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A perturbation theory is developed for the Green's function in which the Green's function cal
culated for the superconducting ground state is used as the zero approximation. Dyson equa
tions are written down from which the electron Green's function can be determined. Interac
tion between electrons and phonons is not assumed to be small. The spectrum and the damping 
of the excitations are calculated. 

1. INTRODUCTION 

As Migdal1 has shown in his work, a perturbation 
series for the vertex function of electron-phonon 
interaction converges rapidly, independent of 
whether the interaction is weak or strong. The 
expression A.0hw0 /EF served as the expansion 
parameter, where A.0 :S 1, w0 -maximum fre
quency of the phonons, E F - Fermi energy. For 
this reason, it was possible to solve the Dyson 
equation and find the Green's function of the elec
trons and the phonons with accuracy up to 
A.0hw0/EF. 

Application of this method to the study of the 
superconducting state is not possible if one starts 
out from the states of non-interacting electrons. 
Contemporary superconductivity theory makes use 
of a new system of approximate wave functions. 2•3 

The corresponding energy spectrum has a gap 

E (k) = Ve2 (k) + C2 (k)' 

where ~ ( k) is the spectrum of the normal state 
reckoned from the Fermi surface and C ( k) is a 
quantity defining the gap. The wave functions of the 
new collection of states depend both on the C ( k) 
and on the parameter. It is possible to determine 
them, for example, by a variational method2 or by 
the method of Bogolyubov. 3 Starting out from the 
new states, Bogolyubov determined the single par
ticle spectrum of the superconductor with accuracy 
up to A.0hw0 /EF.4 

It is of interest to apply the Migdal method, 
using superconductivity theory, to the determina
tion of the Green's functions of the electrons in 
the superconductor. In addition to the results of 
Bogolyubov et al., 4 this also allows us to compute 
the damping of the excitation. 

The Green's functions of the electrons in a 
superconductor were computed by Gor'kov5 for 
a model with a simplified four-fermion interaction. 
Use of a simplified Hamiltonian assumes the aver
aging of all quantities over the region with linear 
dimensions of order v0 /w0 "' 10-5 em (v0 - ve
locity of electrons on the Fermi surface). Since 
the depth of penetration of the magnetic field in a 
superconductor far removed from the transition 
point has the same order of magnitude, then the 
obtaining of equations of the type of the Gor'kov 
equations for the Frohlich Hamiltonian is of par
ticular interest. Such equations are derived in 
the present work with the aid of superconductivity 
theory, in which the Green's functions computed 
for the "superconducting" BCS-Bogolyubov ground 
state are used as the zero approximation. 

2. ZERO HAMILTONIAN IN THE INTERACTION 
REPRESENTATION 

Following the work of Migdal, we shall consider 
a system with the Frohlich Hamiltonian (the sys
tem of units is used in which h = m = 1 ) : 

H = ~ dx {~d (x) [H (x) - p.] cj>., (x) 

+ ~d (x) cj>, (x) q:> (x)} + H ph, 

~a (x) = v-'f, 2} akaeikx. 
k 

q:> (x) = v-'f, ~ IXq (bq + b~q) iqx . 
q<qM 

(1) 

(2) 

Here H ( x) is the one -electron Hamiltonian, qM 
is the maximum momentum of the phonons; for 
q « qM, 

(3) 
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A.0 ~ 1 is the dimensionless parameter of Frohlich, 
k0 is the Fermi momentum, s is the sound veloc
ity. The chemical potential J.l. is included in the 
Hamiltonian, since states will be used with a vari
able number of electrons. The explicit form of the 
phonon Hamiltonian is not needed. 

We now introduce an abbreviated notation which 
is suitable for further exposition. We number the 
operators l{J1; 2• 1/J- 1; 2• 1/J~ 1; 2• l/Ji;2 and will then 
deal with the "vector" 1/Ja (a= 1, 2, 3, 4). The 
operators 1/Ja satisfy the commutation relations 

{rjl. (x), o/13 (x')} =I •. flo (x- x'), (4) 

c 
0 0 

~). ' 0 0 1 (5) 
1= ~ 1 0 

0 0 

!2 = :E c:E is the unit matrix) . 
Along with 1/Ja, we shall consider 

'Xo (x) = ~ dy [ U (x, y) rjJ +'!: (y)- V (x, y) 4::!::,1, (y)], 

xdx)b ~dy[U(x, y)rjl_,1,(y) + V(x, y)rJ!t,1,(y)]. (10) 

U and V are, generally speaking, complex func
tions. Such conditions should be imposed on them 
that the operators x satisfy the commutation re
lations for Fermi operators. The ground state is 
determined as a vacuum excitation. 

In connection with what has been pointed out, 
we redetermine the zero Hamiltonian and write 
down the total Hamiltonian in the following form: 

H=Ho+H', Ho = H,z + Hph, 

fl' =Hint- (Hez- H,z); 

H,1 = ~ H a.il (x, y) ~13 (x) o/o: (y) dx dy, 

H.il (x, y) = H~a. (y, x). (11) 

(6) In order that the matrix Ha,B be diagonal in the 

such that 

{~"'(x), rji13 (x')}=oo:flo(x-x'). (7) 

In this notation, the Hamiltonian has the following 
form: 

H = H,z + Hph +Hint, 

H,z = ~ dx~o: (x) [H (x)- fL] rJ!!l (x) Nilo:• 

H;nt = ~ dx~"' (x) ~13 (x) cp (x) N !lo:• (8) 
A 

The matrix N guarantees the normal order of the 
operators: 

N=(~ ~ ~ ~). 
0 0 0 0 

(9) 

As has already been noted, application of per
turbation theory to the Hamiltonian of non-inter
acting electrons He! does not lead to supercon
ductivity in any finite order, independently of 
whether we expand the Green's function or the 
vertex function in a series. Our aim is to con
struct a perturbation theory for the Green's func
tion on the basis of the collection of states em
ployed in contemporary superconductivity theory. 
Bogolyubov3•6 determined these states as the eigen
states of the operator of the number of particles 

~ dx [Xd (x) Xo X+ xt (x)xi(x)], 

where x+, x are the creation and annihilation 
operators of the excitations, introduced by means 
of the canonical transformation 

x -representation, it must have the following form 
in the representation of the 1/J -operators: 

fi (x, y) = 

H (x, y) 0 
1 2 C (x, y) 0 

0 H (x, y) 0 
1 - 2 c (x, y) 

1 • 
2 C (y, x) 0 0 0 

0 
1 • 

-2C (y, x) 0 0 

(12) 

In the absence of external fields, H ( x, y) and 
C ( x, y) are real functions of the difference in the 
arguments. We denote their Fourier components 
by ~ ( k) and C ( k), respectively. As we shall 
see, '( (k) will represent the renormalized en
ergy of the electron excitations in the normal 
state, while C ( k) will determine the energy gap. 
The transformation functions (10) are also real if 
there are no external fields; their Fourier compo
nents are connected with ~ ( k) and C ( k) in the 
following fashion: 

u~ = 1--(I + 1(k)/Vf2 (k) + C2 (k)), 

v~ = 1--(I -E(k)/Vf2 (k) + C2 (k)). (13) 

We now determine the Green's functions 

G~ (x, t; x', t') = - i (To/o: (x, t) ~ll (x', t')), (14) 

D(x,t; x', t') =- i (Tcp(x,t)cp(x',t')). (15) 

For brevity, we shall call the matrix G with the 
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matrix elements (14) the electron Green's function. 
Sometimes we shall find it convenient to deal with 
quantities 

Ga.~ (x,t; x',t') =- i <T4o: (x,tH0 (x',t')). 

The electron Green's function of zero approximation 
satisfies the matrix equation 

i ~ (;<OJ (x, t; x', t')- ~ dy fi (x, y) (;<OJ (y, t; x', t') 

=AEo(x-x')o(t- t'), 

fi (x, y) = fi (x, y) -1 fr (x, y) i 

uct of four operators for simplicity, we obtain 

(T<jla.cJlfl4r4s> = U a.a..U f3fl.U n.U sa, (TXa.Y·fl,Xy,Y.a,> 

= u aa.,u fl~.u yy,u aa, {(Txa.,Xfl,> <Txy,Xs,> 

- <Txa..Y·r.> <Txfl,X&,> + <Txa,Xa,> <Tx/l,Xr,>} 

= <T4a41l> <T4As> 

- <T4a.c¥r> <T4fl4o) + <T4a4s> <T4fl4r>· 

Here it is evident that, in the notation used, the 
average vacuum states are computed according 
to the usual rules. In this case the matrix <}<O> 
serves as the Green's function. 

3. DERIVATION OF THE EQUATIONS AND CAL-(if (x, y) ~ 0 C (x, y) 0 ) 

_ ~ • 0 H (x, y) ~ 0 - C (x, y) 
- C (y, x) 0 -H*(x,y) 0 · 

0 - c· (y, x) 0 - !f<(x, y) 

(16) CULATIONS OF THE ELECTRON GREEN'S 
FUNCTION 

Transforming to Fourier components in x and 
t, we obtain 

We begin with the equation for the Green's 
function 

(wE- fi (k)] (;<OJ (k, w) =E. [l. j) ' H(OJ ( ) + r<O>J" all ( t,· x', t') (1 7) Tt Clay - o:y X iJ. ay y X, 

The solution of Eq. (17) can be written as follows: 

(;<OJ (k, w) 

~( "'"'~· •) 0 p(O) (k, w) 

a<o) (k, w) 0 

p(O) (k, w) 0 - o<0J (k, -w) 

0 - p<OJ (k, w) 0 

(0) ui ui 
.(] (k, w)= w-e(k)+ili + w+e(k)-io 

.F<OJ(k w)= C(k) 
' (w-e(k) + ili)(w + e (k) -ili) 

(s(k} = Vf2 (k} + C2 (k)). (18) 

The imaginary part was determined by a theorem 
of Landau. 7 The functions G<O> and F<O> have 
the same structure as the corresponding Gor'kov 
functions. 5 

To construct a perturbation theory, it is neces
sary to establish the rule of calculation of the av
erages, over the ground state of the Hamiltonian 
H0, of the T -product of the lf! -operators in the 
interaction representation. Direct application of 
the Wick theorem is not possible, since the concept 
of a normal product does not exist for the lf! -oper
ators. We transform to x -operators by means of 
the transformation (10), which we shall write for 
brevity in the form lf!a = Va[3X{3· With reference 
to the x -operators, the ground state is a vacuum 
one. Therefore, the usual rules of calculation of 
the mean are applicable. Considering the T -prod-

= a.13 o (x- x') o (t- t') 

- if~0~ (Trp (x, t) 'fr (x, t) 4/l (x',t')), (19) 

c(·l 0 0 0 

) fi!O> (X} ~ : 
H (x) 0 0 

0 - ff' (x) 0 

0 0 - J( (x) 

I 1 0 0 

:: ) A,(Q) - A A A A - ( 0 1 0 
1 -N-INI- 0 u -1 0 . (20) 

0 0 0 -1 

Introducing the matrix i; ( x, t; x', t), we write 
(19) as follows: 

[i ~ E-fl(O)(x)+ (J.l'(U)1Q(x,/; X',/') 

=Eo(x-x')o(t-t') 

+ ~dy d-; t (x, t; y, -;) G (y, -:; x',t'). (21) 

In the absence of an external field in (21), we can 
transform to the Fourier components in x and t: 

[wE-~ (k) f~<ol- i; (k, w)] G (k, u)) =E. (22) 

For the study of the structure of the self energy, 
we shall expand < Tcp ( x, t) 1/Jy ( x, t) q;f3 ( x', t' ) > 
in a perturbation-theory series. Since the vacuum 
averages in the interaction representation are ex
pressed in terms of the matrix <}<OJ by the usual 
rules, we can make use of the usual graphical tech-
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niques. To each solid or dashed line, there corre
sponds an electron or phonon Green's function, 
multiplied by i, and to the simple vertex there 
corresponds the matrix f<O> [see (20)]. Were
call that by the electron Green's function we mean 
the matrix G <O>, defined by (17). 

It is now clear that we can write down the Dyson 
equation which defines the connection of the self 
energy £ with the exact Green's functions and the 
total vertex function f : 

x D (k- k1 ; w- w1) f (k, w; k1, (lh)· 

To expand f in a perturbation theory series, 
we need to know the zeroth Green's functions which 
contain the (still undetermined) quantities ~ ( k) 
and C (k). We shall assume that we are limited 
to a simple vertex f <O>. There is no necessity in 
the exact expressions for ~ and C for an esti
mate of the contribution of higher approximations. 

For a normal metal, as has already been pointed 
out, we can replace the vertex function by a simple 
vertex. Calculations, completely analogous to those 
performed by Migdal, lead to the conclusion that in 
our case we can, with the same accuracy, neglect 
all corrections and limit ourselves to a simple 
vertex. Without presenting the calculations here, 
we shall make only a few remarks. For computa
tion of £, the larger values of the transferred 
momentum q "' k0 are important. Therefore, for 
example, in a simple tripole, both electron Green's 
functions enter with a large difference in the argu
ment, and are therefore shown to be almost orthog
onal. The difference of the "super conducting" 
Green's function from the "normal" does not ap
pear to be essential here. It would have been nec
essary to take into account the counter term of H' 
only in the calculation of subsequent corrections 
to the vertex function. 

Thus, replacing f ~y f<O>, we obtain the fol
lowing expression for 2:: : 

(23) 

The phonon Green's functions of the supercon
ductor and the normal metal are practically iden
tical, since the region of momenta which is impor
tant for the determination of D is large in com
parison with the region of momenta close to the 
Fermi surface which is responsible for supercon
ductivity. Therefore, we can use for D the ex-

pression of Migdal: 1 

(24) 

Equations (22) and (23) now form a closed sys
tem. We eliminate 2:: from the equations and 
write down the resultant matrix equation in the 
coordinate representation: 

[i ~ £ _fi<o> (x) + p.r<o>] G (x, t,x',t')=Eo (x-x') o (t- t') 

+ i ~ dyd-r: r<o>a (x,t; y;r) 

X D (x,t; y,-r:) f'<o>a (y, -r:; x', t'). (25) 

If we were to write out this equation in detail, 
then it would be seen that the system obtained here 
has the structure of the Gor'ki'l equations. Equa
tion (25) was derived for the case in which external 
fields are absent. However, it can be expected that 
it remains valid even when H (x) contains an ex
ternal field, for example, a magnetic field. We 
note that it has a gauge invariant form. 

We now turn our attention to Eqs. (22) and (23). 
The matrices G and i in them also have the 

" (0) same matrix structure as the matrix G [ see 
(18)]. The formula for G is obtained fro~ (18) 
if the index zero in the latter is omitted; 2:: is 
obtained from (18) if we replace G <O> and F<O> 
by 2:: 1 and 1: 2, respectively, where 

It will be convenient for us to solve the equation 
for f; therefore, we express G in terms of f 
by means of (22): 

G = [w + ~ (k) + E1 (k,- w)] I .Q (k, <o), 

F (k, w) = E2 (k, w) I .Q (k, w), 

.Q (k, w) = [w- ~ (k)- E1 (k, w)J 

x (w + ~ (k) + E1 (k1- w)]- [E2 (k, w)]2. (27) 

We divide 2:: 1 (k, w) into an odd f(k, w) and 
an even I-tt (k, w) part relative to w. Then, by 
substituting in (26a) the expression for G from 
(27), we get the equations 
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f(k ) i \dk d Wt-f(kt.Wt) D k k 
, w = (2")4 J 1 W1 n (ktwt) ( - 1o w- w1),(28) 

~ (kt) + P.t(kt. Wt) 
Q (kt. Wt) 

(29) 

In Eq. (29), we divide the region of integration 
over kt into two parts, with I~ ( kt) I < ~t and 
I~ (kt) I > ~t• respectively, where w0 « ~t « EF. 
The integration over the first part vanishes be
cause of the odd nature of the integrand relative 
to ~ (we can include the l-It in ~ under the in
tegral). In the integral over the second part, we 
neglect ~ in comparison with ~. We can then 
complete the integration over Wt· Then, transform
ing from integration over the angles to integration 
over q = I k- kt I. and taking it into account that in 
the important region, wq « I ~ I, we obtain for l-It 
the expression 

f Q~M (1)(0) ~ '(k ) k ,.... (k w) = - -~ 2 q d P ' 1 1 dk (3 0) 
• 1 ' 87t2k • qrxqw; q· ~2(kt)-w2 1· 

0 

For w « EF and k"' k0, the function l-It does 
not depend on k and w, and represents a correc
tion to the chemical potential 

1..1. = E (ko) + [J.1. 

Before proceeding to solve the equation for f 
and ~ 2 • let us investigate certain analytical prop
erties of the electron Green's function in a super
conductor. We shall not undertake a rigorous deri
vation of these properties, and therefore shall con
sider for simplicity the Green's function of zero 
approximation (18). The function G< 0>( k, w) can 
be written as 

a<o) (k, w) = (w + ~ (k)} I (w-E (k) + io) (w + E (k)- io). 

Simultaneously, we consider the function of com
plex argument 

a<o) (k, z) = (z + ~ (k)) I [z- E (k)] [z + E (k)], 

which is analytic at all points in the z plane ex
cept the parts of the real axis (- oo, - .6.) and 
(.6., + oo), where .6. = E (k0 ) (Fig. 1). In the inter
val ( -.6., +.6.), we have (}<O> = G<0>. For w ::s -.6., 

the value of G<O> coincides with (}<O> on the lower 

(z) 

L 

FIG. 1 

side of the cut, while for w ~ .6., on the upper side 
of the cut. The values of ~<O> on the opposite sides 
of the cuts are complex conjugates. Analytic con
tinuation of G <O> in the upper half plane for w < - .6., 

and in the lower half plane for w > .6., has poles 
which determine the single particle spectrum of the 
system. Here, the path along which the analytic con
tinuation follows must intersect the real axis outside 
the cut ( - .6., .6.) • Everything that has been said also 
applies to the function F<o>. The exact function G 
and F must also possess the general properties 
that have been enumerated. For .6. = 0, these 
properties coincide with the analytical properties 
of the Green's function obtained in reference 8. 
Thus we can assume that the functions 'i:t ( k, z) 
and 2 2 ( k, z ) exist and are analytic everywhere 
except for the parts of the real axis (- oo, - .6.) 
and ( .6., + oo) and coincide respectively with 
~ t ( k, w ) and ~ 2 ( k, w ) on the lower side of the 
cut (- oo, - .6.), at the cut of the real axis (- .6., .6.), 
and on the upper side of the cut ( .6., + oo). The val
ues of 2t and 2 2 on the upper side of the cut 
( - oo, - .6.) and on the lower side of the cut ( .6., + oo) 

are equal to ~ r and ~:' respectively. 
We shall now employ these properties in the 

solution of the equations. We transform in (28) 
from integration over the real axis to integration 
over the contour L (Fig. 1), replacing the functions 
of real argument w by the corresponding analytical 
functions. Moreover, we transform from integra
tion over kt to integration over ~, q = I k - k1 I 
and cp. Since k "' k0, and the integral over kt 
converges in the interval kt "' k0, then dkt 
Ri q dq k0t d~ dcp. As a result, f is shown not to 
be dependent on k. In what follows, we shall see 
that ~ 2 also does not depend on k. Therefore, we 
can write Eq. (28) in the form 

. q~, (1)(0) 00 -
f (w) =- -. -1

3- qoc2 _q_ dq r d~ I dz z- ~(zJ 
(21t) k0 q wq ) J ~2 _ Q2 (z) 

0 -oo L 1 

x( 1 . _ 1 ) 
Z- W- Wq + llit(q) 2- w -t- wq- ili1 (q) ' 

where qt = min ( 2k0, qM) and the notation 

Qi(w) = [w-f(w}]2 -P::2 (w)] 2 

has been introduced. 
The function [ z - w - wq + iot ( q)] -.t is analytic 

in the upper half plane. Therefore, in the corre
sponding part of the integral, the contour L can 
be deformed into the contour Lt. By analogy, in 
this part of the integral, which contains [ z - w + wq 
- iot ( q) r 1, the contour L can be deformed into 
L2 (Fig. 2). Further, since [z-f(z)][~ 2 -!.1~(·z)]-t 
is an odd function, one can proceed from inte-tte
gration over Lt to integration over L2• Finally, 
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{z) 

-d +d 

---{E=~==- 6J 

FIG. 2 

by carrying out integration over ~, we arrive at 
the equation 

sign Im (Q1 (z)} 

x [I/ (z- w + wq- io1 (q))- lj (z + w + wq- io1 (q)J. 

On the upper side of the cut, 1m { Q1 } . > 0, and it 
appears that on the lower side, 1m { fl 1 } < 0. 
Taking this into account, we obtain 

q, (0) 00 

f(w) =- _1_(' qa,2ldqi dw1Re {w1-f(wi)} 
47t2k0 J q wq ) .Ql(w1) 

0 ~ 

X ( w1- w + ~q- iol(q) - w1 + w + !q- iodq) ) · 

We introduce the function 

Im f (w) = f1 (w) 

1 ~'{• ro(O) ro-c.> 
=- -- a,2_q_ q f:l w-w -L\ d 

47tk0 q q wq V (w-w )•-A• ( q ) q, 
0 q 

f:l (w) ={I for w > 0, 
0 for w < 0. 

(33) 

It is therefore evident that f1 ( w) = 0 for w ::::; A. 
For a = ( w- A)/ A « 1, it is not difficult to ob
tain the result that 

f ( ) = _ "'"o (2 - A0) (~)2 (~ •;, -L O [ 'I•] ) ,. 
1 W (1-A0) 2 W 0 15 (1., 1 a, Ll. (34) 

For w » A, the quantity f1 transforms into the 
imaginary part of the self energy of the normal 
state: 

f ( ) = _ "'"o (2 - A0) (_!"..)3 ~ / ( ) 
1 w 6 (1 - Ao)• wo Wo, Wo = 2sk0 y 1 - A0j2. 35 

Applying the same considerations as in the deriva
tion of the equation for f ( w ) , we can get from 
(26b) and (27) the following equation for ~ 2 (w): 

00 
Q(w)=.E2 (w)j(l-f(w)jw). \' {~(w)}( 1 1 ) 

X J Re .Q: (w:) w1- w + wq- ill + w1+ w + wq -io dCJ)l· 

As we shall see, for w =A, the imaginary part ~ 
of Q vanishes, while the real part is equal to A. Introducing the function Q ( w) in place of 
For w >A, we have Re Q <A, 1m Q «A. There- ~ 2 ( w ), we get 
fore, 

Re{(wl-f(wi)/ .QI(wi)};::::;wi/Ywi-L\2 • 

Since o1 (q)/wq"' A.0w0 /EF, then 

Ref (w) = fo (w) 

Here we take it into account that in the integral 
w1 "' w0 » A. For w « w0, 

(31) 

1 - A0 + /. 0qi!Bk~ f0 (w)=-Aw, A=2ln 1 _),.0 • (32) 

We see that f0 ( w) coincides with the correspond
ing part of the characteristic energy of the elec
trons in the ground state. 1 

In the calculation of the imaginary part of f ( w ) , 
we should, in the limits of the desired accuracy, 
assume that o1 ( q) is an infinitely small quantity, 
since o1 ( q) « A. Therefore, for w > 0 [ f ( w) 
= -f(-w)], 

Q (w) = 4 ~k [I - f(w) __!_J-1 r' qa,2 w~o> dq f Re { V Q (w1) } 
"' 0 (I) ) q (l)q .) 2- .. 2 

0 ~ (J)l '-' 

X . + , . dw. ( 1 1 ) 
(1)1- (I) + (l)q- !0 (J)1 + (J) -,- (J)q -10 1 

(36) 

For w « w0, the quantity 1m f/w « 1, and con
sequently, 

1 1 r· (1)(0) r 
Re Q (w) = C (w) = 4"'•ko 1 +A J qa,~ ;q dq j 

0 0 

X ( 1 
w1(~)-w +wq 

+ 1 )d~ 
(1)1 (~) + (J) + (l)q ~-

C (wt(~)) 

Jf~· + f12 

(37a) 

The integral is calculated in the sense of the prin
cipal value; A. is determined by Eq. (32). We have 
carried out the substitution w1 - -../ ~ 2 + A 2 under 
the integral sign. 

For w "' w0, the imaginary part of f ( w) is 
comparable with w if A.0 "' 1. Therefore, for A.0 
"' 1, determination of the spectrum in this region 
of values of w no longer makes much sense. For 
w » w0, we have f ( w) I w « 1, and therefore 
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The result for C, obtained by Bogolyubov, 4 can 
be written in the following fashion: 

C (w) = _1_ [I_ fo (w) ]-1 
2r;2ko w 

q~, w<o) L~;' C (w (til d~ X (J,2_q_d 1 - • 

q q w q y~2 --1-- ,l2 wl(~) + w + wq 
0 q 0 ' 

(38) 

For w « w0, our result does not differ from (38) 
and, in particular, the results for the gap .6. coin
cide. However, the behavior of C ( w) for w ~ w0 

is different in the two cases. This difference, which 
does not exist for many problems, is connected with 
the following. The equation (38) is obtained from 
the principle of compensation of dangerous diagrams, 
which are actually dangerous only for w « w0• Our 
formulas are derived from the Dyson equation, i.e., 
actually, are the summation of a definite class of 
diagrams, which exclude all "dangerous" diagrams. 
Therefore, (36) and (37) describe the behavior of 
C ( w) more exactly for large w than does (38). 

The imaginary part of Q ( w) is equal, for w 
« w0, to 

1 1 (' w<o) C(w-wq) 

ImQ(w):==CI(w)= 4do 1 +J.. ~ q(J,~ !q V(w-w)2 -,l2 
0 q 

1 fr(w) C( ) x B(w-wq-~)dq + 1 +A - 00- w · 

The principal terms of both components for a 
= ( w - .6.) I .6. « 1 are proportional to a 512• They 
differ only in sign and cancel out. For thisis 
reason C1 ( w) "' a 112, for a « 1, and makes 
no contribution in practice to the imaginary part 
of the Green's function. For w » .6., the quantity 
C1 does not play a role. 

The spectrum and the damping of the excita
tions are determined by the roots of the equation 

[w- f (w)J2- [; (k) + f!-1 ] - [E2 (w) ]2 = 0, 

whence, for w « w0, 

w (k) = s (k)- ij (k), s (k) = VP (k) + C2 (k), 

1 (k) =- fi (s (k)) /(I + 1-), (39) 

where t = ( ~ + 111 ) I ( 1 + A.) is the renormalized 
energy of the electron of the normal metal, reck
oned from Jl.· 

For ( d k) - .6.) I .6. « 1, 

In the normal metal, the damping of the excita
tions in the vicinity of the Fermi surface falls off 
as ~3 for ~ » w5/EF and as ~ 2 for ~ « w5/EF. 
The much faster decrease of y( k) for k - k0 is 
connected with the fact that the important part of 
the interaction of the electrons with phonons close 
to the Fermi surface is contained in the zero Ham
iltonian. 

The author thanks L. E. Gurevich for his nu
merous valuable suggestions and discussions. 
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