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The propagation of electromagnetic waves across a magnetic field in half-space filled with a 
magnetoactive plasma is studied. It is assumed that the plasma is confined by a stationary 
magnetic field H, and the structure of this field is investigated for the case when the ratio of 
the plasma pressure to the magnetic pressure is small. It is demonstrated that, at large dis­
tances from the plasma boundary an electromagnetic wave with an electric vector parallel to 
the magnetic field H has the form of a plane wave with a propagation constant which is speci­
fied by the equation for an infinite plasma. The reflection and transmission coefficients are 
evaluated for a plane wave incident on the plasma from a vacuum. 

JN the present paper we consider the problem of 
the penetration of an electromagnetic wave in a 
half-space filled with a plasma. Problems of this 
type have been investigated by many researchers. 1- 6 

A linearized kinetic equation together with Max­
well's equations were used to describe the process. 
The boundary condition at the plasma boundaries 
was that the electrons be specularly reflected. 

Landau1 considered the problem for a longi­
tudinal electric field. A characteristic feature of 
the solution was that the field away from the boun­
dary of the plasma was not a plane wave. With the 
aid of Landau's method, Silin2 solved the problem 
for a plasma confined in a homogeneous magnetic 
field H0 perpendicular to its boundary (magneto­
active plasma). An investigation of the solution, 
carried out by Shafranov,3 has shown that in this 
case the field is not a plane wave far away from 
the plasma boundary. 

Shafranov has made an attempt to consider the 
penetration of the electromagnetic field into a 
plasma for an arbitrary direction of the field H0, 

but the solution has not been carried out in a con­
sistent manner. While the equations and boundary 
conditions are rigorously formulated for the elec­
tromagnetic field, only general remarks are made 
regarding the electron distribution function. It is 
stated that the condition that the electrons be 
specularly reflected from the plasma boundary 
does not distort their distribution functions and 
therefore the kernel K(r, r') of the integral rela­
tions between the field and the currents in the 
plasma depends, as previously, only on the quan-

tity R = I r - r' I. This statement has not been 
proved. In our opinion, it is true only in the ex­
ceptional case when the field H0 is perpendicular 
to the plasma boundary. For such a direction of 
the magnetic field, the Larmor circles for the 
electrons do not intersect the plasma boundary, 
and therefore the distribution function is the same 
as in an unbounded plasma if the electrons are 
specularly reflected from the boundary. For any 
other direction of the magnetic field H0, the 
Larmor circles will intersect the plasma boundary 
'and this should influence the distribution function. 

In later investigations devoted to semi-bounded 
plasma, •- 6 the authors either referred to Shaf­
ranov's results, 3 or did not touch at all on prob­
lems related to the determination of the distribu­
tion function, confining themselves to unproved 
general remarks. 

The problem can thus at present be considered 
as consistently solved only when the field H0 is 
perpendicular to the plasma boundary and is par­
allel to the direction of wave propagation. 2 In the 
present paper we solve this problem for the oppo­
site case: the magnetic field is assumed parallel 
to the plasma boundary and perpendicular to the 
direction of wave propagation, and the electric 
vector is assumed polarized parallel to the mag­
netic field (ordinary wave ) . It is shown that the 
field away from the plasma boundary is in the 
form of a plane wave, the propagation constant of 
which is the root of the corresponding dispersion 
equation formulated for the infinite plasma. In 
solving the problem, an attempt is made to con-

587 



588 Yu. N. DNESTROVSKII and D.P. KOSTOMAROV 

struct a more accurate model for the plasma 
boundary, so as to replace the artificial specular­
reflection boundary condition. 

1. FORMULATION OF THE 1?ROBLEM 

Let a plasma filling the half-space x > 0 be 
located in a stationary magnetic field H ( x) par­
allel to the z axis [H(x)={O, 0, H(x)});as­
sume a specified electric field on the boundary of 
the plasma in the plane x = 0 

Ex= £ 11 = 0, (1) 

It is required to determine the field in the plasma, 
in the form of an outgoing wave as x - co. 

In solving this problem, we assume, as usual, 
that 1) the plasma is neutral on the average, 2) 
the electromagnetic wave does not act on the ions. 
3) the electromagnetic wave disturbs little the 
electronic component of the plasma, and 4) the 
effect of the magnetic field of the wave can be ne­
glected compared with the electric field and with 
the stationary magnetic field. 

Let us proceed to discuss the conditions on the 
plasma boundary. We do not assume the usual 
hypothesis of specular reflection of the electrons 
from the boundary: this hypothesis necessitates 
an infinite magnetic field and is little justified 
physically in many cases. The model which we 
propose for the plasma boundary is based on the 
following premises: 1) there are no electrons in 
the region x < 0; 2) the electrons are confined in 
the region x > 0 by a stationary magnetic field 
H (x), and 3) the stationary magnetic field be­
comes homogeneous away from the boundary, 
while the unperturbed electron distribution func­
tion is Maxwellian: 

lim H (x) = Ho. 
X-+00 

lim f 0 = N (mj2nT)'1• exp [- m (v2 + v2 + v2)j2T] 
X~ X y Z 

( N is the electron density and T is the tempera­
ture in energy units). 

Let us introduce the following notation: w0 

= .J 47rNe2jm is the plasma frequency, WH = eH0/mc 
is the Larmor frequency, x0 = .J 2T/m w~ is the 
average Larmor radius, and IJ.o = 2Tw~jmc2wk 
= 87rNT/H~ is the ratio of the plasma pressure to 
the magnetic pressure. The problem so formulated 
is solved approximately under the assumption that 
ILo « 1. Terms of order IL~ are neglected. 

2. UNPERTURBED DISTRIBUTION FUNCTION 
AND STATIONARY MAGNETIC FIELD 

Let F be the electron distribution function, 
satisfying the kinetic equation in the Vlasov form 

aF e ( 1 ) ar+vVF+-;n E+---c[vxH], VvF =0. 

We change over from variables x, vx, vy, Vz to 
dimensionless variables a~ {3, y, and o: 

.~ = xfxo. Vx = V 2T fm~ cos 6, 

v11 = Jf2Tjm~sin6, Vz = Jf2Tfmr 

and represent the function F in the form 

F=fo(~. ~. r. 6)+f(t, ~. y, ~. r. 6), 

(2) 

(3) 

where f0 is the unperturbed distribution function, 
while f is a small perturbation due to the electro­
magnetic wave. From the kinetic equation (2) and 
from Maxwell's equations we obtain a system for 
the determination of the function f0 and of the 
stationary magnetic field H (x) 

~cos O"a/0ja~- ( 1 + g (6)) 8/0/86 = 0; (4) 

4 . 2 21t 00 00 

~g = - nxoJ 11 = - 4nexo (2T ) \ sin 6d6 (" P.2dP. I f dr 
a£ cH o cH 0 \ m ~ .\ " " .\ 0 ' 

0 0 -00 (5) 

H(~)=H0 (l +g(~)). (6) 

The unperturbed distribution function fo for the 
solution of (4) is chosen as 

'/ ~ 
fo = N (2:r) 'e- <13'+-,'> fJ (~ + ~g(cr)dcr +~(sin 6 -1)), (7) 

0 

where TJ (; ) is the step function, TJ (; ) = 1 when ; 
> 0 and TJ (g) = 0 when ; < 0. The function (7) 
satisfies the conditions formulated above for con­
fining the electrons in the half-space x > 0. The 
discontinuity line of the function (7) 

~ 

~ + ~g(cr)dcr + ~(sin6-l) = 0 

is the characteristic of Eq. (4). 
Substituting (7) into (5) and carrying out several 

transformations, we obtain the following equation 
for the function g (g), which characterizes the in­
homogeneity of the magnetic field 

21t 00 

g (6) =flo+ ~ (1 +sin 6) d6 ~ e-<1>• cD8ds, 
0 ~ 

s 

cD= 1-~in6 (s+~g(a)dcr). 
0 

A solution of this equation can be constructed in 
the form of a series in the parameter IJ.o: 

00 

g (~) = ~ fl~gn (~). 
n=l 

In the first approximation this yields 

(8) 

(9) 
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where 

gl m = 2~ 2~ exp {- ( 1 -~in{) n [ ( 1-~in{) y + 1] COS2 6d6. 
0 (10) 

Thus, the unperturbed distribution function f0 

and the stationary magnetic field H (x) are given 
by (7) and (6), in which g ( ~ ) is given by (9) and 
(10). We see that the inhomogeneity of the mag­
netic field is of order llo and manifests itself only 
in a boundary zone of width l ~ x0 ( ~ ~ 1 ) . Upon 
further increase of x, the additional term tends to 
zero exponentially. 

3. DETERMINATION OF THE ELECTRIC FIELD 
OF THE WAVE IN THE PLASMA 

Let us proceed now to determine the alternating 
electromagnetic field excited in the plasma by the 
boundary mode (1). We consider first the case 
when 

Ez J x=o = E (0) / (hyu-wt). (11) 

The general case can be reduced to that given by 
expansion of the boundary field in a Fourier inte­
gral with respect to the variable y. We shall seek 
the functions f and Ez in the form 

f(t, £, y, ~. r. 6)=i(hyy-wt)f(£, ~. r. o), 

Ez(t, £, y)=i(hyY-<»I)E(£). 

From the kinetic Eq. (2) and from Maxwell's 
equations we obtain the following linearized sys­
tem of equations for the functions f (~, {3, ')', o) 
and E (~ ): 

~coso~~ -(I+ g (£)) :~ + i (xohy~ sin 6- :J f 
(12) 

(13) 

where k = w/c. From (12), taking into account 
the expression (7) for the function f0, we see that 
the function f is proportional to ( Ne/ mwH) 
x(m/2T )2• Consequently, the integral term in Eq. 
(13) is of order p, 0• Thus, to determine the elec­
tric field accurate to terms of order llo inclusive, 
it is sufficient to obtain the function f in the zero 
approximation with g (~) = 0. In other words, the 
effect of the inhomogeneity of the stationary mag­
netic field can be neglected in determining the 
electric field with the degree of accuracy which 
we require. Taking this into account, we rewrite 
(12) as 

~COS 6of jo£ -of jof> + i (Xohy~ sin 6- rojroH) f 

= (NejmroH) (2Tjm) 2 E (£) 2ye- Cl''+y'J 1'] (£+~(sin 6- 1)). 

(14) 

Let us consider the system (13) and (14). It is 
easy to write down a solution of (14) which is 
periodic in o with period 21r. Such a solution is 
unique and has the form 

f = i_!!_:__ (!!!:_)2 x (...!!!____) 2re- Cll'+Y') 11 (£ + ~(sin 6- I)) 
mwH 2T WH 

s 

x ~ exp{i[ :H(cx-6-f-:rt)+xohu~(cosa-coso)J} 
&-2r. 

x£(1; + ~(sin6 -sina))dcx, 

Substituting (15) and (13), we obtain an integra­
differential equation for the field E (~ ): 

00 

(15) 

x da ~ E (£ +~(sino- sin a)) X 11 (£ + ~(sin 6 - I)) 
0 

x exo { -~2 + i [' :H (a- o + :rt) 

-t- Xohy~ (cos a- COS 0)]} ~d~. (16) 

We are interested in a solution of (16) which 
assumes a specified value E ( 0) when ~ = 0 and 
behaves like an outgoing wave as ~- co. We 
shall seek such a solution in the form 

(17) 

Here u ( ~ ) is a new unknown function, which must 
approach zero at infinity, while hx and Eco are 
constants to be determined. According to (16), 
the function u ( ~ ) should satisfy the following 

8 00 

x ~ dcx ~ u (£ +~~sino- sin ex)) 
5-21< 0 

x tl(s+~(sin6-l))exp {-~2 +i[ :H (a-6+:rt) 

+ x0hy~ (cos a -cos 6) ]} >< i3d~- e-ihxx,F.. !loX ( w:) 
27t & 00 

x ~ d6 ~ da ~ exp {- ~2 + i [ :H (a- o + :rt) 
0 &-2r. ~' 

+ x0hy~ (cos a- cos 6) + Xchx~ (sin 6- sin a)]} 
x ~d~- x~D (Jfh;+h!) e-tx,hx ", 

where ~' = ~/ ( 1 - sino), and 
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2 2" 2hz 

D(h)=k2 -h2 -n:~ x(:H)~exp{- x; (1-cose)} 
0 

X cos ~(e- n)de. 
roH 

Let us put hx = ( h2 - h~ )-Y2, where h is the root 
of the equation 

D (h) = 0. (19) 

This equation is a dispersion equation for waves 
of the type considered in an unbounded plasma. 
With this choice of hx, the term that does not 
vanish at infinity drops out from Eq. (18). The 
amplitude Eco can be determined from the boun­
dary condition at ~ = 0: 

E (0) = Eoo (I + u (0)). (20) 

The solution of the integro-differential equation 
(18), which tends to zero at infinity, must satisfy 
the following integral equation 

u (~) = fl.oL [u) + fl.oW (S), (21) 

where 
27< s 00 

L (u] = x ( ~) ~ d~ ~ dct ~ exp{- ~2 + i [ ~ (e1 
0 &-2" o H 

- ~ + n) + x0hy~ (cos e1- cos~)]} ~d~ 

~ sin (x0 Jt. k 2 - h2 (o-~il . 
X~ Y v TJ(a+~(sm~ 

~ Xo kZ- h; 
-I)) u (a+~ (sin~- sine1)) da, (22) 

27t s 00, ~ 

W (6} =- x( ~) ~ d~ ~ del ~SID (Xo k2- hy(cr- me'z."x" da 
I»H 0 S-i" !;. Xo f k2- hz 

00 

X~ exp{-~2 +i[~(C1-~+1t)+xohu~(cosC1-cos~) 
.,. 

+ xohx~ (sin~ -sin IX)]}~~ (23) 

[here u' = u/ ( 1 - sino)}. Equation (21) contains 
the small parameter llo ahead of the integral term, 
and it is therefore natural to solve it by successive 
approximations. We shall seek the solution of (21) 
in the form 00 

u <s> = ~ 11-~u,. m. (24) 
n=l 

and determine the functions un ( ~) from the re­
currence formulas 

It is easy to show that (24) converges, and conse­
quently that (21) is solvable at sufficiently small 
values of the parameter llo· To obtain a solution 
of (21) with the required degree of accuracy, it is 
sufficient to use the zeroth approximation 

(25) 

The amplitude Eco of the wave at infinity is deter­
mined from Eq. (20): 

Eoo = E (0) (I -!l-oW (0) + 0 (!1-~)). (26) 

Thus, the electric field in the plasma, under 
boundary condition (11), is of the form 

Ez (x, y) = Eooe'<hxx+hyYl {I+ 11-oe-ihrw (x / Xo) + 0 (!1-~)}.(27) 

As x- co, this field behaves like a plane wave 
with a propagation constant h = ( h~ + h~) 112 which 
iS determined by the dispersion equation for the 
unbounded plasma. The function w (x/x0 ) de­
scribes the distortion of the field at the plasma 
boundary. It differs noticeably from zero only in 
a boundary ZQlle of width XQ, and tends exponen­
tially to zero with increasing distance from the 
boundary. 

If we neglect the motion of the electrons and 
assume that their temperature is zero, then Eq. 
(27) goes automatically into the elementary-theory 
equation for the interaction between the electro­
magnetic wave and the plasma in terms of the di­
electric-constant tensor. 

4. CASE OF LARGE WAVELENGTHS 
In this section we shall consider in greater de­

tail the case when 

11- = 2Tffi2 j mc2ffi'Jt = (kx0) 2 ~ 1, 

i.e., when the average Larmor radius of the elec­
trons is much smaller than the wave length in 
vacuum. 

Let us compare the parameters llo and ll 
= llow2/w~. In a cold plasma (T = 0), the ordinary 
wave can propagate transversely to the magnetic 
field if w0/w < 1. Consequently, in a plasma with 
low temperature ( T « mc2 ) the parameter llo 
for propagating waves should either be smaller 
than 11 or of the same order. In this section we 
shall expand all the quantities in powers of the 
parameters ll, and consider at the same time that 
O(llo) ~ 0 (ll ). 

Let us consider first the function w ( ~ ) , given 
by (23), which can be represented in the form 
[we use ~' = ~/ ( 1 - sino) l 
w (;) = Wo (;) + Yt-;: W1 (6) + 0 (t.~o); 

2n co 

w0 (£} = -ftc~ [<I- sin~)2 e-~··_ 2; (I- sin~)~ e-ll'd~]d~, 
0 ~ 

ii'
1 

!:) = _ ~ r {(hu- ihxro I roH) coso- (hx + ihyro I ron) sino 
(., 811:~ k(1-ro2 jro~) 

0 H. oo 

x [;(I- sin~) e-~··- (2;2 + 3 (I -sin ~)2) ~ e-f.l' d~ J 
?h 00 ~, 

-l--kx(l--sin~)2 ~ e-'''d~}d~. (28) 
E.' 
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In particular 

w(O) =- -~- _i_[s ':._,:__ 3 hx + ihyw I~H 1 y~ + O([L). 
4 8 k k(1-w2 lwif) 

(29) 

Substituting (28) and (29) in (26) and (27), we get 

(30) - :<kx-:;:,hxJ•.l+ i[V~l'2n~<x;nx 

+ \Rx- hxJ ku 1 ro~ ]+o(v-'1•)}· (34) 
fJ. 2k2 1. - w• f w'ii ww H 

In deriving these formulas we used the relations 

(31) k~- h! = k2 - h2 = k2ffi~ffi-2 (I + 0 (v-)). 
With the aid of (30) and (31) we readily can con­
struct a solution of the problem with the general 
boundary condition (1). Confining ourselves to 
terms of order 11. we obtain 

00 

Ez (x, Y) =~(I -+-l fLo) ~ HJll (h V X2 + (y- TJ)2) 

-oo 

X ;Ez (0, TJ) dTJ + f-toWo ( ~) Ez (0, y) + 0 ([-t'!.). (32) 
x• + (y - TJ)• ,Xo 

The simplicity of formula (32) is due to the fact 
that Eoo and u ( x/x0 ) are independent of hy at the 
degree of accuracy indicated above. 

In conclusion let us consider the incidence of a 
plane electromagnetic wave with wave vector k 
= ( kx, ky, 0) from vacuum, x < 0, on a half-space 
filled with plasma. We assume that the electric 
vector of the incident wave is polarized along the 
z axis, and obtain the solution of this problem 
accurate to terms of order 11 inclusive. 

In the region x < 0 the electric field has the 
form 

where Eo is the specified amplitude of the incident 
wave. The field in the plasma is determined by 
the formula (31), where hy = ky. Using the condi­
tions of the continuity of the functions Ez ( x, y) 
and BEz ( x, y )/ax in the plane x = 0, we obtain 
the following system of equations for Et and Eoo: 

Eo + £1 = Eoo [ 1 ·-l [-tffi~ I ffi2 + 0 (fJ.';,)] 

[ . vii w~ k 
(£0 - £I} kx =' E00hx I - l 2 w• ll; 

. .L w~ (~ _ _!_ 1 + ikyw I hxfJ>H) + O ( '/•) ]· 
-r I w• 4 2 1 -- w• 1 wk fJ. 

When Jl = 0, Eqs. (33) - (3 8) coincide with the cor­
responding formulas of elementary theory. It must 
be noted that the phases of the transmitted and re­
flected waves are more se,nsitive to variation of the 
electron temperature than the amplitudes. 
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