AN INVESTIGATION OF THE $\operatorname{Sn}^{112}(\gamma, n)$ AND $\operatorname{Sn}^{124}(\gamma, n)$ REACTIONS

KUO CH'I-TI, B.S. RATNER, and B. V. SERGEEV

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor August 3, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 85-87 (January, 1961)

The yield curves for the (γ, n) reaction in Sn^{112} and Sn^{124} were measured by means of the induced radioactivity. The peaks of the cross section curves for the reactions $\operatorname{Sn}^{112}(\gamma, n)\operatorname{Sn}^{111}$ and $\operatorname{Sn}^{124}(\gamma, n)\operatorname{Sn}^{123}$ are located at 16.0 ± 0.5 and 15.5 ± 0.5 Mev, respectively. The corresponding integral cross sections are 1.82 ± 0.10 and 1.56 ± 0.08 Mev-barn.

1. The (γ, n) reaction in different isotopes of the same element has hitherto been investigated almost exclusively for light nuclei, where the total cross section for γ -ray absorption includes additional important contributions from (γ, p) , (γ, np) and $(\gamma, 2n)$ reactions. For medium-weight and heavy nuclei, where the (γ, n) reaction furnishes ~ 90% of the entire giant-resonance cross section, we have only the data obtained by Katz and Cameron¹ for antimony. A surprisingly large difference was found between the integral cross sections for the (γ, n) reaction in Sb¹²¹ and Sb¹²³.

It was of interest to obtain data on the integral cross section and the resonance energy and width of the (γ, n) reaction in isotopes of a single element with greatly different numbers of neutrons. For this purpose the two extreme isotopes Sn^{112} and Sn^{124} were selected.

2. Both reactions were investigated through the activity induced by synchrotron-generated γ rays $(E_{\gamma max} = 30 \text{ Mev})$. In the case of the $\mathrm{Sn}^{112}(\gamma, n) \mathrm{Sn}^{111}$ reaction $(\mathrm{T}_{1/2} = 35 \text{ min})$ a 29.3% enriched sample of Sn^{112} was used,* while for $\mathrm{Sn}^{124}(\gamma, n) \mathrm{Sn}^{123}(\mathrm{T}_{1/2} = 40 \text{ min})$ chemically pure natural tin was used. The (γ, n) yield was measured relative to $\mathrm{Cu}^{63}(\gamma, n) \mathrm{Cu}^{62}$ at energies above the threshold of the latter reaction, and relative to readings from an integrating ionization chamber in the case of lower energies. Residual β activity was registered by means of two BFL-25 endwindow counters in an anticoincidence scheme, with ~ 0.55 registration efficiency. The scalar output was fed to a time discriminator. The scale of the energy stabilization system of the synchrotron was calibrated by means of the thresholds of $\mathrm{Cu}^{63}(\gamma, n)$ (10.75 Mev) and $\mathrm{C}^{12}(\gamma, n)$ (18.72 Mev), as well as the bend at $E_{\gamma max} = 17.15$ Mev in the

 $O^{16}(\gamma, n)$ curve. The relative yield curve for $\operatorname{Sn}^{112}(\gamma, n)$ includes a correction for 0.9% content of Sn^{124} . The yield from $\operatorname{Sn}^{124}(\gamma, n) \operatorname{Sn}^{123}$ takes into account ~ 7% of activity from Sn^{112} . For $\operatorname{E}_{\gamma \max} > 20$ Mev an ~ 8-min activity also appears, which at $\operatorname{E}_{\gamma \max} = 24.0$ Mev amounts to ~ 10% (assuming the same number of nuclei) of the 40-min activity of Sn^{123} . The self-absorption of Sn^{123} and $\operatorname{Cu}^{62} \beta$ rays for the given experimental geometry was obtained by irradiating samples of different thickness.

3. The yields Y of the reactions $\operatorname{Sn}^{112}(\gamma, n)$ and $\operatorname{Sn}^{124}(\gamma, n)$ are shown in Fig. 1. The $\operatorname{Sn}^{112}(\gamma, n)$ threshold is 10.2 ± 0.2 Mev, which differs considerably from the binding energy 11.1 Mev given in reference 2 for a neutron in Sn^{112} .

FIG. 1. a – Yields of the reactions $\operatorname{Sn}^{112}(\gamma, n)$ and $\operatorname{Sn}^{124}(\gamma, n)$ relative to the yield of $\operatorname{Cu}^{63}(\gamma, n)$ as a function of $E_{\gamma \max}$; b – yields of $\operatorname{Sn}^{112}(\gamma, n)$ and $\operatorname{Sn}^{124}(\gamma, n)$ as a function of $E_{\gamma \max}$ near threshold.

^{*}The authors, are very grateful to workers in the laboratory of V. S. Zolotarev, who prepared this sample.

The reaction threshold 8.5 ± 0.3 Mev obtained for $\mathrm{Sn}^{124}(\gamma, n)$ agrees with mass data.² The (γ, n) cross sections were plotted from the relative yield curves and the Cu⁶³ (γ, n) cross section by the method described in reference 3. Corrections were introduced that take account of the Sn¹¹¹ decay scheme⁴ and the contribution from $\mathrm{Sn}^{124}(\gamma, n) \mathrm{Sn}^{123*}$. Irradiation at $\mathrm{E}_{\gamma \mathrm{max}} = 19.0$ Mev for the purpose of measuring the 126-day activity of Sn^{123*} showed a 0.24 ± 0.09 yield ratio for final-nucleus formation in the isomeric $(\mathrm{I} = \frac{9}{2})$ and ground $(\mathrm{I} = \frac{3}{2})$ states, respectively. This indicates a high probability for transitions with small spin change.

Figure 2 shows the energy dependence of the $\operatorname{Sn}^{112}(\gamma, n)$ and $\operatorname{Sn}^{124}(\gamma, n)$ cross sections, for which we have the following results:

	Sn112(7,n)Sn111	$Sn^{124}(\gamma, n)Sn^{123}$
Peak energy. Mev	16.0±0.5	15 5±0 5
Cross section peak, mb	340 ± 40	300 ± 30
Half-width, Mev	5.0 ± 0.5	5.0 ± 0.5
Integral cross section. Mev-barn	1.82 ± 0.10	1.56 ± 0.08

The $\operatorname{Sn}^{124}(\gamma, n)$ cross section peak agrees with values obtained for a natural tin isotope mixture. A comparison of data for the two isotopes must take into account the considerable difference between the $\operatorname{Sn}^{112}(\gamma, n)$ and $\operatorname{Sn}^{124}(\gamma, n)$ thresholds, 21.0 and 14.0 Mev, respectively. This evidently

accounts for the very close peak energies and integral cross sections for γ -ray absorption by Sn^{112} and Sn^{124} , as would be expected from the sum rule.

¹L. Katz and A. G. W. Cameron, Can. J. Phys. **29**, 518 (1951).

² V. A. Kravtsov, Usp. Fiz. Nauk 54, 3 (1954).
³ Kuo Ch'i-Ti and B. S. Ratner, JETP 39, 1578 (1960), Soviet Phys. JETP 12, 1098 (1961).

⁴C. L. McGinnis, Phys. Rev. 81, 734 (1951). ⁵Fuller, Petree, and Weiss, Phys. Rev. 112, 554 (1958).

Translated by I. Emin 15