f3ik and 
mik vanish for all pairs of indices ik correspond­
ing to vertices which are not interconnected on the 
diagram. 

Equation (2.1) for an internal vertex i = v can 
be written, with account of (5.1), in the following 
form: 

*It follows therefore that the solution obtained in reference 
8 for the particular example of "open envelope" is unique 
when all the masses are equal. 
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k=v-1 k=v-1 k=v-1 

l] ~kvakv = L] ~kv al<- a, L] ~kv = 0. (5. 2) 
k=l k='l k=1 

Introducing the notation* 
l=v-1 h=v-1 

Ykv = ~kv I .2] ~lv, L] Ykv = I, (5.3) 
' 1=1 k=1 

we obtain from (5.2) and (5.1) 
k=v-1 l=v-1 

a,= L] Yhvak, a,,=a,-a,= L] Ylvail· (5.4) 
k=l 1=1 

We now substitute (5.4) into any equation from 
(2.1), taken for a vertex n ~ v. We then obtain 

h=v-1 

L] (~kn + ~nv Yn.) ahn = Pn· (5.5) 
k=1 

If we now introduce the notation 

~~n = ~kn + ~nv Y~<v, (5.6) 

then Eqs. (5.5) assume the same form as (2.1) for 
a diagram with ( v - 1) vertices. Introducing, 
further, the effective masses mik ( i, k ~ v) 

(5. 7) 

we reduce the problem of finding the singularities 
of a diagram with v vertices to the problem of find­
ing of singularities of a diagram with ( v - 1) 
verticest and to the supplementary conditions by 
which f3ik are expressed in terms of /3ik: 

l=v-1 2 

m2 = r.l2 a2 = r.l2 [ " rz a ·1] iv t'iv iv tJtv LJ v t ' 
1=1 

(i = I, ... , v- I). 

(5.8) 

Applying successively the transformations (5.6) 
and (5. 7) to each internal vertex of the diagram, we 
ultimately reduce the problem of finding the singu­
larities of an arbitrary diagram of perturbation 
theory to the problem of finding singularities of 
the "open envelope" diagram (Fig. 3), in which the 
virtual-particle masses are replaced by certain 
effective masses, which depend on the variants 
W2 and Q2• 

Let us note also a fact, to which our attention 
was called by I. Ya. Pomeranchuk, that since trans­
formations (5.6) do not make use of (2.3), they are 
always valid (and not only on the singular curve). 

*1 ;;, Yik ;;:;;. 0 inasmuch as 1.;;; /3ik.;;; oo for vertices ik 
joined on a diagram with each other, and f3ik = 0 for vertices 
ik which are not joined. 

tlf the initial diagram does not contain the line ik, the 
effective mass is determined, in accordance with (5.6) with 
f3ik = 0, by the equation 

and can therefore be used to reduce the denominator 
of the Feynman integral to the principal axis rela­
tive to the 4-vectors over which the integration is 
carried out. 

The results of this section can be formulated as 
follows: 

Theorem 1. The singular curves of any pertur­
bation-theory diagram for the scattering amplitude 
coincide with the singular curves of the "open 
envelope" diagram with virtual-particle effective 
masses that depend on the invariants. 

It is obvious that the results obtained can be 
generalized in an elementary manner to the case 
of diagrams that describe processes with an arbi­
trary number of external particles. The role of 
the "open envelope" will be played here by a dia­
gram with only exterior vertices that are pairwise 
interconnected by virtual particles with effective 
masses that depend on the invariants of the process. 

6. MINORANTS FOR EFFECTIVE MASSES 

The effective masses depend on the invariants 
W2 and Q2• The problem of determining this de­
pendence coincides with the problem of the exact 
determination of the singular curves of an arbi­
trary complicated perturbation-theory diagram. 
The last problem, in turn, cannot be solved in the 
general case. One can obtain, however, certain 
minorants for the effective masses, which are in­
dependent of the invariants Q2 and w 2• 

First Minorant. From the condition /3 > 0 and 
Eq. (5.6) it follows that the effective mass m& for 
a diagram with ( v - 1) vertices, obtained by 
eliminating the v-th vertex from a diagram with v 
vertices containing the ik line,* satisfies the fol­
lowing inequality: 

m;k > mtk• (6.1) 

In particular, denoting by J.Lik ( i, k = 1, ... , 4) 
the resultant effective masses of the "open-enve­
lope," we get 

(6.1') 

for all original (complex) diagrams in which the 
exterior vertices are directly connected to each 
other. 

The first minorant is valid on the entire singu­
lar curve of the complex diagram. 

Second minorant. The second minorant for the 
effective masses pertains to the asymptotic part 

*Naturally, the first minorant remains valid also when the 
indices ik correspond to vertices which are not connected to 
each other on the original diagram. However, the condition 
mik > 0 obtained in this case is useless. 
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of the singular curve, when any one of the invari­
:mts characterizing the diagram tends to infinity. 
Assume, to be specific, that Q2 = ( p1 + p3 ) 2 tends 
to infinity and the invariant W2 = ( p1 + p2 ) 2 remains 
finite. 

Then all the 4-momenta of the virtual particles 
fall into two classes: 4-momenta with components 
only along the 4-vector W, and 4-momenta with 
components both along the 4-vector W and along 
the 4-vectors Q and P. The 4-momenta of the 
first class correspond to finite .Bik and finite ark; 
4-momenta of the second class correspond to .Bik 
which tend to infinity and to afk which tend to zero 
(see Appendix I). 

k=v-1 
Let us examine the sum ~ m(k of the effec-

k=1 1 

tive masses in the diagram with ( v - 1) vertices, 
obtained from a diagram with v vertices. 

Using (5. 7) we get 

lt=V-1 R=V-1 R=V-1 m.k 

~ m;k = ~ mik + ~iv ~ f3;k Ykv 
k=1 k=1 k=1 

k=v-1 k=v-1 

= ~ mik + ~iv ~ / aik! Ykv· (6.2) 
k=l k=l 

Retaining in (6.2) only the 4-vectors aik that be­
long to the first class, and taking (5.8) into account 
in a fashion similar to the case when the 4-vector 
aiv pertains to the first class, we arrive at the 
inequality* 

k=v-1 k=v 

~ m;k> ~ m1k, (6.3) 
k=1 k=l 

which holds for the indices ik that characterize 
virtual particles with 4-momenta which belong in 
the asymptotic case to the first class. 

Eliminating successively the interior vertices 
we obtain in the asymptotic case the following 
minorants for the resultant "open envelope" 

i=v i=v 

J.lt3 + J.lu > ~ mu, J.l23 + J.l24 > ~ m2,, 
i=l i=l 

i=v i=v 

J.lt3 + J.l23 > ~ m3,, )l14 + J.l24 > ~ m4,, (6. 3') 
i=l i=l 

where the index i runs through the values corre­
sponding to the 4-vectors asi ( s = 1, ... , 4 ), be­
longing to the first class. 

*It is shown by induction in Appendices II and III that all 
the 4-vectors aik of the first class, contained in (5.8), have 
an identical direction, and that (6.3) and (6.3') are exact 
equalities. 

7. USE OF NORMALIZED EFFECTIVE MASSES 
TO DETERMINE THE TYPE OF THE SINGULAR 
CURVES 

We have already obtained the conditions for the 
existence of anomalous singularities in an "open 
envelope" (3.6)- (3. 7) for Q2 = ( p1 + p3 ) 2 - oo and 
for finite values of W2( Q2 ) = W2( oo ) • 

Using the first minorant of the preceding sec­
tion, we obtain from (3.6) and (3. 7) the following 
theorem: 

Theorem 2. An arbitrary scattering diagram is 
asymptotic and has no anomalous singularities if 
it includes a simple r diagram (similar to Figs. 1, 
4, or 3) based on the exterior vertices, and if this 
simpler diagram contains asymptotically no singu­
larities of the anomalous type. 

Let us consider the scattering of identical par­
ticles Mi = M2• Then the right halves of (3.6) and 
(3. 7) contain M2• Let us recognize now that ac­
cording to (3.4) we have in the asymptotic case for 
the "open envelope"* 

W2 (oo) = (J.lt3 + )l14 + J.l23 + J.l24)2. (7.1) 

Then, neglecting JJ.~ 2 and JJ.§ 4, we obtain from (3.6), 
(3.7), and (7.1) 

(l:J.l) [I w 1- ~J.l] < M2, (7.2) 

where ~JJ. is any of the sums of the effective 
masses, contained in the left halves of (3.6) and 
(3.7). We choose the smallest among these sums, 
( ~JJ. )min· We can then state the following: 

Lemma. Any scattering diagram of identical 
particles of mass M has asymptotically no ano­
malous singularities if the inequality 

W2 > [M2 + (~J.l)~,n J2/(1:J.l)~,n, (7. 3) 

is satisfied, where ( ~JJ. >min is the smallest of the 
sums contained in the left halves of (3.6) and (3. 7). 

8. 1r1r, KK, AND NN SCATTERING AMPLITUDES 

Let us apply the foregoing method to determine, 
within the framework of perturbation theory, the 
types of the singular curves of the 7T7T, KK, and NN 
scattering amplitudes. We are interested in the 
possibility of appearance of singular curves of the 
anomalous type. Let us confine ourselves only to 
the asymptotic case and use the criterion (3.6) and 

*We have confined ourselves to the normal asymptote of 
the "open envelope" only, for when an anomalous singular 
curve approaches a normal asymptote, an anomalous singular 
curve approaches also an anomalous asymptote. On the other 
hand, if a normal singular curve approaches a normal asymp­
tote, a normal singular curve approaches also an anomalous 
asymptote (see Fig. 5). 
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(3. 7). We take account of the fact that in the 
asymptotic case at least one of the following com­
binations of effective masses of the "open enve­
lope," p,1aJJ- 24 and (or) p,14J.L 23 , differs from zero, 
and a nonvanishing combination 11-ik/J-l m corre­
sponds to the 4-vectors aik and azm, which belong 
asymptotically to the first class. 

1m scattering. Since the pion is the lightest 
strongly-interacting particles, the lowest value of 
the quantity (~p, )min• which enters in (7.3), is 
( ~11- >min= m7r, where m7r is the pion mass. We 
then conclude from the lemma that the 11"11"-scatter­
ing amplitude has asymptotically no singularity of 
the anomalous type in any of the perturbation­
theory approximations. 

KK scattering. Using the conservation of 
strangeness in strong interactions and recognizing 
that the K meson is the lightest particle with non­
zero strangeness, we conclude on the basis of the 
lemma that in no approximation of perturbation 
theory will the KK-scattering amplitude have sing­
ularities of the anomalous type as the transferred 
momentum tends to infinity. 

NN scattering. Using the conservation of the 
baryon charge and recognizing that the nucleon is 
the lightest of the baryons, we conclude from the 
lemma that in no approximation of perturbation 
theory will the NN-scattering amplitude have sing­
ularities of the anomalous type as the transferred 
momentum tends to infinity. 

The results obtained in this section can be gen­
eralized in the following fashion: 

Theorem 3. When the lightest of the elementary 
like particles with a given quantum characteristic 
(capability of strong interaction, strangeness, 
baryon charge, etc. ) are scattered, no anomalous 
singularities arise as the transferred momentum 
tends to infinity in any perturbation-theory approx­
imation. 

By symmetry, it follows from Theorem 3 that 
in the case of 11"11" scattering there are no anomal­
ous singular curves at all. For scattering of other 
elementary particles, along with the conditions 
listed above for the existence of singular curves of 
the anomalous type, inequality (7.3) always points 
to a limiting value of one of the invariants (while 
the other tends to infinity), above which there 
exist no anomalous singular curves. 

The authors are deeply grateful to V. N. Gribov, 
B. L. Ioffe, L. D. Landau, L. B. Okun', and I. Ya. 
Pomeranchuk for interest in this work for useful 
discussions. 

APPENDIX 1 

SINGULARITIES OF THE "OPEN ENVELOPE" 

We denote by ~ the determinant of the system 
(3.1) 

!!.. = 2 {~12 ~34 (~13 + ~14 + ~23 + ~24) 

+ ~12 (~13 + ~28) (~14 + ~24) + ~34 (~23 + ~24) (~13 + ~14) 

+ ~13 ~24 (~14 + ~23) + ~14 ~23 (~13 + ~24) }. (A I.1) 

We then obtain from (3.1) the following expressions 
for the 4-vectors aik (i, k = 1, ... , 4; i ¢ k); 

a12!!.. = Q [~a4 (~13 + ~14 + ~23 + ~24) + ~1a ~14 + 2~13 ~24 

+ ~23 ~241 - w [~34 (~13 + ~14- ~23- ~24) + ~13 ~14 

- ~23 ~241 + p [~34 (~13 + ~14 + ~23 + ~24) + ~13 ~14 

+ 2~14 ~23 + ~23 ~2,1, (A I.2) 

a43l!.. = - Q l~12 (~13 + ~14 + ~2a + ~24) + ~13 ~23 + 2~13 ~2' 

+ ~14 ~241 - w [~12 (~13- ~14 + ~23- ~24) + ~13 ~23 

- ~14 ~241 + p [~12 (~]3 + ~14 + ~23 + ~24) + ~13 ~23 
+ 2~14 ~23 + ~14 ~24), (A I.3) 

a14 !!.. = Q [~34 (~2a + ~24) + ~12 (~13 + ~n) + ~1a ~2a + 2~13 ~24 

+ ~23 ~241 + w [2~12 ~34 + ~34(~23 + ~24) + ~12 (~13 + ~23) 

+ ~23 (~13 + ~24)1 - p [- ~34 (~23 + ~24) + ~12 (~13 + ~d 

+ ~2a (~1a - ~24) 1, (A I. 4) 

ala!!.. = Q [~a4 (~23 + ~2a) -[~12 (~14 + ~24) + ~24 (~23- ~14)1 

+ w [2~12 ~34 + ~34 (~23 + ~24) + ~12 (~14 + ~24) 

+ ~24 (~23 + ~14) 1 + p [~34 (~23 + ~24) + ~12 (~14 + ~24) 

+ ~14~24 + 2~14~23 + ~23 ~241, (A I.5) 

a24!!.. = Q [- ~a4 (~1a + ~14) + ~12 (~1a + ~2a) + ~1a (~23 - ~14) 1 

+ w [2~12 ~34 + ~34 (~13 + ~14) + ~12 (~13 + ~23) 
+ ~13 (~23 + ~14) 1 - p [ ~34 (~13 + ~14) + ~12 (~13 + ~23) 
+ ~1a ~14 + 2~a ~23 + ~13 ~d, (A I. 6) 

a2al!.. = - Q [~34 (~13 + ~14) + ~12 (~14 + ~24) + ~14 ~24 + 2~13 ~24 

+ ~13 ~141 + w [2~12 ~34 +~34 (~13 + ~14) + ~12 (~14 + ~24) 

+ ~14 (~24 + ~13)1 - p [~34 (~13 + ~14) 

- ~12 (~14 + ~24) + ~14 (~13- ~24) 1· (A I. 7) 

When Q2 - "" less rapidly than {312f334, we ob-
tain from (A I.4), (A I. 7) and (2.3) 

~ = I + (1'23 + 1'2•) <r2a + 1'24- 1'13- 1'14) 
'l'HI w I 2rn 

+ (1'13 + r •• ) (1'13 + 1'23- 1'14- 'rz•) + ~ Q2 

2ra4 2 1'12 1'3• w• 
1 (M2 M2) 

X (& _1_ "( ) (I + I ) + _ 1- 2 ('rza + 1'24) 23 , 24 13 23 2 w• n. 
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mls - 1 I (123 + lz•) (rzs + l24- Ita- ru) 
Its f W I - 1 2112 

. + (iu + 12<) (iu + l2•- Ita- l2al 
2rs, 

1 Q2 
( 1 ) ( I ) -2112134 w2 l14Tl24 l23Tl24 

(M2 M2) 1 (M2a - M2•) + _!_ 1- 2 (i2s + l2•l (ru + !24) 
2 w• 112 + 2 wz I•• 

1 Q• (iu + l24)2 (i2s + !21)2 (A I. 9) 
- 8 w• (in ra.)2 

m24 = 1 + (ita + ru) (Ita + 114- 123- l24) 
:r2• I W I 2112 

+ (ita + lza) (its + l2s- Ia- 124) 
2ra. 

1 Q2 
-2 luis• w2 (Yla + Y14) (Y1a + l23) 

1 (M~- M~) (its + iu) 1 (M;- M! 
- 2 W2 112 - 2 W2 

(ita + l2a) 

I•• 
1 Q4 (Ita + 114)2 (its + l2a)2 

- 8 w• (it2 1••)2 

m2s = 1 + (113 + ru) {ita+ lu- l23- 124) 
rzs I w I 2112 

+ (It<+ 124) (Ia + 12<- Its- l2a) 
2ra• 

1 Q2 
+ 2 112134 w2 (Yla + 114) (Y14 + Y2•) 

(A 1.10) 

_ _!_ (Mi- M~) (ita + I H) + _! (M;- M!) (ru + l2•) 

2 W2 112 2 W2 r•• 

We introduce the symbol A.= (m13m 24 

- m14m 23 )/(m13 + m14 + m 23 + m 24 ) 2, and obtain 
readily from (A 1.8)- (A I.ll) 

I W I 1 Q2 Ita l2<- 114 '12a 
m1a + mu + m2a + m24 = + 2rta I•• (mta + mu + m23 + m24)2 

(A 1.12) 

(A 1.13) 

mu 
Jl4 = m13 + mu + mza + m24' 

m1a 
r 13 = ml3 + mu + m •• + m., ' 

(A 1.14) 

Let us determine the asymptotic form of the 
dependence of Q2 and W2 as Q2 tends to infinity 
as y 12y 34, assuming that Qo/y 12y 34 ~ A.W 2 and 
A. « 1. 

We denote the right halves of (3.2) and (3.3) by 
A12 and A34 respectively. It follows from (3.2), 
(3.3), (A 1.13) and (A 1.14) that the signs of A12 

and A34 are the same. We introduce, further the 
notation 

q2 = Q2 I (mta + m14 --i-- m2a --i-- m2,)2, 

a= m1am14 I 2 {m1a + ml4 + m2a + m2,)2, r = (r12 r.s·,. 

Then, using (3.2), (3.3), (A 1.12), (A 1.13), and 
(A 1.14) we obtain the following single-parameter 
system of equations, relating w2 with Q2 

c 
r 

(A 1.15) 

(A 1.16) 

(A 1.17) 

In the derivation of (A 1.17) we use the fact that 
A. « 1. Since C is of fixed sign ( C < 0 and C > 0 
correspond to the appearance of anomalous and 
normal singularities respectively), not all the 
values of the parameters z are allowed. When 
C < 0 we have - % :::: z :::: 0, while when C :=:: 0 
there are two regions, z > 0 and z < - %. Fur­
ther, when - 1 < z :::: 0 we have w2 < 1. For other 
values of z we have w2 > 1. The minimum of the 
function w2 - 1 occurs when z = - t;2• The same 
value, z = - %, corresponds to the maximum of 
the function q2 = q2 ( z ). When A. > 0 q2 ( z) < 0 
when z < 0 and q2 ( z) > 0 when z > 0. When 
z = 0 and z = - %, I q2 ( z) I - oo, At these points 
w2(0) = 1 and w2(- %) = w'2, where w' is deter­
mined from (4.1). When I z I - oo, I q2( z) I - 0. 
The general form of the dependence of Q2 on W2, 

obtained by solving the system (A 1.15)- (A 1.17), 
is shown in Fig. 5. When C < 0, as seen from 
Fig. 5, there are two analogous curves Q2 

= Q2( W2 ) starting at a certain point A ( Q2, W2 ) 

and diverging to different asymptotes over W2• 

When C > 0 the curves have a normal form. We 
emphasize that the case K = 1 corresponds to 
curves that approach the asymptote w'. 

APPENDIX II 

SCATTERING DIAGRAM WITH SIX VERTICES 

By way of an example of reduction of the dia­
grams of perturbation theory to an "open enve­
lope", let us consider a diagram with six vertices 
(the two interior ones being designated 5 and 6 ). 
We assume that all the vertices in this diagram 
are pairwise inter-connected. We reduce this 
diagram to the "open envelope" and confine our­
selves immediately to a consideration of the 
asymptotic case Q2 = ( p1 + p3 ) 2 - oo only. To 
simplify the derivations, we assume that none of 
the ~ik with the exception of ~12 and ~34 , tend to 
infinity, that is, all the 4-vectors aik• except a 12 

and a34, belong to the first class. 
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It then follows from (A 1.2)- (A 1.7) that 

a12 = aa• = 0, a1a = a14 = a2a = a24 = WI b, (A II.1) 

where o = {3{3 + {314 + f323 + f324• while Wk. is the par­
ticular {3 ik obtained by eliminating tNe interior 
vertices 5 and 6 from the diagram. 

Eliminating from the diagram the interior ver­
tex 6 and taking (A II.1) into account, we obtain 

ass= l1sa51 + l2sas2 + lasa•a + l•sa54, 

a1s = (ls6 + l•s) w I b + l•sals• 

ass= -(lis+ l2s) WI 6 +Iss ass• 

a2a =(las+ l4s) WI 6 + l•sa2s. 

a46 =- Cl1s + l2s) WI 6 + l•sa•s· (A II.2) 

After eliminating the vertex 6, the remaining dia­
gram has one interior vertex 5, characterized by 
f3ik. which are determined in terms of f3ik in ac­
cordance with (5.6). 

We next eliminate the vertex 5. Then 

a1s = a2• = (1~5 + 1:5) WI 6, 

ass= a4s = (Y~5 + ~~5) WI 6. (A II.3) 

The primed 'Yik• naturally, are formed from 
the primed f3iz in accordance with (5.3). Substitut­
ing (A II.3) in (A II.2) and taking (2.3) into account, 
we get 

m16 m26 I W I [ + ( , + • ) ] -[3 = -[3 = -_.- Iss l4s +Iss las l45 • 
16 26 u 

ms6 m.6 I W I [ + ( • • ) ] 
[3- = -[3 = -_.- l1s l2s +Iss 115 + l2s • 

86 46 u 

m56 =I~ I ~sal (116 + 12&) (1~5 + l:s>- (las+ l4s) (1;5 + 1;5) I. 
(A II.4) 

It follows from (A II.4) that 

(A II.5) 

The result (A II.5) is quite natural, for as Q2 

tends to infinity we transform the diagram with 
four exterior vertices to a diagram with two inter­
ior vertices, and such a diagram has non-vanishing 
Feynman parameters at the singular point only 
when a certain connection exists between the 
masses of the virtual particles in the interior 
vertices. 7 

We note that were we to eliminate vertex 5 first, 
and vertex 6 last, we would obtain instead of (A II. 5) 

(A II.5') 

Since the result is independent of the sequence with 
which we eliminate the internal vertices, a connec­
tion is established also between the masses m15 
and m 16 (i = 1, .•. , 4). 

Let us determine now the effective masses of 
the virtual particles in accordance with (5. 7) 

m" = mW' I ~. m' = mW I~ (A II.6) 

and use the following relations, derivable from 
(A II.3): 

mas=m··=c' + ')~ 
f3as f345 I 15 I 25 6 ' 

(A II. 7) 

m13 I ~13 = m14 I ~u = m23 I ~23 = m2• I ~2• = l w I I 6 (A II. 8) 

From (A II. 7) we obtain still another connection 
between the effective masses of the virtual parti­
cles scattered at the vertex 5 

(A II. 9) 

Using formulas (5.6) to express f3i'k in terms of 
f3ik• we obtain from (A II. 6) and (A II. 7) 

m~3 + m;4 = m;3 + m~4 + m;5 , m;3 + m;3 = m;3 + m~3 + m;5, 

m;4 + m;4 = m;4 + m~4 + m~5 , m;3 + m;4 = m~3 + m~4 -i- m~5 • 

(A II.10) 

Taking now (A II.4) into account, we obtain the 
final expression for the combination of the reduced 
masses, contained in the inequalities (3.6) and 
(3.7) 

m;3 + m;4 = m1a + m14+ m15+m1s. 

m;3 + m;3 = m1a + m23 + m35 +mas. 

m;4 + m;4 = m14 + m2• + m4s + m.a. 
m;3 +m;4 =m2s+m24+m25 +m26. 

APPENDIX Ill 

SECOND MINORANT 

(A II.ll) 

Let us show that the equality sign applies in 
(6.3) and (6.3'). 

Assume that in some diagram having v vertices 
all the 4-vectors asi (the subscript s character­
izes some interior vertex, while i characterizes 
any interior vertex subject to the condition that 
the vector asi is of the first class ) have in the 
asymptotic case the same direction (either + W or 
- W ). Let us consider the diagram with ( v + 1) 
vertices, which is reduced upon elimination of the 
( v + 1) - th vertex to the foregoing diagram with 
v vertices. Then, on the basis of (5.8), 

l='V 

as,v+l= ~~l.v+Iasl• 
1=1 

Since YZ,v+1 <::: 0, the vector as,v+i has the same 
direction as the vectors asi ( i = 1, ... , v ). 
Since the initial premise holds for diagrams with 
five and six vertices (this follows from formulas 
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(A 11.2) and (A ll.3) ), all the vectors of the first 
class, arriving at any of the exterior vertices, 
have the same direction. It then follows from 
(5.8) and (6.2) that the equality signs apply in 
expressions (6.3) and (6.3'). 
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