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The dispersion properties of high-density, high-temperature media are investigated; media 
of this kind may exist in the inner regions of irregular stars (white super dwarfs). Single 
photon annihilation and electron pair creation occur at electron densities Ne ~ 1032 em -a. 
At frequencies which satisfy the inequality in Eq. (31) electromagnetic waves are scattered 
on nucleons rather than electrons. The index of refraction at these frequencies and densi­
ties is given approximately by n ~ 1 + 1.05 x 10-41 N ( N is the neutron density). Hard 
Cerenkov radiation can be excited in a medium of this kind. The energy of the Cerenkov 
photons satisfies the inequality in Eq. (35). 

SCATTERING OF ELECTROMAGNETIC WAVES 
BY ELECTRONS 

WE have shown earlier1 that under certain phys­
ical conditions single photon annihilation and elec­
tron pair production y ~ e+ + e- can occur in a 
scattering medium with a refractive index smaller 
than unity. In vacuum these processes can take 
place only in the presence of an additional particle. 
However, single photon annihilation and pair pro­
duction do not occur in all media with refractive 
indices smaller than unity. In addition to this con­
dition there are certain requirements on the den­
sity of particles and the temperature of the medium. 
The density requirement follows directly from a 
consideration of the meaning of the refractive in­
dex in a medium. Obviously, a refractive index 
is meaningful only if the following condition is 
satisfied: 

(1) 

where l is the mean distance between electrons 
and 7t" is the length of the electromagnetic wave 
divided by 27T. 

From (1) and the fact that the production and 
annihilation of electron pairs require a photon en­
ergy greater than 2mc2, where m is the mass of 
the electron, it follows that the effect being dis­
cussed here can occur only when the particle den­
sity in the medium is sufficiently high: 

N ;;.. 81\;-3 = 1.4 . I 032 em - 3, (2) 

where :ke is the electron Compton wavelength di­
vided by 27T. It would appear that densities of this 
kind are in fact found in the inner regions of white 
super dwarfs. 

It is apparent that atoms are completely ion­
ized under these physical conditions so that the 
ensemble of electrons constitutes a relativistic 
ideal gas. At densities given by (2) the mean 
kinetic energy of electrons is of order mc2 and 
higher while the ratio of potential energy Ze2 /r 
to kinetic energy cp is Ze2 I crp ~ Ze2 /llc « 1. 

For the densities of interest here the degenera­
tion temperature of the electron gas is 

To;;.. 4. IQlo. (3) 

It is difficult to say whether the electron gas in a 
star is degenerate or nondegenerate. It is possible 
that there are white dwarfs of both types in nature. 
These two cases lead to completely different phys-
ical results. In the first case, at sufficiently high 
densities we are dealing with a medium whose dis­
persion properties at very high frequencies are 
determined by neutrons rather than by electrons. 
In a medium of this kind the refractive index is 
greater than unity; hence the process y ~ e+ + e­
is forbidden. On the other hand, another phenome­
non can occur: charged particles moving with ve­
locities exceeding the phase velocity of light can 
emit hard Cerenkov radiation, with photon energies 
up to 150 Mev. In the absence of degeneracy, how­
ever, the dispersion properties of a medium are 
always determined by the electrons. In a medium 
of this kind at densities given by (2) the process 
y ~ e+ + e- is allowed while Cerenkov radiation 
is not. Both of these limiting cases will be dis­
cussed in detail below. 

When the electron gas is not degenerate it is 
apparent that the dispersion is always determined 
by the electrons. As is well known, at frequencies 
greater than characteristic atomic frequencies the 
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refractive index of a medium is given by the rela­
tion 

(4) 

degenerate. In this case 

f (p) = p2 I 4rr3t,3 for p < pf' 

f (p) = 0 for p > p1; (11) 

However, this relation cannot be used in the present where Pf is the limiting Fermi momentum, which 
case because its derivation assumes that the elec- is given by 
trons are nonrelativistic whereas the electrons are 
relativistic in the case at hand. 

At densities given by (2) electrons are quasi­
classical particles. Provisionally, we may also 
assume that the quasi-classical approach is valid 
at relatively low electron densities; in particular 
we require that the mean distance between particles 
be somewhat smaller than the Fermi radius of the 
atom l « z113n2/me2• 

In order to calculate the refractive index we 
must find the additional velocity V' = v -v0 ac­
quired by a free electron under the influence of 
the electromagnetic field. Solving the Hamiltonian­
Jacoby equation for an electron in a field of a plane 
electromagnetic wave A ( r, t) = A0 exp { i ( k • r - wt) 

[V'S- (ejc) A]2- c-2 (oSiof) 2 + m2c2 = 0 (5) 

and then computing the velocity v from the formula 

(1- ~2)-'1'mv = V'S- (efc) A, 

we obtain the additional velocity v': 

v' = _ !:_ A + ec2 (PoA) k 
Eo Eo [c (p0k) + kEo] 

ec3 

_L £3 (poA) Po. 
0 

ec4 (pok) (PoA) Po 

E~ [c (p0k) + kEo] 

(6) 

(7) 

where Po and E0 = c ( p~ + m 2c2 ) 112 are the initial 
momentum and energy. 

We now determine the current induced by the 
electromagnetic field: 

j' = e ~ v'f (Po) dp0 sin~} dS drp, (8) 

where f ( p) is the electron distribution in mom en­
tum space.* Substituting Eq. (7) in Eq. (8) and car­
rying out the integration over angles (i.e., over 
the initial direction of motion of the electron), we 
obtain 

(9) 

where E is the electric field intensity. Now, com­
paring the microscopic and macroscopic field equa­
tions and taking account of Eq. (9) we find the follow­
ing formula for the index of refraction: 

n2 = 1 - 8"2e2c2 \'(I -L m2c2 In E + cp) f (p) dp. (1 0) 
w2 J , ' Ep mc2 E 

First we consider the case in which the gas is 
*We omit from now on the subscript "zero" from the sym­

bols for the momentum and energy. 

(12) 

When Pf « me we obtain the familiar formula (4); 
when pf ?:: me we have 

n2 = 1 - (w0/w) 2 , 

w~ z 3-:cce~N 1 Pr z 3c2N'1• 1 137. 

(13) 

(14) 

Thus, for a relativistic degenerate gas the constant 
w~ is proportional to N213 rather than N. 

We now consider the case in which the electron 
gas is not degenerate. Under these conditions we 
have2 

f (p) = Nrp (T) [p2/ 4rr (mc)3 ] exp (- E 1 xT), (15) 

rp (T) = [2u-2K1 (u) + u-1K 0 (v)]-1 • (16) 

The quantities K1 and K0 are Bessel functions of 
the second kind of imaginary argument while u 
= mc2/xT (X is the Boltzmann constant). When 
u » 1 we have 

rp z 4rr (mc)3 (2-:cmxT)-'/, eu' 

and when u « 1 we have cp ~ u3/2. 
As in the preceding case, upon substitution of 

Eq. (15) in Eq. (10) we obtain an integral which 
cannot be integrated exactly. When u ;S 1, as an 
approximation we have 

n2 (w) z I - 4.8TCez N9 e-u. 
mw2 u 

(17) 

When u » 1, Eq. (17) no longer applies and 
does not give the proper transition to the familiar 
formula. As we see, in the absence of degeneracy 
the refractive index depends on temperature. 

It is apparent that in the absence of degeneracy, 
in the region in which one can apply the notion of 
the dielectric constant of a medium, the dispersion 
is always determined by the electrons. Conse­
quently, at electron densities Ne .<: 1.4 x 1032 em - 3 

photon annihilation and electron pair production can 
occur in a medium. 

We now consider the second limiting case; here 
the electron gas is highly degenerate (temperatures 
T « 4 x 1010 ). (In this case there are still two pos­
sibilities: either the neutrons are not degenerate or 
the neutron gas is also degenerate.) Under these 
physical conditions it turns out to be more favor­
able thermodynamically to have reactions in which 
the nucleus captures an electron and simultaneously 
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emits a neutrino.2 Because of this reaction the num­
ber of protons in the nucleus is reduced sharply and 
eventually the nucleus becomes unstable and decays. 
As a result we must in fact consider an ideal gas 
of electrons, protons, and neutrons. 

The number of particles of each kind is deter­
mined from the equilibrium condition, that is to 
say, from the condition that the thermodynamic 
potential be a minimum for a given pressure and 
temperature. For the reactions 

where e-, p, n, v and ii denote the electron, 
the proton, the neutron, the neutrino and the anti­
neutrino respectively, the equilibrium condition is 

(18) 

where Jl.e, Jl.p and Jl.n are the chemical potentials 
for the corresponding particles. The electron chem­
ical potential is 

(19) 

where Ef is the limiting Fermi energy. 
If the nucleon gas is not degenerate, we have2 

[LP = xT In [ :P (~:; )';, J; :Ln = xT In [ 1~n (~:;~ )"' J . (20) 

Substituting the values of the chemical potentials 
in Eq. (18) and using the obvious relation Np = Ne, 
we find* 

(21) 

Since the electron gas is assumed to be highly de­
generate xT « 7TctiN~{3 and, consequently, Nn » Ne. 

Now we assume that at the densities being con­
sidered the temperatures are so low that the neu­
tron and proton gases are also highly degenerate. 
In this case 

!Lp = Mc 2 + (fi~j2M) (3;c 2N ,)'!,, 

[Ln = MnC2 + (li2j2Mn) (3;c2N n)'/., (22) 

where Mn = M + am is the mass of the neutron 
and a ~ 2.54 is the difference in the masses of 
the neutron and proton expressed in units of elec­
tron mass. Here we assume that the proton and 
neutron are nonrelativistic particles, as is the 
case for matter densities up to the order of nuclear 
densities. Substituting Eqs. (19) and (22) in the 
equilibrium relation (18) we find 

*It is appropriate to note that there are no positrons in the 
medium at the temperatures being considered here. These par­
ticles appear only when xT > me• (cf. reference 2, page 334). 
Because the electron gas is degenerate pair production is for­
bidden by the Pauli principle. 

N e = x-3N 0 {[ 1 + IXX/lt + x2 (N n/ N 0)'1•]'/,- 1}3, (23) 

where we have introduced the notation N0 = 87te3 

= 1.4 x 1032 em - 3 and K = 27Tm/M. 
If we limit ourselves to densities of the order 

of nuclear densities or smaller, Nn ~ 1 o38 em - 3, 

Eq. (23) can be simplified: 

N,~(N0j8)[1Xjlt + x(NnfNo)'1'] 3• (23') 

In order to ascertain whether the process y ~ e+ 
+ e- with the participation of the medium is pos­
sible or not, we must first understand the role 
played by the nucleons in the scattering of electro­
magnetic waves. 

2. SCATTERING OF ELECTROMAGNETIC WAVES 
ON NUCLEONS 

Under certain physical conditions, i.e., high 
matter densities, low temperatures (so that the 
electron gas may be considered highly degenerate), 
and high frequencies, electromagnetic waves are 
scattered on nucleons rather than on electrons, 
Under these conditions hard Cerenkov radiation is 
produced of necessity. 

To understand the nature of this effect, we in­
vestigate the dispersion properties of a medium 
consisting of neutrons. We compute the refractive 
index of such a medium for electromagnetic waves 
and determine the frequencies and neutron densities 
for which the dispersion properties of the medium 
are determined by the neutrons rather than by elec­
trons (we should speak generally of nucleons; how­
ever, under the physical conditions of interest the 
number of protons is small compared with the num­
ber of neutrons, so that we shall consider only the 
latter although the results also apply to protons). 

Although it is electrically neutral, the neutron 
is capable of scattering y quanta. This effect is 
relatea to the well-known phenomenon of meson 
photoproduction. Both virtual and real mesons can 
be created in the interaction of photons with neu­
trons. The creation of real mesons corresponds 
to absorption of a wave; hence the refractive index­
of a medium consisting of neutrons is a complex 
quantity: 

(24) 

The following relation obtains between the real 
and imaginary parts of the index of refraction: 3 

co 

( ) _ I , 2 C zn 1 (z) d· n w - -:- ---;-- ~ ;,2 _ w2 z, 

0 

(25) 

where the bar means that the integral is to be un-



------------------~~~---

DISPERSION IN HIGH-DENSITY, HIGH-TEMPERATURE MEDIA 613 

derstood in the sense of the principal value. Ex­
pressing n1 ( K) in terms of the photoproduction 
cross section: 

n1 (x) = (cj2x) N ncr (x), (26) 

we find 
'V co 

( ) _ 1 . ~ C a (><) dx 
n W - -t r. 3 r.Z - wZ • (27) 

0 

To compute n we start with the experimental 
curves for the cross sections for photoproduction 
of neutral pions on protons.4- 6 This curve exhibits 
two maxima: the first is very narrow and well de­
fined ( nw = 320 Mev)" while the second is very 
weak and broad ( E "' 7 00 Mev ) . 

The neutron density increases towards the center 
of the star and, in accordance with (1), the region 
for which we can use the notion of a refractive in­
dex shifts towards the higher-energy quanta. In 
the limiting case we deal with nuclear densities. 
Under these conditions the mean distance between 
particles is n/ J.I.C ( J.t is the mass of the pion) and, 
correspondingly, the limiting photon energy should 
be of the order of 150 Mev. Hence, we can speak 
of a refractive index for neutron matter only at 
photon energies nw ~ 150 Mev. In this energy 
region U' ( w) = 0 and the principal maximum is 
found at an energy which is twice 150 Mev. It is 
thus clear that, since we are interested in frequen­
cies nw ~ 150 Mev, the detailed dependence of 
U' ( w) on w is unimportant for the determination 
of n ( w ) . As a good approximation to the true 
curve shown in the figure we can use a discontinu-

100 BiJO rilCO 

El.s.• Mev 

ous curve ( shown by dashes ) ; the dashed curve 
is chosen to make the area between it and the ab­
scissa axis approximately the same as the area 
formed by the experimental curve. Further, we 
assume that the cross sections for photoproduc­
tion of neutral and positive pions on protons are 
the same (as is approximately the case5•6 ) and 
that the cross sections for photoproduction on neu­
trons and protons are also equal. Thus, for U' ( w) 
we have: 

0 for w < w~> 
a (w) = cr1 for w1 < w < w2, 

o2 for <u > w2 ; (28) 

where U'1 = 5 x 10-28 cm2, U'2 = 0.62 x 10-28 cm2, 

w1 = 3. 7 x 1023 is the frequency corresponding to 
a photon energy of 240 Mev, and w2 = 6.1 x 1023 

is the same quantity for an energy of 400 Mev. 
Since we are interested only in the frequency 

region nw « 150 Mev "' nw1 we can neglect w 
in the integrand in Eq. (27). Then, using Eq. (28) 
we have 

(29) 

Thus, the dielectric constant of neutron matter is 
essentially independent of frequency and always 
very close to unity. 

In the final analysis, to determine whether the 
dispersion properties of the medium are deter­
mined by the electrons or by the neutrons, we must 
compare Eq. (29) with Eq. (13). The dispersion is 
determined by the neutrons when 

(n2 -1)/(1- n;) = 2,l·l0-41Nn (w/(IJ0) 2 > 1, (30) 

where the subscript e refers to the electron. 
From Eq. (14), substituting the value of w0 we 
find 

(31) 

First we consider the case in which the nucleon 
gas is not degenerate. According to Eqs. (21) and 
(31) the condition that dispersion be determined by 
electrons is given by the relation 

NY' exp (aNY'JT) < 3,6 ·1 017 ((IJ0 jw)2, (32) 

where we have introduced the following notation: 
nw0 = 2mc2, a = 1rcn/x ~ 0. 72. Taking account of 
the inequality in (1) w :S cN~3 , we find that when 
aN~(3/T ~ 15 the process e+ +e--.... y is possible 
in the medium. At lower temperatures, however, 
this process is forbidden. The inverse process, 
y-.... e+ + e-, is forbidden by the Pauli principle; 
it becomes possible, however, if vacancies appear 
in the electron distribution because of various 
processes. The dispersion is determined by the 
neutrons when 

3.6·1017 (N0 /Ne)'1• exp (- 2aNY'J3T) ~ 3.6-1017(w0/w) 2 

< N~·exp (aNY'JT); (33) 

Here, the condition at the left means w :S cN:{3. 

Whence it is apparent that when aN!{3/T = 15 and 
w ~ 7 w0 the dispersion is determined by the neu­
trons; at frequencies below 7 w0 the dispersion is 
determined by the electrons. 

When the nucleon gas is also degenerate the 
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electron density becomes a relatively weak func­
tion of neutron density. When Nn < 1036 we have 
Ne ~ N0/8 and cN~3 ~ 0.5 w0 so that the proc­
esses y ~ e+ + e- either do not occur at all in 
the medium or appear at the very threshold for 
the effect (nw ~ 2mc2 ). At densities of N ~ 8 
X 1035 , however, the electron density becomes 
sufficient for creation and annihilation of pairs. 
As before, in order to determine whether this ef­
fect actually occurs we must find the frequencies 
at which dispersion is determined by the electrons 
and those at which it is determined by the neutrons. 
To find these frequencies we again use the condi­
tion in (31). According to Eqs. (23') and (31) dis­
persion is determined by the neutrons when 

N n > 2.4 · 1 038v-2 [ ocjn: + x (N n/ N 0)'1']\ (34) 

where v = w/w0• As always, Eq. (34) must be sup­
plemented by the criterion which must be satisfied 
if we are to use the idea of a medium, i.e., w 
~ cN:{3• When Nn ~ 1036 the process y~e++ e­
is possible and will occur only at threshold energy; 
the condition Nn ~ 1036 em - 1/ 3 is necessary and 
sufficient (obviously we still must satisfy the re­
quirement for this process w ~ cN~3 ). 

On the basis of the material presented in this 
section we can conclude that for a given matter 
density there is a certain critical frequency above 
which dispersion is determined by neutrons; below 
this frequency the dispersion is due to electrons. 
According to Eq. (29), above the critical frequency 
the refractive index is greater than unity andre­
mains essentially constant, being independent of 
frequency. It is clear that charged particles mov­
ing with velocities exceeding the phase velocity of 
light in such a medium will emit Cerenkov radiation. 
In accordance with the conditions in (1) and (31), 
only photons which satisfy the following inequality 
are radiated: 

(35) 

In this energy range the number of photons radiated 

per energy interval is uniform. According to Eq. 
(29) the Cerenkov effect appears at particle ener­
gies E ~ 2.2 x 1020 Nii112 Mc2 where Mc2 is the 
self energy of the particle. 

When the nucleon gas is not degenerate the re­
lation between the densities Ne and Nn is given 
by Eq. (21). For purposes of illustration we take 
aN~3/T = 10; then, from Eq. (35) with Ne = 1032 

(i.e., Nn = 2.2 x 1036 ) we find 20 < nw ~ Z8 Mev 
whilewith Ne=4.5x1033 (i.e., Nn=1038 ) we 
have 10 < nw ~ 100 Mev. 

When the nucleon gas is also degenerate the re­
lation between Ne and Nn is given by Eq. (23'). 
In this case (35) assumes the following form: 

2.6·1013N;;-'h[ocjn: + x(NnfNuf'J < nw ~heN~'. (35') 

Whence we find that the neutron density must be 
Nn ~ 8 x 1035 . With Nn = 1036 em - 3, from Eq. (35') 
we find 13 < nw ~ 20 Mev while with Nn = 1038 

we find 1.6 < nw ~ 100 Mev. 
In conclusion I wish to express my gratitude to 

Academician V. A. Ambartsumyan for valuable 
comments and also toN. M. Kocharyan,. I. I. Gol'­
<dman, G. M. Garibyan, and A. Ts. Amatuni for 
many discussions and for their interest in this work. 
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