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The angular distribution of fission fragments produced in the capture of particles of low 
orbital angular momentum is considered. The spin of the target nucleus is taken into ac­
count. The effect of fluctuations in the distribution of the transition nucleus levels on the 
angular distribution of the fission fragments is also considered. 

UNTIL recently, the available data on the angular the compound nucleus; l is the neutron orbital 
distribution of fission fragments referred chiefly angular momentum; v is the direction of the neu-
to fission induced by high-energy particles. Abun- tron beam; m, p., M are the projections of the 
dant experimental data for this energy region made vectors l, S, J on the axis of quantization; Yzm 
it possible to establish the existence of not only and D~K are the normalized spherical function and 
qualitative but also quantitative agreement between the matrix of the J-representation of the group of 
the simple statistical theory of the angular aniso- rotations; C~~b/3 is the Clebsch- Gordan coeffi-
tropy and experiment. 1- 4 cient. Choosing·in (1) the axis of quantization 

The investigation of the low-energy excitation along the direction of fragment emission n, one 
region of the transition nucleus* is of considerable can obtain the following expression for the ampli-
interest. The study of the angular distribution of tude: 
the fragments permits one to obtain information on 
the fission probability as a function of the value of 
the projection K of the spin of the transition nu­
cleus on the direction of fission, and therefore on 
the K distribution of the transition nucleus levels 
for small excitation. When the transition nucleus 
is even- even, the fragment angular distribution 
also gives additional evidence of the existence of 
an energy gap in the spectrum of the transition 
nucleus levels and the existence of rotational lev­
els inside the gap. However, there is need of a 
more accurate theory of the fragment angular dis­
tribution. Most important is the taking into ac­
count of the initial spin of the nucleus. 

1. For a definite spin of the target nucleus, the 
probability amplitude for the emission of fragments 
in the direction n can be written in the form 5 

ftsJ (n) 
J 

.. ; 4ll "" JM ,, v-- , 
= V 2(2Jo+1) LJ Csp.tmYtm(v) L.J PJ(K)DMK(n), 

mp.M K=-J (1) 

where S is the spin of the channel; S = J 0 ± %; J 0 

is the spin of the target nucleus; J is the spin of 

*By transition nucleus we have in mind here a nucleus 
undergoing fission with a deformation corresponding approxi­
mately to a saddle point. The excitation energy of such a 
nucleus is approximately equal to the excitation energy of a 
compound nucleus minus the threshold energy for fission. 

fzsJ = Jf(2J + 1)/2 (210 +I) 2J C~~tm Y p, (K) Yzm (v), (2) 
mp. 

where use was made of the relation 

For the fragment angular distribution, we obtain 

W15, (%) = {(2J + 1)/2(210 + 1)} 

(3) 
mp. 

where J is the angle between the direction of the 
neutron beam and the direction of fission. In for-
mula (3) the interference terms have been dis­
carded, as they are not important for a nucleus 
with a large density of levels. 

The coefficients p J ( K) are determined by the 
number of transition nucleus levels, for a given 
value of K, through which the fission takes place. 
They can be represented in the form 

pJ(K)={f1(0)a(K)/(2J +I)} 

J 

x{fn+-fy+[f1 (0) 2} a(K)]/(2J+I)rt, 
K=-J 

(4) 

where a ( K) is independent of J, and rf ( 0) is the 
fission width for J = 0. [It is assumed that a ( K) 
is nornyalized by the condition a ( 0 ) = 1]. With 

546 J 
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such a choice of pJ(K), the angular distribution 
(3) turns out to be normalized in such a way that 
the integral of WzsJ ( .J) is equal to the probability 
of fission for the nuclear angular momentum J if 
the absorption coefficient is equal to unity: 

~ WtsJ (-&)d.Q = (21 +I) r,;r; (5) 

J 

f=fn+f"'+f1(J), r 1(J)'=(2J+ l)-1 r 1 (0) ~ a(K), 
K=-J (6) 

rf is the fission width in the state J, M. * In for­
mula (5), 2J + 1 is the statistical factor for the 
formation of a compound nucleus of angular mo­
mentum J and any allowed value of M for given 
l and S. 

We now assume that the total width r of the 
excited state of the nucleus weakly depends on the 
angular momentum. This occurs, in particular, if 
rn+ry doesnotdependon J, and rf{J)<rn 

J 
+ ry and also when I:; a ( K) ~ 2J + 1, i.e., if 

K=-J 
a (K) is very little different from unity. Taking 
this into account, we find the following expression 
for the angular distribution: 

WtsJ (%) = h (Ci~tm)2 a (K) j Y1m (%) j2 • (7) 
v-mK 

In formula (7) we have omitted factors which are 
independent of l and J and which are not impor­
tant for what follows. 

The overall angular distribution of the fragments 
in the reaction has the form 

W (&) = ~ ~tsJWtsJ(&), (8) 
ISJ 

where t lSJ are the absorption coefficients. For 
the sake of simplicity, we assume that they do not 
depend on S and J. Setting tzsJ ~ tz we find the 
following expression for the angular distribution 
of the fragments: 

W (%) = ~~~ ~ W1s (&), (9) 
I S=J,±'I• 

where Wzs ( .J) is the angular distribution for the 
channel ( l, S ): 

l+S I m+S 

W1s (%) = ~ WISJ(%) = ~ J Ytm (%) 1
2 2] a (K). 

J=II-S) m=-1 K=m-S (10) 

In the derivation of formula (10) we employed the 
·relation 

*Here the dependence of the fission width on the angular 
momentum of the nucleus, which is associated with the effect 
of rotation on the value of the fission threshold," is not taken 
into account. This effect is important for very large angular 
momenta of the nucleus. 

'\.l(CJK )2 _ J1. !K-m["(:S f sv-lm - )o. I K- m I > S . 

In statistical theory the K distribution is given 
by the expression1• 7 

(11) 

where Kij = 1T/Ii2; T is the transition nucleus 
temperature, ?J-1 = tf ~1 - 'd-11 , ?f!l and tf 1 are the 
moments of inertia of the transition nucleus with 
respect to the axis of symmetry (axis of fission) 
and the direction perpendicular to it. Taking into 
account the fact that for low angular momenta the 
inequality 

12j2K~~I. 

holds, we expand a ( K) into the series 

a (K) = I - K 2 j2K~ + . . . . 
Inserting this expression into formulas (9) and 
(10), we obtain 

I 

W (%) = 2j Sl ~ J Y1m (%) 12 LJ (2S + 1) 
I m=-l S 

{1- (l/2Kg)[m2 + S (S + 1 )J3]} 

(12) 

(13) 

= 4
1:rt ~ (21 + l)bz{l- [l (I+ l)/4K~l sin2 %} + const, 

I (14) 

which can also be represented in the form 

W (%) = const · {1 - (fij4K~) sin2 &}, (15) 

where 

fi = {L. (21 + 1) ~~1 <t +I>}{~ (21 + 1) ~~rl (16) 
I I 

is the mean square of the orbital angular momen­
tum imparted to the nucleus. For a black nucleus 

12 _ .!.. 12 _ 1 (k R)2 
- 2 max-2 n • (17) 

For neutrons and nuclei with A~ 240, the following 
expression is, in practice, more accurate: 

fi=(2.5-3)·En [Mev]. 

The small constant term dependent on the spin 
of the target nucleus and appearing in the braces 
in formula (14) has been omitted, since it obviously 
does not affect the shape of the angular distribu­
tion. It may therefore be said that for a small 
anisotropy, the statistical distribution of the frag­
ments does not depend on the nuclear spin for any 
value of the orbital angular momentum of the neu­
tron. The dependence of the angular distribution 
on the spin arises for the next term in the series 
(13). In the calculation of this term, the co~fficient 
of sin2 .J in formula (15) should be multiplied by 
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the spin-dependent factor 1 - So/2Kij. The coeffi­
cient of sin4 J is independent of the spin. For a 
small anisotropy, the spin-dependent terms are 
negligibly small. 

The reason for the weak dependence of the 
anisotropy on the value of the initial spin becomes 
more understandable if one considers the classical 
limit ( l, S » 1 ). In this approximation, for a 
given distribution a ( K) the angular distribution of 
the fragments with respect to the spin direction of 
the compound nucleus can be represented in the 
form 

W (n) =canst· a (K) IK=Jn· (18) 

We set J = 1 + S and average expression (18) over 
all possible directions of the vectors 1 and S 
(vector 1 lies in a plane perpendicular to the 
beam, vector S lies on a sphere). As a result, we 
obtain for the Gaussian distribution (13) an expres­
sion similar to formula (15) and, consequently, a 
weak dependence of the angular distribution on the 
initial spin. For another form of a (K ), the angu­
lar distribution, generally speaking, depends on 
the initial spin. In particular, a strong dependence 
on the magnitude of the initial spin occurs for the 
distribution used by Griffin: 4 

{1-1 K I I Kmax• 
a(K) = o, 

IKI<Kmax 

iKi>Kmax 

(the anisotropy is less for a large value of S). If 
the series for a ( K) begins with the fourth power 
of K 

(x > 0), 

then the angular distribution has the form 

W (%) = co.nst. {1 - x (f J4 sin4 % + S2l 2 sin2 .&)}. 

i.e., the anisotropy would even increase with an 
increase in the initial spin. The physical reason 
for this is the fact that along with the deterioration 
in the angular momentum of the compound nucleus 
for a definite initial spin, there is an effect leading 
to an increase in the anisotropy; this effect is con­
nected with the fact that for a large initial spin 
there are, on the average, larger values of the 
angular momentum of the compound nucleus (see 
also reference 1). Therefore, the final result is 
determined by the degree of the dependence of the 
anisotropy on the magnitude of the angular momen­
tum of the nucleus. 

2. One can also set the task of determining the 
distribution a ( K ) from the known angular distri­
bution of the fragments. To do this, it is neces­
sary to know the angular distribution for each K, 
separately. 

We shall first consider the case K = 0. Since 
it is assumed that the transition nucleus has an 
axis of symmetry (coinciding with the direction of 
fission), there exists for the rotational states with 
K = 0 a selection rule, according to which only 
even values of angular momentum can occur for a 
compound nucleus of positive parity and odd values, 
for negative parity. Hence, for K = 0, the summa­
tion over J in the individual terms of formula (8) 
should be carried out in such a way that the parity 
of J is the same as the parity of l for a target 
nucleus of positive parity and of the opposite parity 
in the case of negative parity. This summation 
can be carried out in general form by means of the 
formula 

2}' (C~~zm)2 =HI+ (-I)Z+S+JomoL (19) 
J 

where the primes on the summation sign indicate 
that the summation is carried out only over even 
or only over odd values of J. Employing (8) and 
(19), we find 

w<K=o) (%) = h ~zW)~=o) (%), (20) 
IS 

W\~=OJ (%) = ~ { 2} I Yzm (%) 12 + (- I )Z+S+JI Yzo (%) 12} • 

/mJ<:S (21) 

For each l the second term in formula (20) has 
opposite signs ror the two values S = J 0 ± %, and 
these terms cancel one another in the sum over 
S in formula (20). This also occurs in the case of 
a spin-orbit interaction between the neutron and 
nucleus when the absorption coefficient also de­
pends on S and J. Therefore we shall omit this 
term everywhere below in the expressions for 
w~~=o) (J ). 

For l ::s S 

W)~=O) (%) = (2l + 1)/S:n:, (22) 

i.e., for K = 0 the channels with l ::s S give an 
isotropic contribution to the angular distribution. 
For the channels with l > S, the angular distribu­
tion for K = 0 can be written in the form 

w<K=o> (-&) =·.!_ ~ 1 y (-&) .12 = 21 + 1 F (-&) 
IS 2 ~ lm Bn IS • 

(mJ<:S 
(23) 

), 

Fn.. (6) = 2/~ 1 ~ I Y1m (%) 12 • 

m=-A 
(24) 

A simple expression for the function Fo, is ob­
tained in the quasi-classical approximation if, in­
stead of the functions I Yzm 12, their classical 
analog 

(25) 
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is employed. Replacing in formula (24) the sum­
mation over m by an integration, we obtain 

Fn (&) ~ {(2/n) sin-• \'A/I sin it), 

For A.« l 

I sin it<;;; I, 
I sin it;;;.'}.. 

Fn (&) ~ (2/n) ('Ajl sin&). 

(26) 

By means of formula (10), one can obtain ex­
pressions for the angular distribution for other 
fixed values of K. Noting that a ( K) is an even 
function of K, we obtain the following resulting 
expression for the angular distribution of the fis­
sion fragments for a channel with a fixed value of 
IKI: 

wi~Kn (&) = wJ~> (&) + wJ:sK> (&), 

where for S :::::: l 

W(IKI) (") _ 21 + 1 {1 +. p 
1 

(it) 
IS v- - ~ l,S-JK/ • 

IKI<;;;S-1 
S-I<JKJ<;;;S, 

1 - Fl,JKI-S-1 (it), S<IKI<S+I. 

and for S < l 

wl~l> (&) 

(27) 

l F IS (it), K = 0 

= 2/ + 1 Fl,S-JK/ (it)+ Fl,S+JK/ (it), 0 <I K I< s 
4Jt 

1- FI,JKJ-S-1 (it), s < I K I< I+ s. (28) 

Substituting (27) and (28) into formulas (9) and (10), 
we obtain the following expression for the angular 
distribution: 

W (&) = const· ~(21 + 1) ft ·[a(S1 - 'A) 

-a (S1 +'A)] (Ft,~.-1 + Fi,i.), 

a(-K)=a(K). (29) 

We introduce the quantity A ( J.) = { O"f ( J.) 
- O"f ( 90°)} /crf ( oo ) . For a small anisotropy, A ( J.) 
practically coincides with the usually considered 
quantity· {crf (J.) - C1f ( 90°)} /crf( 90° ). The expres­
sion for C1f ( 0 ) can be obtained directly from for­
mulas (9) and (10) if it is noted that 

i Y1m (0) 12 = {(2! + 1) / 4n} 6mo. 

Calculating C1f ( oo) in this way, we find 

A(&) = ~ ~A<I>A (&), 
1.=1 

where 

a a (St- A) -a (S1 + f.) 
1-'A = 2{a(O) + a(S1) + 2 [a (1) + ... + a(S1 -1)]} 

(30) 

(Jo =F 0); 
(31) 

<1>1..(&) = {~ (2! + 1 f~t<l>o. (&) }/ h (2l + 1) ~~. 
l I 

For a small anisotropy, the denominator in for­
mula (31) is approximately equal to 4S1 = 2 ( 2J0 + 1). 
Some values of the functions 'Pzt.. for l s 3 are 
shown in the table. 

The functions 'Pt.. ( J.) depend only on the inci­
dent neutron energy, since they are fully determined 
by the absorption coefficients. In the case of a 
black nucleus, they depend only on Zmax· The in­
dex A. runs over the values from 1 to Zmax· Thus, 
knowing the angular distribution of the fragments, 
one can, in principle, determine Zmax independent 
differences of the coefficients a ( K ). Using the 
functions (26), we can obtain the following quasi­
classical expression for 'PA. ( J.) for a black nucleus: 

¢;>. (&) = ~ Ftn \!oo, 
n=A-1 

Fin(&) ~{2n-1 ( sin-• x + x f1-x•), x = nflmax sin~< 1 . 
1 , X> 1 

The angular distribution of the fragments is 
readily calculated by means of formulas (30)- (32) 
if the distribution of a ( K) is given. If, as happens 
in the statistical case, a ( K) is a monotonically 
decreasing function of K, all the coefficients f3A. 
are positive, and A ( J.) is a monotonically decreas­
ing function of the angle J.. [ Both functions 'Pt.. ( J.) 
and ifJ lA. ( J.) decrease monotonically with an in-

Values of the function 'Pzt.. 

l, :>. 
&, 

deg 
1.1 I 2.1 I 3.1 I 2.2 I 3.2 I 3.3 

I 

I 

I 
I 

I 0 1.000 1.500 I 1.636 0.750 1.272 0.636 
10 0.970 1.412 

I 
1.460 o. 750 1.267 

I 
0.636 

20 o.884 1.170 1.032 

I 
0.740 0.226 0.634 

30 0.750 0.844 0.556 0.703 1.076 I 0.626 
40 0.589 0.518 0.218 0.623 0,810 0.593 
50 0.413 0.256 0.066 0.492 0.486 0.510 
60 0.250 0.062 0.036 0.330 0.218 0.373 
70 0.117 0.020 0.034 0.165 0.068 0,205 
80 0.030 0.002 0.020 0.041 0,024 0.065 
90 0.000 0.000 0.000 0.000 0.000 I 0.000 
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crease in J.. ) In the statistical case, for a ( K) 
not very different from unity, one can employ ex­
pansion (13), which gives 

~A;::::~~ = ').,I 2Ifo. (33) 

rt/2 

K (z) = ~ (1 - z2 sin2 'P)-'1• d!p. 
() 

h · 1 . f W(K=O) The quantum -mec aruca expression or z SJ 
has the form 

~(-l)s (2! +I) (2J + I)(C~gt0) 2 The function A ( J. ), by (15), has the form 

A(&)= (1 /2K~) lJ'A<P~.(&) = (fi j4Kg)cos2 &. 
A 

(34) x (Cj~10)2 W (LJLJ \ Sp) Pp (cos&), (38) 

In formulas (26) - (31), the above-mentioned 
selection rule for J was not taken into account for 
the states with K = 0. If this rule is taken into ac­
count, the coefficient a ( 0) decreases by one-half. 
This result is obvious in the classical limit: For 
a given orbital angular momentum and K = 0, fis­
sion is possible for only half the possible values 
of the angular momentum of the compound nucleus. 
As a result, formula (30) should be written in the 
form 

A(&);:::: :z; ~~.<PA(&) +} [2 (2J0 + 1 )PeDs,(&), 
A=l 

lmax >S1 , a(O) = 1). (34') 

where W (abed I ef) are Racah coefficients. 
Another classical expression for W~~;O) ( J.) 

can be obtained by replacing the Racah coefficients 
in (38) and the squares of the Clebsch-Gordan co­
efficients by their classical analogs: 

(C~gto)2;:::: (4/n) {4/2- f..2} -'!., 
\ 

W (lJ!J-iSp);::::(-1) 5-I-J{(2l + 1)(2J + 1)}-'1'Pp(COS ):). 

As a result, we obtain 

Wl~./0>(&);::::* ~{(2/ + 1)(2J + I)'I•{(4J2 -p2) 

p 

(39) x (4/2 - p2)}-'/, PP (cos x) PP (cos&). 

(K=O) 
The last expression for W ZSJ ( J.) is somewhat 
more accurate than (37). 

For a Gaussian distribution of a ( K) and a 
small anisotropy, the fragment angular distribution 
in which the selection rule for the states with K 4. In the presence of a spin-orbit interaction 

between the incident neutron and nucleus, the ab­
(35) sorption coefficients !;zsJ depend on all the in-

= 0 is taken into account has the form 

A(&);:::: ([2 I 4K~) cos2 %- ~ [2 (2J 0 + 1 )r1<Ps, (&). 
dices. Their explicit form can be found from a 

For large l the integral contribution of the second comparison of the expressions for the total wave 
term decreases as Z:iriax· If the first term in for- function of the system in the representation used 
mula (35) is independent of the initial spin, then the above for the spin of the channel and the ordinary 
second term, other conditions being equal, leads j-representation ( j = z ± Y2 ). Consideration of the 
to a certain decrease in the anisotropy for a smaller spin-orbit interaction leads primarily to the re-
value of Jo. placement of !;z by the mean absorption coefficient 

3. In those cases for which the probability of 
fission in a channel of angular momentum J is de­
termined not only by some statistical factors, as 
was assumed above, there may be need of expres­
sions for the fragment angular distribution with a 
fixed value of J. In the classical limit, they can 
be obtained by replacing in formula (7) the square 
of the Clebsch-Gordan coefficient by its classical 
analog: 

(C~~tm )2 ;:::: (1 /nl) {sin2 X- (m2 / 12)}-'1•, 

cos X= (2/Jf1 [l (l + 1)- S(S + 1) + J(J +I)], (36) 

and the functions I Yzm (J.) 12 by expression (25). 
Replacing also the summation over m by integra­
tion, we obtain 

w<K=o) (&) _ -a {(sin X)-1K (z), z = sin2 &jsin2 X< 1 (3 7) 
tSJ - n (sin &)-lK (z-1), z ~ 1 ' 

where K ( z) is the complete elliptical integral of 
the first kind: 

~~ = (2! + I )-1 {(l + I) ~l.l+'l• + l~t.t-•f,}, 

where tz,j are the absorption coefficients in the 
j-representation. In formulas (15), (34), and (35) 
there appears, moreover, the factor 

in the coefficients of cos2 J.. This correction is 
not important. For w(K=O) ( J. ), with allowance for 
the spin-orbit interaction, we obtain the expression 

s 
w(K=O) (&) = ~ {LJ ft ~ i Ytm (&) 12 

I,S m=-S 

- 2J ~I [4qtSl I (2l +I)] [I + ql / (2l + 1 )II Yt,S, (&) !2}. 

i;pS, (23') 

The correction associated with the last term in 
(23') also proves to be small. We note the follow-
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ing useful relations which are employ~ in calcula- fl,_/'17-) 
tions with spin-orbit coupling: 

~J (J +I) (CKzm)2 

J 

__ {1 (1 + i) + s (S !- J) + 2mrt. 1111 <., S, I m I<., t 
- o 1111 > s. I m I > t ' 

-~· J ( J + I) ( C~~tm )2 = ~ [I + (- I )5 +t+J c'lmo] [l (l + I) 

+S(S+ l)J-m2 • 

The validity of these relations, as well as formula 
(19), can be established by a comparison of the 
zero coefficients for J-0, J-2, ( 11' - J. )0, and ( 1r - J. )2 

in the expansion in powers of J. and ( 1r - J.) of the 
identity 

D:p.D~m- ~(Ci~zm)2Dh = 0. 
J 

5. If the values of the orbital angular momenta 
taking part in the reaction are not large, formula 
(30) can be used quite directly for the analysis of 
the experimental data. The "statistical" term of 
the angular distribution, which, for a small aniso­
tropy, is given by formula (34), can be separated 
immediately. With the "fluctuational" part of the 
angular distribution separated in this way, it can 
readily be shown how the coefficients f3A. differ 
from their statistical values (33). To do this, it is 
necessary only to take into account the fact that 
the functions <I>A. ( J. ), which, although simple and 
similar in form, strongly differ as regards the 
width of the maxima (see Fig. 1). It is also impor­
tant that the functions <I> A. ( J.) very weakly depend 
on the assumptions concerning the absorption co­
efficients tz. This can be seen in Fig. 1, where 
<I>A. ( J.) calculated for two variants of tz are shown. 
The dotted curve denotes <I>A. for a black nucleus 
with lmax = 3 ( tz = 1, l ::::: lmax ). The solid curve 
represents the functions <I>A. calculated with values 
of tz computed by Nemirovskil for a semi-trans­
parent spherical nucleus with a diffuse boundary 
for KR = 11.5 and En= 1.5 Mev (f0 = 0.45, f 1 

= 0. 95, f 2 = 0.29, f 3 = 0.50 ). * The nonmonotonic 
character of fz reflects the existence of a "reso­
nance shape" for the p and f waves. The effect 
of the resonances decreases, owing to the defor­
mation of the target nucleus, as a result of which 
the true values of the functions <I>A. prove to be 
intermediate between the two curves shown in Fig. 
1, which, however, are very close to each other. 

The angular distribution of the fission fragments 
has been studied experimentally by Blumberg and 

,, _____ _ 
*The author expresses his indebtedness to P. l1. Nemirov­

ski~ for making available the results of his calculations of the 
absorption coefficients. 
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FIG. 1. a- functions <l>,._(t?-) calculated for 1.5 Mev neutrons; 
solid curve corresponds to the optical model for a spherical 
nucleus with a diffuse boundary and with spin-orbit interaction 
(absorption coefficients are given in the text), dotted curve 
corresponds to the functions <1>).. for a black nucleus and 
lmax = 3; b-functions <!K(t?-) calculated with formula (45) 
from the functions <1>)..(~.) for a semi-transparent nucleus 
(En= 1.5 Mev). 

Leachman8 and by Henkel and Simmons. 9 Compar­
ison of the angular distributions for u233 ( J 0 = %: 
fission threshold of 1.6 Mev), Pu239 ( J 0 = %, 
threshold of 1.6 Mev) and U235 ( J 0 = Y'2, threshold 
of 0.6 Mev) indicates the absence of an appreci­
able influence of the spin of the target nucleus. 
Moreover, according to the experimental data of 
Henkel and Simmons, 9 the angular distributions 
for these targets are described, within the limits 
of experimental accuracy, by the expression 1 
+ A cos2 J., where A RJ 0.1- 0.15. Both these cir­
cumstances are evidence in favor of a Gaussian 
distribution for a ( K ). * On the other hand, the 

*For the determination of the value of K~ from the experi­
mental data, see references 8 and 9. 
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data of Blumberg and Leachman8 for Pu239 and 
u233 apparently indicate the presence of substantial 
fluctuations in the distribution of a ( K ). Thus, on 
the basis of the angular distributions for En = 1. 5, 
it has to be conceded that a ( 0 ) considerably ex­
ceeds the statistical value (it is 1.5-3 times as 
great). 

The second term in formula (35) is associated 
with the selection rule for J in the state K = 0 
for J 0 =% and lmax = 3-4, and does not exceed 
the value 0.02, which is within the limits of exper­
imental error. For Pu239 (J0 = Y2 ), the amplitude 
of the second term is equal approximately to 0.15 
- 0.20, i.e., larger than all values of the observed 
gnisotropy. For the same values of the parameter 
z? /4Kij as for U233, the presence of the second 
term in formula (35) should lead to the appearance 
of a relatively deep minimum at J = 0° and a broad 
maximum at J ~ 40°, which is clearly contradicted 
by the experimental data. 

Hence one may conclude that the interdiction on 
odd (or even) values of spin for an even (or odd) 
state of the nucleus does not occur, at least, for 
transition nucleus excitation energies ;:::,. 3 Mev. 
The absence of such an interdiction, well-known 
from weakly excited states of even-even deformed 
nuclei, may be associated with fluctuation devia­
tions of the self-consistent field from axial symme­
try. Such deviations may prove to be very impor­
tant, since the criteria that the collective motion 
during fission be adiabatic are satisfied with only 
a small reserve10 (see also reference 11). This 
would signify the impossibility of describing the 
nuclear state by means of a wave function of the 
rotational type. The quantum number K would 
have the meaning of a mean statistical constant of 
motion. 

Comparison of the value of the anisotropy for 
u235 , u233, and Pu239 (reference 9Y indicates that 
there is a systematic tendency towards a small 
increase in the anisotropy for nuclei with larger 
values of J 0; the difference in the ratios CTf ( oo) 
/CTf ( 90°) is, in each case, approximately 0.03. 
This effect may be associated with the presence 
of the negative term proportional to K4 in the ex­
pansion of a ( K) in a series in K. Writing a ( K) 
in the form 

a(K)~I-(K2/2K~)-?<K4 , (40) 

we obtain for the angular distribution 

W (&) ~ I + (l2j4K~) cos2 & 

- f xf4 sin4 & + x (J0 + 1/ 2) 2 f2 cos2 &. (41) 

Since the first three terms in formula (41) do not 
depend on J 0, comparison of the values of the ani-

sotropy for different values of J0 permits one to 
determine the parameter K at once. For the in­
dicated difference in the ratios CTf ( oo )/CTf ( 90° ), 
we obtain K = (2 -4) x 10-4• For such K, the 
last two terms in formula (41) have practically no 
influence on the shape of the angular distribution. 
The presence in the expansion of a (K) of a nega­
tive term proportional to K4 gives a relative de­
crease in the contribution of large K in com pari­
son with a Gaussian distribution. 

6. In the case of neutron-induced fission of 
even-even nuclei ( J 0 = 0 ), the angular distribution 
of the fragments is also described by formulas 
(30)- (32), where the coefficients f3t... are given by 

~"=[a (1/ 2 - A.)- a (1/ 2 + A.)]/2a (1/ 2) (42) 

(for S = %, CTf is different from zero only for K 
= Y2 ). If, now, the fission is characterized mainly 
by one value K = K*, the coefficients a ( K) in the 
numerator of formula (42) can be represented in 
the form 

a (K) ~a (K*){f>x. x• + f>x. -x•}, 

from which we obtain for the function A ( J) 

A(&) = [a (K*)j2a (1/2)] <px• (&), 

K* = 1/z 

(43) 

K* =[max+ 1/z (43') 
K*o/= 1Jz,[max+ 112o 

The functions cpK* ( J) can also be represented in 
the form 

<!lx•(&) = 4n 2] ~d I Y 1, x•-•;,(&) 12 

l>K*-1/2 

+JYt,x•+•;,(&)j2]/~(2l + lg1• (431 ') 

For K* = t;2, we find 

a, (&)fat (90°) = I + + [<lf W)/at(90°)] <Dt(&), (44) 
where 

<lf (0°)/<lt (90°) = {I - + <D1 ( &W1. 

The angular distribution for K* = % is character­
ized by a sharp maximum for J = 0° (the half­
width of the maximum is of the order Ziriax ). For 
other values of K*, the function CTf ( J) has a mini­
mum at J = 0°. The width of the minimum in­
creases, and its depth decreases, for larger K*. 
For small K* not equal to %, there is also a 
small maximum at J = 40 - 50°. Figure 1 shows 
several functions Cf'K ( J) calculated for a semi­
transparent nucleus with En= 1.5 Mev. For 
another neutron energy (or other values of the 
absorption coefficients) the functions Cf'K ( J ), as 
is the case for the functions .Pt.. ( J), can readily be 
calculated by formulas (32)- (43). For En 
~ 2 Mev, the table can also be used. 
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For K* = 'l'2, the angular distribution of the 
fragments is determined single-valuedly if the 
function <Pi ( J) is known. For a neutron energy of 
0. 7 -1.0 Mev, the value of <Pi( 0°) is 0.9 -1.2, de­
pending on the absorption coefficients. For En 
= 0. 7 Mev, the optical model gives <Pi ( 0°) = 1.05 
( fo = 0.35, fi = 0.81, f 2 = 0.12, f 3 = 0.07 ), from 
which, by formula (44), we find O'f ( oo )/O'f ( 90°) 
"" 2. This value is close to the experimental value 
for Th230 (reference 12). Figure 2 shows the ex­
perimental data of Henkel and Brolley, 13 for 
fission of Th232 induced by 1.6-Mev neutrons. The 
solid and dotted curves represent the angular dis­
tributions calculated from formula (43) by means 
of the functions <Pt.. shown in Fig. 1 for a semi­
transparent and a black nucleus, respectively, with 
K* = %. For the ratio of the coefficients, we have 
a (%)/a (%) ~ 6-8. The curve calculated with 
fz for the optical model is in good agreement with 
the experimental data. 
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FIG. 2. Fragment angular distribution for fission of Th232 

induced by 1.6-Mev neutrons, according to the data of Henkel 
and Brolley, 13 (experimental points). Curves 1 and 2 are 
the angular distributions for K "' 3/2 for a semi-transpar_E;lnt 
and a black nucleus, respectively; Curve 3 is the "best" 
angular distribution for K -= 3/2 determined by Wilets and 
Chase14 by the method of least squares; Curve 4 was calcu­
lated from the optical model for K "' 5/2. 

The angular distribution of the fission fragments 
of Th232 was also analyzed by Wilets and Chase. 14 

They represented the angular distribution in the 
form •;, 

~ r (J) I Df;, •;, (%) 12 +canst, ,_.,, 
where the coefficients r ( J) were determined 
from the experimental points by the method of 
least squares. The curve obtained in this way is 
also shown in Fig. 2 (dash-dots). This curve dif­
fers little from the angular distribution calculated 
with the absorption coefficients for a semi -trans­
parent nucleus. The difference between the solid 
and dotted curves in Fig. 2 is connected with the 

difference in the size of the contribution of l = 2 
in the cases of black and semi -transparent nuclei. 
We note that in the case of a semi-transparent 
nucleus the choice of the parity of l, connected 
with the fact that the parity of the rotational states 
with respect to the same region should be the same, 
is not important, owing to the relatively small 
value of f 2 in comparison with fi and f 3 in the 
optical model. 

As shown by Henkel and Simmons, 9 there are 
many other cases of an "anomalous" angular dis­
tribution of fission fragments of even -even nuclei 
at neutron energies of the order 0.5-1.5 Mev. 
These distributions have the shape of the curves 
shown in Fig. lb and may apparently be explained 
by the anomalously large contribution of fission 
with some particular value of K. Thus, for exam­
ple, the .angular distribution of the fission frag­
ments of u236 for En= 0.85 Mev9 is similar to the 
curve corresponding to K* = % in Fig. lb. In 
principle, the most complete information on the 
distribution of a ( K) can be obtained from the ex­
perimental data directly from formula (30). 

I express my sincere gratitude to B. T. Gellik­
man, D. P. Grechukhin and G. A. Pik-Pichak for 
valuable discussions on this work. 
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