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A simple approximate method is developed for the determination of the magnetization of the 
lattice or sublattice and of other quantities in ferro- and antiferromagnetic materials. The 
method is applicable over the entire range of temperatures, and takes into account the de
pendence on the dimensions and form of the magnetic system. The question is discussed of 
the antiferromagnetism and ferromagnetism of small particles and polymer chains, an ag
gregate of which may be considered, under given conditions, to form a "paramagnetic 
fluid." 

ONE of the highly interesting current problems 
is the study of ferromagnetism, and especially 
antiferromagnetism, of finely-disperse substances, 
polymers, and possibly, individual macromolecules. 
(We are concerned here also with the paramagnetic 
region, i.e., with temperatures above the transition 
temperature.) It is clear even from general con
siderations that magnetic methods can be highly ef
fective in the study of the cited objects. Hence we 
shall limit ourselves here only to referring to the 
experimental data that point to the anomalous mag
netic properties of certain nucleic acids and arti
ficial polymers. 1 The nature of these effects has 
not yet been elucidated, but even if it is not re
lated to antiferromagnetism, as we assume, 2 an 
analysis of the properties of ferro- and antiferro
magnetic materials of the "polymeric type" will 
nevertheless be necessary. For this purpose, we 
must have a simple method for the approximate 
calculation of the magnetization of the lattice or 
sublattice and of other quantities, as functions of 
the dimensions and form of the specimens (small 
particles, films, polymer chains, etc. ) over as 
wide a temperature range as possible. 

Such a method is developed below, based on a 
certain self-consistent generalization of the theory 
of spin waves. The results obtained may also be 
of interest in the case of bulk ferro- and antiferro
magnetic materials, since the expressions derived 
are approximately correct for all temperatures. 
Here we have based our treatment on the ordinary 
model of localized spins with exchange interaction 
(see, e. g., reference 3), which in itself deviates 
greatly from reality. However, the results thus 
obtained have, to a considerable degree, a general 
character. That is, they are independent of the 

model within broad limits, and may be derived in 
a semi -phenomenological manner. 4- 6 It would be 
somewhat more consistent to develop the theory 
directly by the latter method, but both approaches 
are permissible in the final analysis. However, 
we found it more convenient to proceed from the 
model representation. (Besides, while in the 
semi -phenomenological approach one commonly 
limits the treatment to the terms which are quad
ratic in the components of the wave vector, we 
have used more general expressions. ) 

1. FERROMAGNETISM 

We shall write the Hamiltonian of a system of 
spins tiSj in the usual form: 3• 7 

:Jf =- J ~ S1SJ+•- 1,1H ~ Sj -11HA ~ Sj, 
jl J j 

!l = gen 12 me, J > 0, 

{ Sj Sf } = Sj St- S~ Sf 

(1) 

In Eq. (1), the summation over 1 is carried out 
over nearest neighbors, each pair of spins being 
represented twice. (Thus, the quantity commonly 
designated as the exchange integral is exactly 
equal to J, while the interaction energy of a pair 
of spins is equal to 2JSjSk. ) H is the magnetic 
field intensity, and HA is the effective field of the 
magnetic anisotropy, both lying in the direction of 
the z axis. In Eq. (1), we can also easily take into 
account anisotropic terms of a more general form, 
but shall not do this here. 

We transform to the variables 
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s,. = N-'1• ~ exp (il.j) S1, 
J 

~ exp i (p.- jl.) = Nb>..,., 
J 

(3) 

where N is the total number of particles (spins), 
j is the radius vector of the j-th lattice point, and 
the wave vector A. also takes on N different val
ues. If the spins are located at the points of a 
simple rectangular (orthorhombic) lattice with 
lattice parameters a1, a2, and a3 along the axes 
x = 1, y = 2, and z = 3, while the specimen has 
dimensions n1a1, n2a2, and n3a3 along these axes, 

At= 2'1tmtf ntat, - ntf2 <;, mt <;, ntf2, 

tnt = 0, ± I, ± 2 .... 

Here we assume that ni » 1; in the contrary 
case, boundary conditions are essential, and then, 
for example, mi :::: ni/2 - 1. The limitation to the 
case in which ni » 1 is not obligatory, and does 
not prevent an approximate study of very small 
objects, for example, with ni ;::, 10. 

In terms of the new variables, 

:ft =- JZ~n.s1s->-- ~(H + HA) N'1·s~, 
A 

ZrA = ~ exp (il.l), (4) 

where Z is the number of nearest neighbors. 
Hence, 

S~ = + {:fCS~} = (roH + O>A) Sg 

+ ~o N-'l• ~ (r~.- y~_,) (S~Sg_"A- S~S~-A), 
}, 

Sg = - (roH+roA)'S~ 

+ ~o N'1• .l] (y,.- r~-,) (SA S~_,_ -S~ S~-l.), 

'· 
roH =~HI 1i = geH / 2mc, O>A = ~H A I li, roo= 2JZ I li. 

(5) 

We shall now consider that the system has been 
magnetized along the z axis, so that the mean 
value of the z component of the total spin sfotal 

= 6 sj = N112s~ is large in comparison with the 
root-mean -square values of the quantities S~~lal 

= 6 sj·Y = N1/2~·Y. The quantity sf will be con

sidered to be a classical quantity, and will be con
veniently designated as N1/ 217S, where 17S is the 
mean value of the z component of the total spin 
per particle. This condition has the following form, 
where the brackets < > denote the statistical 
mean value: 

(6) 

As we shall see, this condition is not at all suffi
cient, but when it is obeyed, the linearization of 
Eq. (5) may lead to reasonable results. Proceed
ing thus, i.e., replacing St by <sf> = N1/ 217S, we 
have 

S~ = roAS~, S~ = - ro~.Sf. 
0>), = WH + O>AuTJ + O>oTJS [I - (y~, + r -1.) I 2], (7) 

Here we assume that WA = WAo11• since the field 
HA itself vanishes for ·17 = 0 in the self-consistent 
approximation, and in the simplest case, HA is 
proportional to 17 (i.e., HA = HAo11• where HA0 
= const. ). Equation (7) is derived from the Hamil
tonian* 

.w - ,,. liro-,. (SxSx ' su SY ) 
J~o -- L.J - A -1. I I. -A 

I. TJS 

= ~· ro"l. (P~1 + Q~I + Pi.2 + Q~z) 
A 2 

= ~· ftro,.(ni.I + nl.2 +I)=~ ftroA(nA + ~)' 
~ A 

{S~S~1.} = iN-'I•S~ = iTJS, S~1. = Y TJS /2ft (Q1.1 ± iQI.z), 

s~ .. = v TJS I 2ft (Pl.!± iP"/.2), {P~.zQt,m} =- iMzm61.p.• (8) 

Thus, the excitation energy is equal to a sum of 
oscillator energies. 

If we assume that 17 = 1, the expression ob
tained obviously corresponds exactly with the ordi
nary spin-wave approximation. At low tempera
tures, under the assumption that saturation ( 17 = 1) 
occurs at T = 0, the spin -wave approximation for 
ferromagnetic materials is very good. 3• 7 On the 
contrary, at increased temperatures, and espe
cially at T "" ® ( ® is the Curie point), the or
dinary spin-wave approximation is completely un
suitable. This latter situation is quite understand
able, since with the decrease in the mean spin 17S 
occurring as the temperature is raised, the fre
quency of the spin waves must decrease [see Eq. 
(7)], a fact not taken into account. In this regard, 
we may hope that, without fixing the parameter 17• 
but rather, by determining it by the self-consistent 
method, we may construct a theory having a region 
of applicability considerably greater than that in 
which 17 = const. 

To determine 17, we shall use the exact opera
tor equation 

(Sj)2 + (Sf)2 + (Sj}2 = S (S + I), 

averaged over the states of the system. If we also 
take into account [see Eq. (8)] the fact that 

*The prime denotes summation over positive values only 
of A = {..\1 , A,, ..\s). In order to avoid introduction of the quan
tum numbers n"- 1 and n"-2 into Eq. (8), we have assumed that 
nA. = nA., (..\ ~ 0) .and nA. = nA.2 (..\ < 0). 



THE THEORY OF FERRO- AND ANTIFERROMAGNETISM 925 

(9) 

Obviously, for spin %, (Sf )2 = 1;'4• Then, in a state 
of thermal equilibrium,* in which nA. 
= [ exp ( hwA. /kT ) - 1 r1, we obtain the following 
equation for rj: 

1J =I- ~~[exp :; - Jr, 
ffi~=ffiH+ffiAoTJ+ ~0 (l-'r~+2L1.)1J· (10) 

At low temperatures, at which 1 - TJ « 1, Eq. 
(10) coincides with the result of the ordinary spin
wave theory: 3 

nw -1 

SN(I -'I'])= ~[exp kT-.. -I] , 

, r-.. + L~\ 
ffi).. = ffiH + ffiAo + ffi 0S ( 1- 2 ) • (11) 

If in Eq. (9) we assume that < (sf )2> = TJ2S2 for 
spin S > %. then on going to low temperatures we 
obtain Eq. (11), with the\ substitution of S + % for 
S. In order to establish complete correspondence, 
we may assume that 

<(Sj)2> = ,2s2- s (1l2 -I) I 2. 

Then the equation for TJ is: 

(12) 

For S = %, this equation goes over into Eq. (10); 
at T- 0, it goes over into Eq. (11); while for T 
- ® it gives a reasonable result (see below). In 
other respects, however, it is not as firmly based 
as Eq. (10). 

In the high-temperature region (near the Curie 
point ® ), the parameter TJ « 1, and TJ ( ®) = 0. 
Hence, by using the expansion 

in the first-order approximation, for H = 0, we 
obtain 

*In the case of a spectrum of quasi-particles having energy 
levels depending on the energy, as is known, the ordinary for
mula for ii may be derived from the expression for the entropy. 

~ ~(z- ~cos/.!)= z, 
).. I 

(13) 

Such a law for the magnetization 

M = J..LSN'l']/V = const VI- T 1 e 
(here V is the volume of the specimen) must be 
obtained when fluctuations are neglected. 8 

For a simple cubic lattice (with the number Z 
of nearest neighbors= 6, and with lattice para
meter a), upon replacing summation by integra
tion, for o = 0, we obtain 

as r d').. 

F = (:1-:rt)S ~(6- iJ cosi..l) 

" 
= 2~3 ~~~ 3-cos:u~vc:~v-cosw = 0·2526. (14) 

0 

Thus, for spin S = 1;'2, we have k®/J = 1.98 and 
TJ 2 = 1.98 ( 1 - T/® ). In addition, calculations car
ried out in the paramgnetic region for the model 
being studied under the same conditions give values 
k®/ J = 1.93, 1.92, and 1.83. s-u The excellent 
agreement obtained is better than might be ex
pected. This may apparently be explained by the 
smallness of the role of large values of A.. For 
the relatively long wavelengths in Eq. (14), the 
spin-wave ,approximation, starting with a state with 
magnetic moment M( T) = J.LTJ( T) SN, must be good. 

We note that attempts to widen the field of ap
plicability of the spin-wave theory by means of 
some self-consistent treatment have been made 
previously. 12 - 15 However, the method of caJcula
tion used by Heber12 and Schafroth13 seems to us 
to be more complex, while the results either do 
not apply at all12 to the region T ....., ®, or are 
poorly applicable. In the papers of Bogolyubov and 
Tyablikov, 14•15 double-time retarded and advanced 
Green's functions were used, and then Eq. (10) 
was derived approximately for spin 1;'2, with WA0 
= 0. The method given above for deriving this 
equation seems to us to be not only simpler, but 
also physically clearer. In addition to the compar
ison of values of k<ey' J given above, the results ob
tained by Tyablikov15 and the comparison of the 
latter with other solutions give evidence that Eq. 
(10) is correct at low temperatures within an ac
curacy of terms of the order of T-512, inclusive. 
For H ¢ 0 and T > ®, it is correct within an 
curacy of terms of the order of 1/T. 

Thus, there is every ground to consider that the 
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very simple self-consistent treatment applied here 
gives good results. The character of the approxi
mation is not associated here with concrete ex
pressions for the frequencies w71.. In other words, 
by using Eqs. (10) and (12) with frequencies wA. 
= WH + WA + f( 71.) 17• where f is some reasonably 
selected function, we arrive at a phenomenological 
self-consistent theory of spin waves. The essen
tial limitation here is actually the fact that the 
original Hamiltonian in Eq. (1) commutes with 
Sfotal = 6 sf. We shall not carry out here the 
possible generalization of the self-consistent 
theory to the case in which there is an anisotropic 
interaction of a more general type. Rather, we 
shall consider further only ferromagnetic materials 
of small dimensions. 

Within the framework of theory being discussed, 
we retain Eqs. (10) - (13) in this case, except that 
we cannot go from summation to integration in all 
directions.* Thus, for thin films, we must retain 
the summation in the direction perpendicular to 
the plane of the film. For long "fibers" we must 
apply summation in two directions, and for paral
lelepipeds, in all three directions. In the case of 
a simple cubic lattice with dimensions n1a, n2a, 
and n3a: N = n1n2n3, and 

4 -v ( 6 2nm1 2nm2 2rcms)-l F = -- LJ - + 3-cos ---cos-- -cos--
n1n.ns 2 nr no ns , 

ltl2l, 

m; = 0, I, ... , n;j2. (15) 

In the three-dimensional case in sufficiently 
large systems, the factor taking into account 
anisotropy plays in certain respects simply the 
role of a convergence factor, eliminating the in-

*The presence of spontaneous magnetization in ferromag
netic materials and the magnetic effects associated therewith 
may be taken into account to a certain degree by the introduc
duction of the field HA• However, this field depends on the 
form and dimensions of the specimen, just as does the magneti
zation itself. We shall not consider this important magnetic 
moment in this article, just as we shall not in general analyze 
the question of the nature and magnitude of the anisotropy field 
HA. For the antiferromagnetic materials, in which we are chief
ly interested, the entire problem of the relation of HA to the 
dimensions and form is, in a certain respect, considerably less 
critical, owing to the lack of spontaneous magnetization. How
ever, in the case of the ferromagnetic materials, the corres
ponding relation may be taken into account to a certain degree 
as the result of the solution of magnetostatic problems. Be
sides, in both the ferromagnetic and the antiferromagnetic ma
terials, the form and dimensions of the specimens exhibit, of 
course, an influence on sufficiently long waves. Hence, in the 
region of sufficiently low temperatures, the problem of the de
pendence of various quantities on the dimensions and form re· 
quires special study (for the latter remark, the authors wish to 
thank M. I. Kaganov). 

finite term in F for the case m1 = m 2 = m3 = 0 
[see Eq. (15)].* However, in the one- and two
dimensional problems, the results already depend 
fundamentally on o. Thus, for an infinite chain of 
spins we have: 

" F _ 1 \ du ~ _1_ 
- 2rc H/2+1-cosu~ 2V6' 

0 

(16) 

In view of Eqs. (13) and (14), we have for such a 
chain, 

8 = [Y2S (S ++)I k ]V f1H;.~J. 
At the same time, it follows from general sta

tistical considerations18 that a phase transition in 
an infinite one-dimensional system is impossible, 
i.e., e = 0. The same is naturally true in the 
Ising model,19 which corresponds to the limit of 
strong anisotropy. 

With regard to the discussion above, we note 
firstly that the introduction of the field HA = HA01J 
is in itself an approximate method, and introduces 
an additional element of self-consistency. Ac
tually, the true interaction in one separate direc
tion has the form 6 sfsf+1• but this expression 
has been replaced by one of the type < sz > 6 sf 
= 7JS 6 sf. As a result, the effect of the aniso
tropy field is equivalent to the effect of a certain 
external magnetic field bringing about the appear
ance of a magnetic moment in the chain for T ~ 0. 
Secondly, even independently of the problem of the 
nature of the anisotropy field, the original intro
duction of the mean quantity <sf>= 17S is permis
sible in the statistical calculations, in general, 
only under the condition that the fluctuations are 
small. In other words, in addition to condition (6), 
the following condition must be fulfilled: 

~TJ =,- <TJ> (17) 

(to avoid complicating the notation, we shall write 

*In this regard, one of the ways of calculating sums of the 
type of (15) is simply the omission of terms with m1 = m2 = m3 

= 0, anisotropy being simultaneously neglected (see, e. g., 
reference 16). The results of such a calculation are given be
low for illustration (for the most recent experimental data on 
films, see the paper of Neugebauer17): 

(n1"2no)•(occooo) (64,64,64) (32,32,32) (16,16,16) (4,4,4) (4,4,16) (4,4,64) 
F- 0.2526 0.29 0.32 0.37 0.66 0. 75 1. 7 

(llt"2Do)- (8,8,64) (4,16,16) (4,64,64) (8,16,16) (8,32,32) (8,64,64) (8,128,128) 
F- 0.67 0.55 0.61 0.32 0.41 0.42 0.44 

It is clear from Eqs. (13) and (15) that it is possible to 
neglect the terms with m1 = m2 = m3 = 0 if NB » 1. When 
NB « 1, obviously F"' (NB)_., However, in this case the 
conditions for validity of the approximation are not fulfilled 
(see criterion (21) below). Hence, and also in view of the 
requirement ni » 1, by no means all given values of F can 
be used. 
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TJ for < TJ > whenever this does not lead to confu
sion). 

For a concrete application of condition (17), as 
well as for a more complete test of the linear ap
proximation used here, we would, of course, have 
to determine all of the physical quantities from 
the next order of approximation. However, we 
shall not go through this involved procedure here, 
but rather, shall estimate the fluctuation of TJ 

within the framework of the semi -thermodynamic 
theory. Near the Curie point, neglecting fluctua
tions, 8 the thermodynamic potential per unit vol
ume can be expressed in the form 

<D = <D0 + a1'] 2 +-} ~1']4 + p (grad 1'])2 - Y)H[tSNV-1, (18) 

where TJ ( r) is the characteristic parameter,18•8 

for which we may also select the quantity < 11 > 
used above, as applied to a state of incomplete 
thermodynamic equilibrium. Assuming that 

as usual, we then determine the thermodynamic 
fluctuations at H = 0 (for more detail, see refer
ence 8 and the literature cited there): 

<Ill'- 12> = kT I (<D~ + 2pA.2) V, 

\(~1'])2) = <~ (~'l'J (r))2 dV) = ~ ( :IJA 12), 

<D~ = (82<D 1 81']2 )r.=r.,, <D~ = - 4a (at T < fl), 
11g = ('l'J)~quil=- rxj ~=a~ (8- T) / ~e (at T < 8), 

'l'J~ = 0 (at T > 8). (19) 

Equation (18) may be used under condition (17) 
at temperatures not too far from the Curie point 
(for 11 « 1 ), and for wave vectors A. « A. max 
= rr/a. However, in order to make the estimates 
in Eq. (19), we must carry out the summation or 
integration up to values A. ~ A.max· As a result of 
such an estimate and the use of condition (17) for 
the three-dimensional case, criteria may be ob
tained, which have previously been discussed in 
reference 8. In real ferromagnetic materials, the 
situation is rather unclear, but apparently condi
tion (17) is well obeyed when 6. T » 10 -2e (in the 
case of metals this condition may be even weaker). 

It is obvious from Eq. (19)that the fluctuations 
are greater in the two-dimensional, and especially 
in the one-dimensional case, than in the three
dimensional case. Thus, for an infinite chain 

1•max 

<(~11)2> ~ ~: ~ 
0 

d'}. 

<I>~+ 2pA,2 

_ kT t -1 (-v- 2p , .) ~ kT - " an <I>" ""max ~ " 
2rr Y 2p<l> 0 o -~ Y 2p<l>0 

(20) 

Further, from Eqs. (13) and (16) we obtain 

1']2 - (kE> I J)(l- T I 8), kE>- s'f, y [lH AoJ; 

In view of (18) (or more exactly, from the condi
tion that fJ.:P/81/ = 0 ), in the region T > e in the 
presence of a magnetic field 

1'J = [tSN HI 2Va = t,lSN H j 2Va~ (T- E>). 

At the same time, we may derive from Eq. (12), 
for H ¢ 0 and T » e, the equation 11 = ( S + 1;'2 ) 

x J.LH/2kT. Hence a@~ kN/V = k/a (in the one
dimensional case, N/V = N/ L = 1/ a, where L is 
the length of the chain and a is the distance be
tween neighboring spins ). Finally, the coefficient 
p ~ Ja, since for the shortest waves (A. ~ A.~ax 
= rr/a ), the energy p (dT)/dz )2 ~ pA.~ax ~ p/a 
must be of the order of the exchange energy J/a 
per unit length of chain. 

In view of all that has been said, condition (17) 
acquires the form 

112 ~ ~ (E>- T) > ((~11)2)- kT I 10 Y k (8- T) J 

or 

(f>-T)f8>(J Jk8)'~·~ I 

(We assume that T ~ @, since all of the estimates 
refer to the region near the Curie point, and have 
been made with a corresponding degree of preci
sion). The condition which we have derived ob
viously cannot be fulfilled. Thus, for an infinite 
chain the approximation is indeed inapplicable, in 
agreement with the general results. From this 
example, the procedure is clear by which we may 
test the region of applicability of our approxima
tion. 

We note that a finite chain (two- and three
dimensional systems not yet being discussed) can 
be ferromagnetic (possess a magnetic moment) 
even for T ¢ 0 (for an infinite chain, long-range 
order essentially vanishes, while any finite set of 
spins may possess a magnetic moment differing 
from zero as the result of short-range order). In 
the case of finite systems, condition (6) is also es
sential. According to Eqs. (3) and (8), 

Sx "V sx N't.sx total = L.i J = o • 
J 

((S;otal)2) = N ((S~)2) 

(
- 1 ) {( 1iw,__0 )-r 1 } = 'l']SN n0 + 2 = 'l']SN exp. kT - I . + 2 , 

Hence, condition (6), within the region in which 
tiwt..=o /kT « 1 and WH « WAoTI• acquires the form 
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(21) :Je = 4DJ ~ Yi.S 1,i.S2,-A- f.l. ( ~ t' H (S1, o + S2. o) 
I. 

However, if WH » WAo11• the following inequality 
must be satisfied 

When T- 0, we have the condition 11 » 1/N in 
place of Eq. (21). For example, condition (21) for 
T ~ ®, S ~ 1, and k®/J.tHA0 ~ 106 (® ~ 103 deg K, 
HA0 ,..., 10 oe) is reduced to the requirement that 
11 » 103/..JN. Then, for 11 ~ 0.1, only sufficiently 
small particles having N ~ 108 fail to fulfill the 
condition. 

The problem of the behavior of systems having 
Hamiltonians of the type of Eq. (1) in cases in 
which conditions (6) and (7) are not fulfilled is 
highly interesting. Here we may expect very pecul
iar properties, in particular a high susceptibility 
x. showing a tendency toward saturation even at 
not very strong fields. More concretely, we have 
in mind systems for which the Curie point ® « J/k 
(and as a particular case, ® = 0 ). Then, in the 
region ® < T < J/k, a law of the type x ~ 1/ ( T 
- ®) apparently need not hold true, since the in
teraction between the spins ,..., J/k is still very 
strong. A system of spins in such a state may be 
designated as an "incoherent ferromagnetic ma
terial" or a "paramagnetic fluid" with ferromag
netic interaction (see also Sec. 3). 

2. ANTIFERROMAGNETISM (GENERAL STUDY) 

The Hamiltonian of the model being studied of 
an antiferromagnetic material in an external field 
H and an anisotropy field HA has the form 

:Jf = ~ J1hSiSh - f.l.H ~ (S1 + Sh) - f.l.HA ~ (S1 - Sh)· (22) 
j, h i. h jk 

Here the subscripts j and k denote the spins sit
uated at the points of the two sublattices 1 and 2, 
while the sign is chosen such that the exchange in
tegral for the antiferromagnetic interaction Jjk 
> 0. N is the total number of spins. We shall in
troduce the operators S1,2A.: 

SJ = (! )''• ~ S1,A exp (- ilj), 
A 

Sk = ( ~ )"' ~ S2, A exp (-ilk), S1, i. = ( ~ )"' ~ SJ exp (ilj), 
I. J (23) 

where 

{Sl i.S~ } = i V2JN lltmSt A+ and its cyc_lic l, m = I, 2; 
• P. • P. permutations; 

~ exp{i (l -p.)j} = (N /2) llA;•· 
J 

Further, the operator (22) acquires the form 

- f.l. ( ~ )"' HA (Sl, o- S2. o), 

2DJri. = ~ JJk exp {il (k- j)}, 
k-J 

J = (2Dfl ~ JJk, r o = I, r~. = r _~.. 
k-j 

(24) 

Here the fact has been taken into account that we 
encounter identical terms twice in summing over 
j and k in Eq. (22). D is the number of dimen
sions of the simple lattice being studied. Only 
nearest neighbors are assumed to interact (i.e., 
2D = Z =the number of neighbors). We then ob
tain the equations of motion from Eq. (24): 

= Wo V ~- ~ Yp. !S2,-p.S1. i.+v.l + ~ [SJ, i., H + HAL 
p. 

(25) 

We shall now linearize Eqs. (25) in the vicinity of 
the mean values: 

(S~otal z) = ~ (Sj, z) = V ~ s:.o 
N N 

= 2 (S,z) = 2 f11S, 

(S~ota1 z) == ~ (Skz) = V ~ S~.o =-~ T12S. (26) 
ll 

We have obviously made here the common assump
tion of the theory of antiferromagnetism that both 
s ublattices possess a large mean spin ( magneti
zation) directed along z or in the opposite direc
tion. 3,6, 20 - 23 Here we shall consider, in the ab
sence of an external field H, that 711 = 71 2, i.e., the 
system as a whole possesses no magnetic moment.* 
As is known, unlike in the ferromagnetic case, the 
problem of the quantum -mechanical nature of the 
original state used in Eq. (26) is not yet very 
clear,3 but we shall not take up this important 
problem now. 

After linearization, Eq. (25) may be written as 
follows (with the fields H and HA directed along 
the z axis): 

*We may consider analogously the case of ferromagnetism 
in which the magnetic moments of the sub-lattices are not 
equal in absolute value, even at H = 0. 
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S~.l. = (rooS'I'J2 + WAo'I'J2 +ron) Sb. + WoSthr!.S~.I., 
s:.i. =- (rooS'I'Jl + WAo'I'Jl- ron) s~.),- WoS'I'Jzr/.sr.).' 

Sf, A=- (rooS'I12 + WAo'I'Jz +ron) s;,,,- rooS'I'Jrr/.s;,l., 

S~,A = (rooS'I'Jl + WAo'I'Jr- ron) s:,), + rooS'I12rAst.),' 

{St,ASf.-A} = i'l')rS, Wff = JlH f1i, WAo = JlHAo/1i, 

Wo = 4DJ I 1i, r~. = r -),, 

Here, in the equations for s'J;[ we have assumed 
that (J.di) HA = WA071 2 and in the equations for S~'{, 
that (~-tn) HA = wA0711, where WA0 = (~-tn) HA0 
= const. Of course this means in essence that we 
have had to introduce two fields HA differing for 
the two sublattices, from Eq. (22) on. By consid
ering the fields HA to be proportional to 77 1, 2, we 
take into account very simply the fact that the 
anisotropy field HA itself vanishes when 77 1, 2 = 0. 
The system (27) is derived from the Hamiltonian 

}ft = ~ ~ 2~1 (rooSTJz + WM'h + ron) (St. ~.st.-), + Sf. ~.sf,_~.) 
A 

+ 2~2 (rooS'I'Jr + WAoTJr- ron) (S;,~.s~.-~. + ShS~.-A) 
+ roosr~. (St. ~.s:: -" + Sf. AS~;_~.). 

We shall now transform to new variables 

S~,A = (cr,>.QI,:I. + Cz,AQ2,-A) Jl' 'I'JrS, 

Sf. A = (c1. Ap 1, -I. - c2.1.P 2. -A) Jl1hS, 

s;,-A = (c2,AQt,-1,-!- Cl,AQ2,A) Jl' TJ2S, 

St-A = (c2,APl,"A -cl,AP2,-A) J/ T)zS, 

{Qo.Pmfl.} = i6tm6AP• 

where 

c - P t•~'r• . ·r2 l, I, - A V I, ~ ),> 

(28) 

P), =(I + 6) ( TJr + TJ• ) + [<L + 6)• (TJt + TJ• )2- r~J'/,' 
2 Y Tjrl)t 2V T)rTJ• 

{) ==:' {) = W A~ • 
" roov 

In terms of these new variables, the Hamiltonian 
acquires the form 

% = {~rot (Qr,AQl,-A + Pl,APr.-1.) 
A 

+ roA"(Q2,AQ2,-1, + P •. '-P2,-1.), 

where 

+ (1 + c5) (TJrT~ + TJ•P~)- 2 Y lJtTJ•I~P:>. 
rol. = ro0S • 2 + roH • 

p~-1). 

_ S (1 + c5) (TJzT~ + TJtP~) - 2 V T)tl)o I~P1• 
rol, =roo 2 2 - roH. 

PA-rA 

If we assume that 711 = 1J2 = 1), 

(29) 

rot = 'I')W0S v (I -!- 6)2- r~ ± WH =WI.± WH. (29a) 

In order to express the Hamiltonian as a sum of 
Hamiltonians of harmonic oscillators, we shall 
transform to the variables 

Ql.±A = !/+ (qu. ± iq2,A), Pl,±A = v+ (PJ,A =F ip2,A), 

Q2.±1. = v~(q3.-.±iq4.~.). 

P2, ±A = J/1 (Pa,l. =F ip.,~,); {qnPm~J.} = i6tm61,~· (30) 

In terms of these variables, the Hamiltonian op
erator becomes 

l'llJ _ ""1' { 1 ( 2 I 2 I 2 + 2 ) R + 
"~- L.J 2 ql, ). -r-P],A -,q2,A P2,A (t) 

l.>o 

+ T (qi. 1. +Pi."+ q!. A+ P!, ~,)1iroT 

The matrix elements of the operators q and p are 
equal to: 

(qt,l.)n, n+r = Y(n + I)/ 2 = (qt,J.)n+t. n' 

(Pt,!.)n,n+l = -(Pt,t.)n+I.n = -iJI'(n+ 1)/2. (32) 

The eigenvalues of the energy of the spin waves 
are: 

:Je = ~· (nr.t. + ~ + n2 • 1. + ~) 7iro~ 
A >Q " " 

or 

:Je = ~ (n;. + ·H 1iro~ + (nA" + +> 1iro~. 
I. 

(33) 

We shall use the following equations as conditions 
of self-consistency: 

<(Sj)• + (Sf)2> = ~-:2; <s:. ~.s:. -I. 
I. 

+ Sf,~,Sf.-t.) = S (S + I)- ((Sj)2), 

<<S~)· + <sn•> = ~ ~ <s:. ~.s:. _~, 
"A 

+ S~.t.S~.-1.> = S (S +I)- ((S~)2), 

which may be written in the form 

TJ1S (Go+ Gg}) = S (S +I)- ((Sj)2), 

TJ2S (Go + G2}) = S (S + I)- ((S~)2); 
2 + 2 

Go=~~~ 
N A P~ -T~ 

2 ~ (1 + c5)(TJt + TJ•) I 2 V i);Ti; 
= N A {(1 + 11)2 [(Tjr + Tjo)/ 2 V T)IT)2)2 - ~~ }'1• ; 

(34) 
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For the case of spin %, to which we shall limit 
ourselves for simplicity, ( sj )2 = ( ~)2 = %, and 

(36) 

In the absence of a magnetic field, 1Jt = 11 2 = 1J for 
an antiferromagnetic material, Eqs. (35) and (36) 
coincide, and for spin S = % we have 

l1 (JD + JDT) = I, J -~ "1 1+6 
D- N ..::..J((1-6}2-r~J'/,' 

J = -~ ~ 1 + 6 (e'i"'"AfkT- I )-1, 
DT N ..::..J ((1 + 6)2- ~~ ]'/, 

(t)" = l'J~o !(I -+ o)2- ·nr·. 
Obviously, when T = 0, 

2wAo 
0=--, 

Wo 

4DJ 
ffio = -li- o (37) 

l1 (0) = J[/. (38) 

For two- and three-dimensional lattices of large 
dimensions, the integral Jn converges even when 
o = 0. Then Jn = ( 21r )-D J ciA .J 1 -y~. and ac-

cording to Anderson, 20 J2 = 1.393 and J3 = 1.156. 
Thus, for the two- and three-dimensional cases,re
spectively, 1}(0) = 0.72 and 1}(0) = 0.865. The 
latter result agrees with references 3 and 20, but 
is more precise. For an infinite linear chain with 
o « 1, Jn = J1 ~ 1r -t lln o 1. Hence, the value of 
1J ( 0 ) is not zero. In fact, as in the ferromagnetic 
case, there is no long-range order in a linear anti
ferromagnetic chain. However, the result obtained 
by neglecting fluctuations seems more natural than 
that stated by Anderson. 20 

Near the Neel point, when 1J « 1, we have 

proximation has a form of the type of Eq. (6), 
namely 

N rrs ~ Y<(Sx,y )2> ,r-- . 1.2total o 

It is easy to see that this condition (for high tern
peratures with H = 0) coincides with criterion 
(21). As T - 0, for antiferromagnetic materials 
the following inequality must be satisfied, instead 
of Eq. (21) 

rr~ liN V6 (41) 

We note that a certain self-consistent treatment 
in the theory of antiferromagnetism has already 
been carried out by Ziman21 for the purpose of de
riving corrections to the ordinary theory of spin 
waves; a paper on this latter subject by Oguchi25 

has recently appeared. In addition, P'u Fu-C'ho26 

recently extended the method of Bogolyubov and 
Tyablikov14 to the case of antiferromagnetism with 
spin % in the absence of anisotropy. In the as
sumptions just given, the result obtained by P'u 
Fu-C'ho26 and that derived above (see Eqs. (38) 
- (41) ] agree; this may serve as a test of the cor
rectness of the methods of calculation. The use 
of different methods here seems essential to us, 
since the comparison with the results of references 
24 and 26 gives us additional confidence in the ef
fectiveness, and in general, in the quite high ac
curacy of the method of calculation which we have 
used. 

In order to calculate the parallel susceptibility 
XII• we must know 1Jt and 172 in the presence of a 
magnetic field. We shall assume that 

n2 =A (1- -~)\' e- DJ F - ~"' 1 + 6 
., '0' - kF 0 ' a-N ..::..J (1 +o)z-r~.' nffiHikT<_I, 'IJI = 'l] + TJ~, 1J2 = TJ + TJ~. 

A-1 = 3~1\'~(1 +o)~~ =(I +o) ~~ 0 (39) where 

For the three-dimensional case, as o- 0, 

F - 2 "1 1 - 1 I d}.. 
a - N ..::..J 1 _ ·r;. - (2rt)3 .\ 1 - ~~ 

" 1 \0

\\ dudvdw' 
= n 3 ~J" 1- [(cos u +cos v +cos w) 1 3)2 

0 
r: 

1 TJ~.2 / = O(nffiH 1 kT) <.. TJ· 

Then, we obtain from Eqs. (36) and (37), by ex
pansion in series to an accuracy of first-order 
terms in liwH /kT, 1JJ., and 172· 

• (1) ' 
TJ1 (J D + J DT) + TJ [o (GD + GLJT) I OTJ1lo TJ1 

= ~ (\'\ dudvdw =I 516 
- :-t3 .\.\J 1-,(cosu+cosv+cosw)/3 ° 0 

(40) + TJ [o (GD + G~~) I O'lJzlo TJ~ 
0 

Hence, the ratio k®/ J = 3J/kFa = 1.98, i.e., it is 
the same as in ferromagnetic materials (see above). 
Unfortunately, there have been no completely re
liable statistical calculations of k®/ J for antifer
romagnetic materials, at least as known to us. 
According to the calculations in reference 24, 
which seem to be the most reliable, 23 k®/ J = 2.004 
for a simple cubic lattice. The necessary condi
tion for the applicability of the self-consistent ap-

TJRnffiH 1 kT = oo 
, ("') , 

'l]z (J D + J DT) + 'l] [o (GD +GuT) I OTJ1lo TJ1 

+ TJ [o (GD + G~~) 1 OTJ2lo TJ~ + 'l]RnffiH I kT = 0, 

1 ~ [ . liw"A )2 ] 1 ~ ( 0 liw" )-2 
R = N f ( coth :t.kT -I = N f \ smh ~kT , 

TJ (J D + J DT) = J. (42) 

The subscript zero in the derivatives with respect 
to 1Jt and 172 indicates that they are taken for 1Jt 



TO THE THEORY OF FERRO- AND ANTIFERROMAGNETISM 931 

= ry 2 = ry, where 

[ _a_ (all~ -G15~)J = _i_ ~~a(n+-n-) J 

alJ1.2 \ 0 N alJ1.2 0 

1i " f( nw~.. )2 j (a (w~- wt)) 
= N'kT L..J coth 2kT - I a11 ' 

A · 1,2 I 0 

(w~- wt) = w0S (I +II) (TJ1 - 112)- 2ww 

Hence, as may be easily seen 

!,!2 TJ 2RNH 
= 1iw0 (1 +{l)TJ 2R+2kT = VxnH, (43) 

where Mz is the total magnetic moment, V is the 
volume, and x 11 is the susceptibility per unit 
volume. 

At low temperatures, when tiw0 ( 1 + 6) ry 2R 
« 2kT, 

(44) 

For ry = 1, this formula coincides with that derived 
in the ordinary spin-wave approximation. 21 How
ever, even at low temperatures Eq. (43) is more 
accurate, since ry ~ ry ( 0) = J[J ¢ 1. Near the 
Neel point 

R = [2ITJ 2 (1 +II)] [k8 I 2DJ)2Fa = 1I2Fa(I + <>) '112 

[see Eq. (39)], and consequently, 
!!•N !!•N 

X II (B) = 8k (1 + {>) F ave = 8D (1 + (')) JV • 

3. ANTIFERROMAGNETISM OF SMALL PAR
TICLES AND CHAINS. PARAMAGNETIC 
FLUIDS 

(45) 

The formulas derived in Sec. 2 permit us within 
certain limits to explain the dependence of the 
magnetization of the sublattices M1, 2 ( T ), the Neel 
temperature e, the susceptibility XII• and certain 
other quantities on the form and dimensions of the 
system, as well as on various parameters ( J, o, 
etc). However, we cannot go into detail here on 
this set of problems, but shall limit ourselves to 
a few remarks. 

In the antiferromagnetic case [in distinction 
from a ferromagnetic system with the Hamiltonian 
of Eq. (1)], the magnetization of the sublattices 
M1,2 = + NSry ( T )/2 depends on the form and di
mensions of the spin system even at T = 0. This 
fact is especially clear from Eqs. (37) - (39) and 
(43)- (44) in the limiting case of very small par
ticles, as is also the fact of the corresponding de-

pendences of the quantities e, XII• and ry ( T ). The 
point is that in a sufficiently small system, the 
first term having A = 0, which is neglected when 
we go over to integration, plays the predominant 
role in the sums. At the same time, if we retain 
only this first term having A= 0, we obtain (for 
0 « 1) 

Fa=ljN<>, 

e = DJ I kFa = 2JN<>I k = !!HAoN /2k, T] (0) =NV<>; 2, 
(46) 

where 

() = 2w Ao / W0, Wo = 4DJ I h, w Ao = !!H Ao In. 

For a large three-dimensional spin system, 
TJ ( 0) = 0.856, and Fa= 1.516; hence it seems that 
the expressions in (46) might be applied, respec
tively, under the conditions N {{; « 1 [for ry ( 0 ) ] , 
and No « 1 (for e). However, in fact, there is no 
region in which the formulas of (46) are applicable, 
in line with the fact that the inequalities (21) and 
(41) are not fulfilled. Nevertheless, it follows 
from (46), just as from a more detailed analysis, 
that TJ ( o) and e become less in small particles.* 
The change in the quantities ry ( T)/ry ( 0) and 
x 11 ( T) with decreasing dimensions of th~ ~ystem 
is even clearer. In fact, under the cond1tlon 
NkT~-tHA0 /(tiw0 ) 2 « 1, which is compatible with 
(41), in the temperature region in which tiwA=O 
= w0 ..f512ry « kT « ke, we may easily derive (for 
N-.[[; » 1 ): 

J DT = 2kT I flH AoNTJ, T] (T) = T] (0) ( 1 - 2kT I flH AoN), 
(47) 

X 11 (T) = (2!!2 / V kT) (kT / 1i V WoW Ao) 2 • ( 48) 

Thus, within a certain definite region, the dif
ference 1 - ry ( T )/ ry ( 0) and the susceptibility X II 
differ considerably from the values given by the 
expressions 

1 - 11 (T) 111 (0) ~ (kT I nw0) 2 and 'X 11 ~ (!l2N I kTV)(kT I nwo)3 , 

applicable to large systems. 22 The result (45) is 
also of interest; according to it the value of X II at 
the transition point for a given J is independent of 
e (for 6 « 1 ). Hence it is clear that in the general 
case in the region T < e (for a given temperature 
T and for constant values of the other parameters), 
the susceptibility increases with the decrease in 
e which takes place in small particles, films, and 
fibers. 

*Naturally, as the dimensions of the system are decreased, 
the transition becomes less sharp, and strictly speaking, we 
cannot speak then of a phase transition. In practice, when 
N » 1 this fact is not essential. 
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Thus, the properties of antiferromagnetic finely
dispersed substances, polymer chains and struc
tures may be appreciably different from those of 
the ordinarily studied antiferromagnetic substances 
(above all, it would be expedient to compare the 
properties of one and the same substance as de
pending on the dimensions and form of the crys
tals). 

In the region in which the limiting formulas 
(47) and (48) are valid, the difference between anti
ferromagnetic specimens of differing forms is ob
literated. This is understandable, since the role 
of the form decreases as all dimensions are de
creased. In addition, for sufficiently thin films 
and fibers, the differences from the three-dimen
sional case may be very great, since long-range 
order is generally absent in an infinite chain, as 
it is also in a two-dimensional system with o = 0. 
In fact, according to Eqs. (37) - (39), for an infinite 
chain, 1'J ( 0) ~ rr/ lln o I. and ® = J -./26/k. How
ever, in this case the approximation itself is not 
valid, in connection with the increase in fluctua
tions (see the analogous estimate for ferromag
netic substances at the end of Sec. 1 ). 

However, for finite chains, especially if they 
are short enough, antiferromagnetic ordering may 
take place. It is sufficient to say that we cannot 
make a strict distinction between long-range and 
short-range order in a finite system. However, 
with regard to short-range antiferromagnetic or
der, the latter is observed in a series of sub
stances (e. g., by neutron scattering) even at 
temperatures considerably above the Neel point. 
In this regard, we may also refer to the calcula
tion of the short-range order in an infinite 
chain. 27• 28 On the other hand, as has been men
tioned, our formulas are inapplicable to suffi
ciently small particles, as well as to antiferro
magnetic systems above the Neel point. This is 
associated with the use, along with the other mag
netic moments, of the anisotropy field HA = HA01'J, 
which vanishes when the mean magnetization of 
the sublattice equals zero. The fact is that the 
appearance of short-range order is also associated 
with a certain anisotropy field HA_, which appar
ently is of the order of HA0 for the given small 
group of spins. 

The region of very small particles and chains, 
as well as the paramagnetism of those systems 
having thermal transitions ® « ®0 ~ J/k, is 
nevertheless very interesting. Hence, in spite of 
the fact that we have no pertinent quantitative re
sults, we shall consider this problem too. 

Ordinarily, ® ~ ®0 ~ J/k, and correspondingly, 

when ® « ®0 (in particular, when ® = 0 ), we may 
expect that the formula x "' const/ ( T + ® ) will 
not be valid over the wide temperature range ® < T 
< ®o ~ J/k. (A law of the type x ~ const/(T + ®) 
will probably hold true for T ~ ®0• ) In the 
temperature range ® < T ~ ®0 (this range has 
no sharp upper boundary), the substance may 
be called either an "incoherent antiferromagnetic 
substance" or a "paramagnetic fluid" with anti
ferromagnetic interaction (the analogous concepts 
for the ferromagnetic case have already been 
taken up at the end of Sec. 1; in connection with 
this subject, the experimental data of Ryan, Pugh, 
and Smoluchowski29 may be of interest). As in the 
case of other fluids, it seems impossible, in gen
eral, to construct a consistent and sufficiently 
exact theory for such a state. Individual special 
cases may be exceptions (a long chain at low 
temperatures, etc).* We hope yet to take up this 
problem in its various aspects, but shall mention at 
present only the following. 

One of the possibilities for a qualitative under
standing is the comparison of the properties of 
fluids with those of a very highly-disperse crys
talline medium (the quasi -crystalline model). 
Individual "crystallites" of such a medium contain 
a small number of spins each. According to the 
hypothesis, these crystallites retain their high de
gree of order, i.e., within them 11 ~ 1 (or, say, 
11 ~ 0.1) and H}\ = HAo· ·Then, as might be sup
posed, the lowest excited state of the "crystallite" 
has an energy of tiwA.=o• where 

[see Eq. (29a)]. The susceptibility of such a sys
tem is determined by Eq. (48), which had also been 
derived by us previously. 2 Here, in the region 
tiv'w0wA0/k « T « ®, the susceptibility increases 
in proportion to T2• Then, probably, x goes 
through a gentle maximum at T ~ ®0 ~ J/k, and 
beyond this, decreases according to a law of the 
type 1/ ( T + ®0 ). We note also that x depends on 
H even in fields of the order of tiv'w0wA0 /JJ.. Such 
a model is very crude, and the corresponding es
timate of x is not very convincing, but we should 
expect just this sort of dependence x ( T, H) in 
qualitative terms for a "paramagnetic fluid" of 
the antiferromagnetic type. 

In view of what has been said, the attempt which 
we made2 to explain the experimental data of 
Blyumenfel'd et al. 1 retains its content, but refers 

*We are familiar only with the result for the Ising model.19•30 

lo this case, Xn has a gentle maximum at kT- J. 
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now to the region of "incoherent antiferromag
netism." Besides, within the framework of the 
model which we have studied, the very boundary 
between the properties of a very finely-dispersed 
antiferromagnetic system and those of a paramag
netic fluid of the antiferromagnetic type is oblit
erated to a considerable degree. In particular, 
internal magnetic fields must be observable (e. g., 
by the nuclear magnetic resonance method) in 
"paramagnetic fluids" also, while a strong broad
ening of the paramagnetic resonance lines will 
take place as well. 

The theoretical and experimental study of 
"paramagnetic fluids" is of great interest. How
ever, it was possible above, of course, only to 
pose questions and give some qualitative concep
tions which will be necessary in the subsequent 
analysis. In this regard, it may not be superfluous 
to emphasize in conclusion that the basic content 
of this article has not been connected at all with 
the concept of "paramagnetic fluids", since it has 
involved the region below the transition tempera
ture. 
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