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A quantum-mechanical formula which is a generalization of the virial theorem is derived, for 
the pressure in a solid at zero temperature. A more detailed examination is made of the appli
cation of this formula in the approximation of spherical cells. 

INTRODUCTION 

IN the treatment of solid substances the usual 
problem is the calculation of the energy of cohe
sion in the normal state, and also the determina
tion of the compressibility curve, i.e., the depend
ence of the pressure on the density. The pressure 
at a prescribed density is calculated (at zero tem
perature) as the derivative of the energy of the 
substance with respect to its volume, 

p =-dE jdV. (1) 

Thus to determine the pressure in a given state 
one must know the energy also in a neighboring 
state, which is a considerable inconvenience. As 
is well known (cf. e.g., reference 1 ), in the 
Thomas-Fermi statistical method one can calcu
late the pressure directly in terms of the Thomas
Fermi potential or in terms of the density of elec
trons at the boundary of a cell in the given state, 
without differentiation. But the Thomas-Fermi 
method does not give negative pressures and for 
this reason does not describe the cohesion of 
solids. Inclusion of exchange and quantum cor
rections gives a zero pressure at a finite density, 
but in a region in which these effects cannot be 
treated as corrections. 

A quantum-mechanical approach to the calcula
tion of the energy and the pressure not only gives 
the fact of the cohesion of solids and the correct 
order of magnitude of the cohesion energy, but 
also can give a number of features of the com
pressibility curve that are caused by changes of 
the structure of the electron shells during com
pression. An example of this is the phase transi
tion observed in cesium, for which Sternheimer2 
has proposed an explanation in terms of a calcula
tion. In connection with this there is the interest
ing question of how one can express the pres
sure in terms of the quantum-mechanically de
scribed state of a solid. Feynman3 has considered 
an analogous problem. He found the forces with 

which the nuclei in a molecule can be held at a 
prescribed distance in terms of the wave function 
of the electrons in a stationary state (with the 
prescribed position of the nuclei ) . 

The problem of the pressure in a solid is much 
more complicated. This is due to the fact that in 
molecules the electron wave functions vanish at in
finity together with their derivatives, whereas in 
the case of a solid one considers either an infinite 
body with a given density or else a body of a fixed 
finite volume (in a sense that will be stated later) 
with a prescribed pressure on its surface, so that 
the system is not closed. 

It would be possible to express the pressure in 
terms of the quantum-mechanical stress tensor,4 

part of which is due to the electric interaction 
(the electromagnetic tensor). This part has to 
be included, despite the electric neutrality of the 
atoms taken as a whole, since although the mean 
electric field (and the total electric volume force ) 
acting on an atom is zero, it nevertheless contrib
utes to the surface forces, to the pressure. This 
is expressed by the fact that the electric field ap
pears quadratically in the electromagnetic tensor. 
The necessity of taking the electromagnetic tensor 
into account brings with it a number of difficulties; 
because of this we shall not derive the formula for 
the pressure in terms of the stress tensor. 

DERIVATION OF THE QUANTUM-MECHANICAL 
FORMULA FOR THE PRESSURE 

The energy of a solid body in which the nuclei 
are regarded as fixed at the points Ra (a= 1, 
2, ... , N, where N is the number of nuclei) is 
given by the following formula: 

ENN= + 2] Z2e2 / [ Ra- R13[, (2) 
13"F~ 

where fi is the Hamiltonian of the system of elec-
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trons (relativistic effects are everywhere neg
lected): 

H(q)= -~~~;-Ze2~-1-+~ ~ - 1-. (3) 
2m i i,al r;-Ral 2 i,k+i rik 

The summation over i is taken over all electrons; 
q is the set of space and spin coordinates of all the 
electrons. In the stationary state determined from 
the condition that the energy be a minimum, >¥ ( q) 
satisfies the Schrodinger equation 

H (q) '¥ (q) = E0'¥ (q) (4) 

and the normalization condition 

~ '¥* (q) '¥ (q) dq = 1. (4a) 

Strictly speaking the integrals in Eqs. (2) and (4a) 
must be extended over an infinite volume, but in 
this case we would have to include in the system 
considered also the body that bounds the volume. 
We shall replace it by a rigid wall, and at the 
boundary of the volume V shall postulate the 
boundary condition >¥ = 0. Thus the concept of 
the volume of the body is sharply defined. Now 
we can assume that the integrals in Eqs. (2) and 
(4a) are taken over the volume V. 

The energy (2) depends on a parameter, on the 
volume V or, what is the same thing, on the aver
age internuclear distance R0• For the calculation 
of the pressure we differentiate the energy with re
spect to this parameter. In doing so we note that 
when R0 changes there are changes of the wave 
function and of the volume of integration 

dE = l(a'l''(q) if'¥ ( ) + '¥' fl ~) d 
dR0 ) aRo q aR0 . q 

(' • aif dENN a'E 
-1- J '¥ aRo 'Ydq -1- dR0 -1- aRo · 

Here in the last term 8' /BR0 denotes differentia
tion with constant >¥ and H (with respect to the 
"upper limit" ) . In the first integral we add and 
subtract (8>¥/BR0 )(H>¥)*, and then use the Schro
dinger equation (4). We get 

::0 =Eo {a~0 ~ T* 'Ydq + ~ a~o ('¥' T) dq} + ~ '¥' :~ 'Ydq 

+ dENN + \' ['~'* H ~- a'¥ (H'l")*] dq. 
dR0 ) aR0 aR0 

The expression in curly brackets is equal to zero 
because of the preservation of the normalization 
(4a) under the change of volume. Accordingly we 
have 

a'¥ A ·] - aRo (H T) dq. (5) 

Equation (5) differs from the Feynman formula3 

by the last term, which arises because of the fact 
that the system considered here is not closed. It 
is not hard to convince oneself that for a finite vol
ume of the body this term does not vanish, as it 
would for a free molecule. Equation (5) is conve
nient in that it contains only quantities of the same 
order of magnitude as the quantity dE/dR0 that is 
being calculated. The larger terms of the order of 
E/R0 are automatically excluded. In calculating 
the pressure p directly from Eq. (1) by first cal
culating the energy E ( V) as a function of the 
volume and then differentiating with respec.t to V 
one would have to find small differences of large 
quantities, since the energy of compresssion (or 
the energy of cohesion) is much smaller than the 
total energy E of the body. For practical purposes, 
however, formula (5) is unsuitable, because the re
gion near the surface of the body makes substantial 
contributions to all the integrals although the re
gion itself can be made arbitrarily small in com
paris on with the whole volume of the body. This 
is due to the fact that 8>¥/BR0 and BH/aR0 are 
proportional near the surface to the linear dim en
sions of the body. To prove this let us write the 
boundary condition >¥ = 0 at the surface of the 
body, r = R, for a variation of R0: 

'¥ + oRoi>'l" 1 oR0 = o at r = R +oR, 

from which we get on the boundary 

a'¥ a'¥ aR a'¥ R 
iJR 0 = - Tr iJR 0 =- Tr R0 • 

(6) 

The proof is similar for BH/BR0• 

Thus, although the formula (5) is correct, it 
cannot be used in practice because of the finite 
contribution of the region near the surface of the 
body. Just to make this situation clearer, we have 
considered a body of finite volume, and not an in
finite body with a prescribed density. In the follow
ing section a formula for the pressure will be ob
tained that is free from this shortcoming. 

GENERALIZATION OF THE VIRIAL THEOREM 

As is well known, the virial theorem E + EK = 0 
holds in the quantum mechanics of a stationary sys
tem of particles interacting by the Coulomb law; E 
and EK are respectively the total energy and ki
netic energy of the system. The usual way of prov
ing this theorem is to introduce into the formula 
for the energy a scale factor A., and then set the 
derivative of the energy with respect to the param
eter A. equal to zero for A. = 1, because of the 
stationary property of the system (the energy 
must be a minimum for A. = 1 ) . 
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By exactly the same method we obtain in this 
section a generalization of the virial theorem for 
a quantum-mechanical system of nuclei and elec
trons in a stationary state with a prescribed finite 
value of its volume V (the nuclei, as before, are 
regarded as fixed); this theorem provides a possi
bility of calculating the pressure. 

We shall start from the Hartree-Fock (H-F) 
approximation, which we are going to use in what 
follows. The theorem so obtained can, however, 
be extended to a more general case without diffi
culty. 

We write down the energy in the H-F approxi
mation:5•6 

E = - 2 ~ z~2 
\ ,r: ( ) ~,r, ( ) d - 22 2 ~ "· \' I <fk (r_!_l"_ d 

bn ..:...! .l 't'k r yk r r e .Li .Li \ I r- R a I r 
k =1 k C( ... 

+ 2e2 L ~ ,~ 2 ~ ~~ (r1 ) 2 j cj~,, (r2) j 2 dr1 dr2 

i 1 k 

- C2 ] ~ ,~2 c¥; (r1Hk (ri) c¥: (rz) cj~,(rz)drl drd ENN 
i I k 

(7) 

Here 1/Ji ( r ) are the spatial parts of the one -elec
tron wave functions from which the Fock determi
nant is constructed. Equation (7) is written for the 
case in which there is a pair of electrons with op
posite spins for each spatial state 1/Ji (this means 
that ferromagnetic substances are excluded from 
this treatment). The summation over i and k is 
taken over all different spatial functions; the sum
mation over the spins has already been done. 

The requirement that the energy be a minimum 
with respect to arbitrary variations of the 1/Ji that 
preserve the orthonormality of the system of func
tions 1/Ji leads to the system of H-F equations 
( Aik are variation parameters ) : 

( - ~ ~-" Ze" + 2ez "-'\ i <)!, (r') I• dr') cfk (r) 
2m .Li 1 r- R 1 .Li.) I r- r' 1 

a • 1 

- 2 '\.\ (' y; (r') <¥, (r) <f k (r') d ' - ~. . ,r, ( ) 
e L; j I r - r' I r - .Li '-k, '~'' r . 

i . 

(8) 

To derive the virial theorem we take as the unit 
of length the average internuclear distance R0 and 
introduce a changed form of the wave functions: 

Here it must be remembered,.; that the CfJi (p) have 
further dependence on R0 as a parameter. We 
express the energy E in terms of the cpk: 

- ;
2

0 2; ~ p1
1
2 'P; (pz) 'Pk (P 2 ) cp; (p) 'Pi (pi) dp1 dpz 

i, k 

There are corresponding changes in the H-F 
equations. Let us differentiate Eq. (7a) with re
spect to R0• Here, just as in the preceding sec
tion, we make use of the H-F equations for CfJk, 
first adding and subtracting a term 

(7a) 

in EK. We note that in the differentiation there is 
no need to take into account the dependence of 
Ra /R0 on R0, since the change of the mutual dis
tribution of the nuclei with a change of R0 occurs 
in second order. We get: 

The last term is equal to zero, as is easily seen 
if we recall the self-adjoint property of the matrix 
A.ki and the preservation of the orthonormality of 
the functions CfJk under the change of volume. 
Using Eq. (1) and the relation V"' R~, we get the 
virial theorem in the following form 

3pV = EK + E + m~;o 2; ~ ( cp: ~P :;: - :;: ~Pep~) dp. (9) 
k 

In Eq. (9), unlike Eq. (5), the contribution of the 
region near the surface of the body can obviously 
be made arbitrarily small as the number of cells 
N goes to infinity, since the boundary condition~ 
on the CfJk are fixed for a value of p that doe~ 
not depend on R0• The origin of the last term/in 
Eq. (9) is the same as for Eq. (5). Let us trans
form this term to a more convenient form. To do 
this we break up the integral with respect to p 
over the entire volume into a sum of integrals 
over the individual cells V a and note that the in
tegrand can be put in the form of the divergence 
of a vector. Accordingly the volume integral over 
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V a can be reduced to an integral over the surface 
S of the cell: 

!• ~ ( • arpk arpk •) 
3pV = EK + E + mRo 2] 'j' rpk 'VpaRo- aRo 'Vptpk ndS, 

k,<1. Sa. (10) 

By means of the boundary conditions the deriva
tives of <Pk with respect to R0 on the cell sur
faces that appear in Eq. (10) can always be ex
pressed in terms of the values of the functions 
themselves and their derivatives at the boundary, 
in a manner similar to the way this was done in 
the preceding section [Eq. (6)]. This will be done 
concretely a bit later [ cf. Eq. (12)] for the Bloch 
conditions in the Wigner-Seitz method of spherical 
cells. 

In concluding this section we remark that the 
extension of the result of Eq. (9) or Eq. (10) ob
tained in the H-F approximation to the general 
case is trivial. We give the result: 

EK= -~ 2]\ <D'(p)6p.<Ddp = 
2mRo i J ' 

- 2~ 2] ~ '¥' (q) 6; '¥ (q) dq, 

E = ~ '¥* (q) fl '¥ (q) dq + ENN, 

P = q I Ro· 

The summation is taken over all electrons; n is 
the number of electrons. 

THE PRESSURE IN THE WIGNER-SEITZ 
APPROXIMATION 

Ordinarily calculations of the energy of cohes
ion of solids are made by means of the sperical al
cell method of Wigner and Seitz.7 In this case the 
parameter R0 is the radius of a cell. At the bound
ary of the cell p = 1. The wave function <Pk of an 
electron with the quasi-momentum k obeys the 
Bloch conditions, which in the case of spherical 
cells take the form8 

tf!k (p, rr - B) = exp {- 2ik Ro cos B} 9k (p, B), 

iJrp (p, 1t -B) I iJp 

=- exp {- 2ik R0 cos B} iJrpk (p, B) I iJp at p = 1. (11) 

Here 8 is the angle between the quasi-momentum 
k and the radius vector r. Differentiating the ex
pressions (11) with respect to R0, let us substitute 
them in Eq. (10), first breaking the integral in Eq. 
(10) into two identical integrals and replacing e by 
(11'- 8) in one of them. 

After this we use the conditions (11) and their 
complex conjugates. We get 

1i.• \ • {r • arpk arr: )} 
3pv = EK + E + mRo 2] ~ tk cos e \ rpk ap-- ap9k p=l dQ. 

k (12) 

Here E and EK are the total and kinetic energies 
belonging on the average to one cell, and v is the 
volume of a cell. For the case of the simple bound
ary conditions <Pk = 0 or oq>k/op = 0 at p = 1 
the last term in Eq. (12) is zero. 

Equation (12) can be written in terms of the l/Jk: 

!•Rg \' I ( a<J;k a<J;· ) [ 
3pv = EK + E + --rrL 2] J ik cos e cp~ Tr- a!- cpk r=R,dn. 

k 
(12a) 

In the cell method the wave function l/Jk is written 
in the form of a series 

cp = 2] At (k) Rt (E, r) P1 (cos 0)· (13) 

Rz satisfies the radial Schrodinger equation with 
the potential U ( r). The function (13) must satisfy 
the Bloch conditions; this gives an infinite system 
of homogeneous equations for the Az, which in 
practice is broken off at a finite number of equa
tions and unknowns; by equating the determinant 
of the system to zero one can find the eigenvalue 
E for a given R0• 8 

After the functions l/Jk are found, the total en
ergy E and the kinetic energy EK are found by 
calculating integrals [cf. Eq. (7)]. Here in the 
spherical-cell approximation all the integrals ex
cept the exchange integral reduce to integrals over 
the individual cells. In the calculation of the ex
change integral, however, the interaction of several 
neighboring cells is important, and this leads to 
well known difficulties in the practical use of 
Eq. (12). 

We note that the solution of the one-electron 
Schrodinger equation (14) (sic) with the boundary 
conditions (11) gives the functions l/Jk approxi
mately, because the system of H- F equations 
does not break up exactly into separate equations 
of the type of Eq. (14). The H-F equations can be 
reduced to the form (14) by means of the modifica
tion of the H-F approximation proposed by Slater, 9 

with subsequent introduction of an effective poten
tial U ( r ) that is the same for all electrons. It 
is most expedient to use for U ( r) the statistical 
Thomas-Fermi potential. 

The formula (12), which it is most convenient to 
use, was derived by applying one-electron functions 
of the Bloch type in the H-F method (to each spatial 
function satisfying the Bloch conditions there corre
sponds a pair of electrons with opposite spins). 
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Therefore the question arises as to the accuracy 
of the H-F approximation as applied to a metal. 
It is well known that for the case of an unfilled 
band, when the H-F method does not coincide with 
the Heitler-London method, the H-F method can 
be extremely inaccurate at small densities of the 
substance because of the neglect of the effect of 
Coulomb correlation between the electrons. 6•10 

Therefore calculation of the cohesion energy by 
the H-F method without the introduction of cor
relation corrections can give incorrect results. 
In spite of this we can hope for good accuracy of 
the H-F approximation in the calculation of the 
pressure in compressed substances. In any case, 
however, it is always necessary to estimate the 
importance of correlation effects. 

In conclusion the writers express their sincere 
gratitude to Ya. B. Zel'dovich for a deep analysis 
of questions touched on in this paper and for helpful 
advice and suggestions, and also toN. A. Dmitriev 
and V. N. Mokhov for helpful discussions. 
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