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We have considered the structure of degenerate exciton bands in uniaxial crystals. We have 
obtained expressions for the dispersion of the optical activity which is caused by the inter­
section of the exciton energy surfaces. 

INTRODUCTION 

PEKAR1 has shown that if account is taken of the 
spatial dispersion of electromagnetic waves in a 
crystal in which there are excitons, one is led to 
new solutions of the Maxwell equations, which are 
essentially different from the previously known 
ones in the range of frequencies of the light which 
are near the exciton absorption frequency. Pekar1 •2 

assumed the validity of the following expansion 

1%' (k) = 1%'0 + ~ ~ Mf;;? kp k, + ... 
ps 

for the exciton energy 1%' (k) in the neighborhood of 
k = 0 (it 0 depends on the direction of the vector k ); 
this is always true for non-degenerate exciton 
bands, but not when degenerate bands intersect in 
the point k = 0. 

When electromagnetic waves are propagated 
along the principal optical axis of a uniaxial crys­
tal only the exciton states that belong to degenerate 
bands contribute to the specific polarization.1 

We shall show in the following, for crystals with 
symmetry groups Di, Df, D~, ... , that the de­
generate energy surfaces intersect at the point 
k = 0 along the direction of the principal optical 
axis. These imply that there occur in & (k) 
terms linear in k. Account of these terms when 
the & (k) surfaces intersect leads to a connec­
tion between the specific polarization and the 
electrical field different from the one given by 
Pekar .1 •2 This connection is significant in a wide 
range of light frequencies and causes a rotation 
of the plane of polarization of light in the crystal. 

1. THE STRUCTURE OF A TWO-FOLD DEGEN­
ERATE EXCITON BAND OFA UNIAXIAL 
CRYSTAL FOR THE DIRECTION OF THE 
PRINCIPAL OPTICAL AXIS 

We shall follow reference 1 and call an exciton 
any excited state of the crystal, the wave function 

of which is characterized by one continuous quan­
tum number k and which is transformed upon 
application of a symmetry operator that commutes 
with the Hamiltonian according to the single-valued 
irreducible representation of the space group. 

We shall everywhere consider k = ( 0, 0, k) to 
be a dimensionless wave vector within the interval 
-7T::Sk::S7T. 

As an example we shall study the behavior of 
& (k) for excitons in crystals with groups Di 
and Clh. For k = 0 the wave functions lf;11 (0) 
and lf;21 (0), transforming as x + iy and x - iy 
respectiyely, correspond to the same energy & (0). 

The matrices of the irreducible representa­
tions of the group Di, obtained from the E 
representation of the group C4 and constructed 
by Seitz' method,3 are of the form 

DL2 (u2) = ( 01 01 ). , Dl.2 (t) = ( expo (ikfa) 0 ) , 
exp (- ikt3) 

, _ ( exp (ik/4) 
D1 ( 4oo•;J = l 0 

0 

- exp (i3k!4) 

D2 (4w;.) =- D1 (4o~•;,)- (1) 

In the group there is an element u2 which ro­
tates the wave vector. D1 and D2 can therefore 
be brought to a real form. 4 Let 1/Ju (k) and 
lj;12 (k) transform according to D1, and lfJ2 1 (k) 
and lf;22 (k) according to D2• One can immedi­
ately verify that the functions 

~j = y12 [~li(k) +~2j{- k)). Yji = ;2 [4li(k)- g;2i(- k)) 

are transformed through real matrices. It is 
well known5 that this leads to 

(2) 

If 1%'1 (k) and 1%'2 (k) belong respectively to the 
representations D1 (k) and D2 (k ), it follows 
from (2) that 
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(3) 

For the group Clb (which contains an inversion) 
the matrices analogous to (1) have the form 

' ( 0 1 ) DLz(cr) = 1 0 , D~.2 (t) = ( oexp (ikls) 0 I 
exp(-ik/3) · 

D~ ( 4') = - v; ( 4). 

These representations can also be brought into 
real form, but now the functions 

(4) 

1)2 [~~1 (k)+~~"(k)]. v~ [~~1 (k)-~;2 (k)] .... , 

will be transformed according to a real represen­
tation; hence it follows that 

(5) 

To the representation D2 (k) belong the complex 
conjugate (transposed) functions of the represen­
tation Df ( k ) , so that 

&~ (k) = &~ (k). (6) 

If thus the group q is supplemented with a plane 
perpendicular to the 4 axis, the degenerate bands 
are not split up when k "'0. 

One can show that Eq. (3) is valid for degen­
erate exciton bands of crystals which possess 
other spatial symmetry groups with one axis of 
order higher than 2, provided that among the 
symmetry elements that change k to - k there 
is no inversio~ or ;:t plane of reflexion. These 
groups are D~, Ch (n = 3, 4, 6 ), and others. 

The expansion of the energy of the two-fold 
degenerate exciton bands in powers of k is for 
uniaxial crystals of the form 

&1 (k) = <B'0 +~an k", &2 (k) = &0 + ~ (- l)"a,k", 
n n (7) 

if Eq. (3) is satisfied. 
Equation (3) is valid also for the electron bands 

of the same crystals if one neglects the spin-orbit 
interaction (see, for instance, reference 6 ) , since 
we have used in deriving (3) only the definition of 
the exciton state, which can include also a spinless 
electron. 

Pekart considered the spatial dispersion of 
electromagnetic waves in a uniaxial crystal in the 
approximation at = 0. We shall consider the case 
where at "'0 and where the bands it (k) and 
~t 2 (k) intersect along the direction ( 0, 0, k ). 

2. THE PROPAGATION OF A PLANE ELECTRO­
MAGNETIC WAVE IN A UNIAXIAL DIELEC­
TRIC CRYSTAL IN THE DmECTION OF THE 
PRINCIPAL OPTICAL AXIS 

Let H be the energy operator of the crystal 
and W the operator of the interaction energy of 

the crystal with the electromagnetic field.* We 
shall take the wave function of a crystal perturbed 
by the small alternating electrical field of the 
light wave in the form 

'¥='Yo+ ~ Cqs (k) ~qs (k) ..l .•• , [ Cqs (k)! < 1, (8) 
q, S, k 

where 1/Jqs (k) is the exciton-state wave function, 
q the number of the irreducible representation of 
the space group, and s the number of the function 
belonging to the q-th irreducible representation. 
All other excited states of the crystal will in the 
following be taken into account phenomenologically. 

We shall neglect the difference between the 
magnetic induction and the magnetic field strength. 
This neglect enables us to write down the energy 
of the interaction of the crystal with the electro­
magnetic field in the form 

W =- ~ ~ P (r') A (r't)d·t', 

A (rt) = A 0 exp {i (xzjd- wt)} + A~ exp {- i (xzjd- wt)}, 

A0 = (A0x, A0y, 0), x = nwdjc, (9) 

where d is the lattice constant in the z direction. 
The field A ( r, t) is assumed to be sufficiently 
smooth ( d « A.). The coefficients Cqs (k) are 
determined from the Schrodinger equation 
[ina;at- &q (k)l Cqs (k) 

= - iwq (k) c-1 V (qsk I P (0) I 0) (A0o"· k exp (- iwt) 

+ A~Lx, k exp (iwt)). (10) 

when we expand <B'q (K) in the power series (7) we 
retain the linear terms 

A cumbersome but elementary calculation leads 
to the following expression for the average spe­
cific dipole moment 

P(r, t) = ~P(r) '¥*'¥dQ. 

In complex form 

We neglected in {3xY corrections of the order 
( d/A. )2• In deriving (11) we used the property (2) 
of the wave functions. 

Let the condition KB<B' 1/Bk « &0- tiw be satis­
fied for the frequency w. We can then neglect 

*Here and in the following we retain Pekar's notation. 1 
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the small extra terms in the denominators of (11). 
We take the other excited states of the crystal in­
to account by introducing E' through D = E'E 
+ 47rP. 

The specific rotation of the plane of polariza­
tion of the light p can be obtained from (11) by 
the well.known equations of crystal optics 7 

K(~+~l a ' " K 41t a £1 A 2 d 1\ £o 
p = (P- A~)2 , = 'li2c2- Wo (fk () ' -~ = nw . 

(12) 

Expression (12) differs from the analogous equa­
tions obtained semi-phenomenologically by 
Agranovich and Rukhadze8 and from Chandrase­
khar's empirical formula, 9 because A.5 appears 
in the numerator. 

The classical analysis8 of the optical activity 
disregards the extra terms of p, obtained by 
expanding the exciton transition frequency wq (k) 
(which occurs in the quantum mechanical ex­
pression for the oscillator strength) in powers 
of d/A. [wq (k) is defined here by (10)]. Equa­
tion (12) is thus a natural way of making the 
equations obtained in reference 8 more exact. 

Agranovich10 obtained a dispersion relation of 
the form (12) without taking into account the inter­
section of the exciton bands. Equation (12) differs 
therefore from the corresponding dependence 
(12.2) of reference 10 not only in the meaning of 
the constants occurring in K but also in the range 
of applicability. In the case of uniaxial crystals, 
Eq. (12.2) of reference 10 is, for instance, applic­
able only for directions of the propagation of light 
which are different from the direction of the prin­
cipal optical axis. 

Chandrasekhar's formula9 describes the dis­
persion of the optical activity of quartz well, but 
differs strongly from the experimental dependence 
p (A.) in the wavelength range A. ~ 0 .4~-t for benzyl 
crystals. 

Chandrasekhar's empirical formula is thus not 
universal, and can be applied only when A.o corre­
sponds to an isolated absorption band. Equation 
(12) can also be applied when A.o corresponds to 
an isolated exciton absorption band, provided all 
other absorption bands are removed from the wave­
length region under consideration. 

As (12) is somewhat different from Chandrase­
khar's expression, the parameters K and A.o in 
(12) will, of course, be different from the corre­
sponding quantities in reference 9. One can, for 
instance, obtain for quartz satisfactory agreement 
with experiment if one chooses K = 7 .1, A.o = 0.081 M 
( p is expressed, as usual, in degrees per mili­
meter, and A. in J.t). The parameter A.o must 
also occur in the formula for the dispersion of the 

refractive index no (A.) of quartz. If we put 
a = 3 x 104 and assume E' = 1 in (11), the ex­
pression for no (A.), obtained from (11) by the 
usual methods [n~ - 1 = 1.4A. 2 I (A. 2 - ~)], as well 
as the expression for p (A.), will differ by less 
than 1 or 2% from the experimental values, in a 
wide range of wave lengths A. < 1 J.t. 

The slight difference between the proposed ex­
pressions for p and no and the experimental 
ones may be caused by the fact that we have not 
taken into account virtual transitions to exciton 
states with A6 lying within the infrared region, 
A6 ~ 8.8 J.t and 20 J.t. Taking these into account 
is especially important for no (A.) when A. > 1 M· 
We have also neglected other contributions to no 
and p, connected with virtual transitions to non­
exciton states, and also the contributions to the 
rotation, which were considered by Agranovich.10 

Taking into account the approximate character 
of our expressions, we can use the numerical values 
of K and a only for an estimate of the width of 
the exciton band D.iS in quartz, replacing af8/ak 
in (12) by ~iS /27r. We obtain as a result D.iS 
~ 0.8 ev. 

In the range of light frequencies near w0 one can 
neglect the terms with i£0 + liw in the numerators 
of (11). 

The refractive indices for left-hand and right­
hand circularly polarized waves, E~,.r> = iE~r> and 
Eif) = - iEU), are determined from 

( , 2) (e ± ) 4rcac O r:. -n ., n- 2 = , 
ro0 da£Ifak 

where the upper and lower signs correspond to 
n<r> and n{l) (with oi£1/ak > 0). 

We show in the figure the frequency dependence 
of real and positive n<r> and nm for the follow­
ing values of the parameters (cf. reference 1) 

1i.roo = 2ev, r:.' = 2, ai£1/ak = (2:nr1 ev, d = 5.29 A, 

a= (e21i./2m) Nf, N = 6,76·1021cm-3, 

Such a behavior of the dependence n ( w) is 
qualitatively the same as the phenomenological 
dependence n ( w) obtained by Ginzburg11 for a 
gyrotropic medium. 
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In the frequency range w' < w < w" with 

(wo- w')/wo = 2.51· w-::; 
(ul''- w0)/w0 = 5. 75 · I0- 3 

only the l wave has a real positive index of re­
fraction, while the r waves have a complex index, 
nir> = n~r>*. In an infinite medium the amplitudes 
of these two waves must be set equal to zero. In 
a semi-infinite crystalline medium ( z > 0) the 
r wave is exponentially damped when moving away 
from the surface. In the enantiomorphous modifi­
cation of the crystal ( of!f 1/ok < 0), on the other 
hand, only the r wave will be propagated. 

The author expresses his deep gratitude to Pro­
fessor S. I. Pekar for his interest in this paper and 
for valuable discussions. 
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