PROBABILITIES OF ROTATIONAL GAMMA TRANSITIONS OF TYPE E2 AND QUADRUPOLE MOMENTS OF DEFORMED NUCLEI WITH K = 1 AND $\frac{1}{2}$

D. A. VARSHALOVICH

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor March 21, 1960

J. Exptl. Theoret. Phys. (U.S.S.R.) 39, 461-462 (August, 1960)

Expressions are given for B(E2) and Q for cases where these quantities depend not only on the direct matrix element, but also on the cross matrix element.

HE quadrupole moments Q of deformed nuclei and the reduced probabilities B for γ transitions of type E2 between levels of a rotational band may have anomalous values for the case where K = 1 or $\frac{1}{2}$ (K is the projection of the total angular momentum on the nuclear symmetry axis). For K = 1 and $\frac{1}{2}$ the quantities Q and B(E2) depend not only on the intrinsic quadrupole moment Q₀ $\equiv \langle \chi_K | \hat{Q} | \chi_K \rangle$ but also on the cross matrix element $\langle \chi_{-K} | \hat{Q} | \chi_K \rangle$ (\hat{Q} is the quadrupole moment operator, χ_K is the function characterizing the internal state of the nucleus).

The anomaly in the values of Q and B (E2) in nuclei with K = 1 and $\frac{1}{2}$ is similar to the wellknown anomaly in the magnetic moments μ and reduced probabilities for rotational transitions, B (M1), in nuclei with $K = \frac{1}{2}$, and is due to the equivalence of positive and negative directions of the nuclear axis.

The quadrupole moment of a nucleus with angular momentum I and projection K = 1 can be written as follows:

$$Q = Q_0 \frac{3 - I(I+1)[1+(-1)^I 3b_0]}{(I+1)(2I+3)}.$$
 (1)

In particular, for the ground state of the rotational band where I = K = 1,

$$Q = Q_0 \left(1 + 6b_0\right) / 10.$$
 (2)

The coefficient b_0 characterizes the ratio of the matrix elements $\langle \chi_{-1} | \hat{Q} | \chi_1 \rangle / \langle \chi_1 | \hat{Q} | \chi_1 \rangle$. The reduced probabilities for E2 γ transitions between levels of a rotational band with K = 1 can be expressed in terms of the same parameters Q_0 and b_0 . For transitions with $I + 1 \rightarrow I$,

$$B(E2) = \frac{5}{16\pi} e^2 Q_0^2 (C_{I+1K;20}^{IK})^2 [1 - (--)^{I-K} (I + 1) b_0]^2,$$
(3)

For transitions with $I + 2 \rightarrow I$,

$$B(E2) = \frac{5}{16\pi} e^2 Q_0^2 (C_{l+2K;\ 20}^{lK})^2 [1 + (-)^{l-K} b_0]^2, \qquad (4)$$

where C.... are Clebsch-Gordan coefficients.

In the case of $K = \frac{1}{2}$, the quadrupole moment of the ground state of the rotational band $I = K = \frac{1}{2}$ is identically equal to zero. The expressions for the reduced probabilities B (E2) for transitions between levels of a rotational band with $K = \frac{1}{2}$ have the same form as (3) and (4), and differ only in the values of I and K. The coefficient b_0 characterizes the ratio $\langle \chi_{-1/2} | Q | \chi_{1/2} \rangle$ $/\langle \chi_{1/2} | Q | \chi_{1/2} \rangle$.

The magnitude and sign of the coefficient b_0 are determined by the internal state of the nucleus. In particular cases it may turn out that the cross matrix element is small compared to Q_0 . However, there is no basis for assuming that $b_0 \ll 1$ for all nuclei. Therefore the measurement of a single value for B(E2) in nuclei with K = 1 and $\frac{1}{2}$ is insufficient for determining the intrinsic quadrupole moment and the deformation parameter of the nucleus.

There are a considerable number of deformed nuclei known at present which have states with K = 1 or $\frac{1}{2}$. But the corresponding experimental data are available only for five nuclei with K = $\frac{1}{2}$. These data are given in the table. There we also give the theoretical values calculated on the assumption that $b_0 = 0$. Agreement of experi-

Nucleus	Ratio	Theory for $b_0 = 0$	Experiment
Y b171	$\frac{B(E\ 2, \frac{1}{2} \to \frac{5}{2})}{B(E\ 2, \frac{1}{2} \to \frac{3}{2})}$	1.50	1.49 [1]
Tm ¹⁶⁹	$\frac{B(E\ 2\ ,{}^{5}/_{2}\rightarrow {}^{3}/_{2})}{B(E\ 2\ ,{}^{5}/_{2}\rightarrow {}^{1}/_{2})}$	0.28	0.31 [2,3]
W 183	$\frac{B(E\ 2, {}^{5}/_{2} \rightarrow {}^{3}/_{2})}{B(E\ 2, {}^{5}/_{2} \rightarrow {}^{1}/_{2})}$	0.28	0.52 [4,5]
U235	$\frac{B(E\ 2,{}^{5}/_{2}^{3}/_{2})}{B(E\ 2,{}^{5}/_{2}^{1}/_{2})}$	0.28	0.16 [6,7]
Pu ²³⁹	$\frac{B(E\ 2,{}^{5}/_{2}^{3}/_{2})}{E(E\ 2,{}^{5}/_{2}^{1}/_{2})}$	0.28	1.04 [8,9]

324

mental and theoretical values occurs only for Yb¹⁷¹ and Tm¹⁶⁹. For the other nuclei one observes deviations, i.e., b₀ and consequently also $<\chi_{-K}|\hat{Q}|\chi_K>$ are different from zero. However, the precision of the available experimental data is low, so that accurate measurements of Q and B(E2) for nuclei with K = 1 and $\frac{1}{2}$ would have considerable interest.

¹Elbek, Nielsen and Olesen, Phys. Rev. **108**, 406 (1957).

²Hatch, Boehm, Marmier, and DuMond, Phys. Rev. 104, 745 (1956).

³Kel'man, Metskhvarishvili, Preobrazhenskiĭ, Romanov and Tuchkevich, JETP 37, 639 (1959), Soviet Phys. JETP 10, 456 (1960). ⁴Murray, Boehm, Marmier, and DuMond, Phys. Rev. 97, 1007 (1955).

⁵Thulin, Rasmussen, Gallagher, Smith and Hollander, Phys. Rev. **104**, 471 (1956).

⁶ Freedman, Wagner, and Engelkemeir, Phys. Rev. 88, 1155 (1952).

⁷ Gol'din, Novikova, and Kondrat'ev, Тезисы 8-го совещания по ядерной спектроскопии (Reports of the Eighth Conference on Nuclear Spectroscopy) Press, Academy of Sciences, U.S.S.R., 1958.

⁸J. O. Newton, Nucl. Phys. 5, 218 (1958).

⁹S. Baranov and K. Shlyagin, Атомная энергия 1, 52 (1956).

Translated by M. Hamermesh 89