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The dependence of the oscillator potential parameters on the number of nucleons is deter­
mined starting from the assumption that the mean energy per nucleon in the nucleus is con­
stant. The possible effect of three-particle interactions is considered. 

THE present work is concerned with the problem 
of how well the shell model describes the integral 
properties of heavy nuclei, especially the separa­
tion energies Q of the last nucleon and the mean 
energy per nucleon Em. 

It is well known (see, for example, reference 1) 
that Em is approximately constant for all nuclei. 
(Em decreases slowly through the entire periodic 
system, from Em= 8.8 Mev for A= 55, to Em 
~ 7. 6 Mev for A = 238. ) Therefore, to a rather 
high degree of accuracy, one can consider that* 

For a system consisting of two-particle interac­
tions, Eq. (1) is equivalent to 

(1) 

Em= EF, (2) 

where EF is the Fermi energy of the system. 
In order to demonstrate Eq. (2) in general, it 

is necessary to define EF· Let the Hamiltonian 
of the system have the form 

A A 

HA =- 2J (1i 2 /2m)vi+± ~ u,k, (3) 
i==l i, k=l 

We define EF as 
A-1 

EF =(<P\- (Ji2J2m)v~ + Li UAk !<P). 
k=l 

where it is assumed that all 

E, =(<)I 1- (1i2/2m) vJ + 'LPzk I <)I)< EF. 

Then, differentiating Eq. (4) with respect to A, 
multiplying by 1/J* and integrating over all A co­
ordinates, we find that 

Em= EF + t(<P [ ~aU,kjaA j <P), (5) 
'· k 

*It can easily be seen that the conclusions below are not 
changed if aEm/aA .$ 0.01. 

from which Eq. (2) follows if 8Uik/8A = 0. 
We will illustrate Eq. (2) using the Hartree 

self-consistent field as an example: 
A A 

Em=!(~T,+-} Lj D,k). 
l=l '· k=l 

T, = - ~ <P; (1i2/2m)v2 <Pz d-r:,, 

D,k = ~ <P;<P=U (ri- rk) <Pz<Pk d-r:i d-r:k. 

From Eq. (1) it follows that 

but in so far as 

we have 

..!..(~ar, ..!.. ~afJ,k) _ 
A Li a A i- 2 Li a A - O, 

i i, k 

which means that* 

Em =EA =EF. 

Such a conclusion would be unjustified if tertiary 
collisions were present, since then U would de­
pend upon A. 

1. We assume that the potential well in the nu­
cleus results from two-particle collisions only. 
Since we are interested in qualitative aspects of 
the problem, we consider, for simplicity, that the 
self-consistent potential is an oscillator well. Then 
the total number of particles in the system is equal 
to N 

1 "" A =TLJ (n+ l)(n+2)+PN+1 , (6) 
n---0 

*See reference 2, where it is shown that if aEm!aP = 0, 
where p is the density of nuclear matter, then Em = EF for 
arbitrary weak interaction. 
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where N is the principal quantum number of the 
last filled shell, PN+t is the number of nucleons 
outside filled shells. 

If 

then 

£\:> = 4~S1iwA (n+ ~)-~VA (7) 

and Eq. (1) can be written in the form* 

fA1i a;;[S(n + {) + PN+l (N + {)] 
AsiWA 3 [~( 3) =2M -t-41iwA .::.J n-t-2 

-t-PN+l(N+ ~)-A(N-t-f)]. (8) 

We then set 

0 (P) = 1} for p = O; {9) 
0 for P=j=O; 

where 8 is the total energy of the last nucleon 
which, as will be shown, is not equal to its sepa­
ration energy. Comparing VA and VA+t• we 
find 

avA 1 a A= 1i ( N + ~) awA 1 a A+ 1iwAo (P) + ao 1 a A. 
(10) 

We introduce the notation: 

BN = + (N + 1) (N 2 + 5N + 6), 

C.v = }(N +I) (N 3 + 7N2 + I6N -j-12), 

with A= P + BN. Then, from Eqs. (8)- (10) we 
find 

n[fcN + fP(N + f)-+A(N +f )]awAJoA=~Ao6loA 
+ 1i [+eN; A + + P (N + +) j A-+ ( N + +) 

-j- + A/3 {P)J WA. (11) 

Let ae/aA = 0. Assume that for a nucleus com­
posed of closed shells + 1 nucleon, w A ~ 5 Mev. 
Starting from this assumption and Eq. (11) we will 
try to construct w = w (A). For closed shells 
o ( P) = 1 and awAiaA > o, whereas for P ¢ 0, 
awA/aA > 0. From Eq. (11) we obtain an equation 
determining the change in w inside the shells in 
the process of filling: 

*If aw/aA = dV A/a A then Eq. (8) cannot be fulfilled. 

where w<1> denotes the w of the nucleus consist­
ing of closed shells only. It is easy to see that the 
shape of the curve (12) is nearly independent of the 
principal quantum number. In the region of closed 
shells, the curve for w undergoes a jump.* 

20 N·J 36 56 N·S 
Change in the oscillator frequency with A. Curve 1 is for 

<X= 0, 2 for <X= 0,5 (qualitative curve). 

For P = 0, we obtain aw/aA from Eq. (11). 
The curve constructed from Eqs. (11) and (12) with 
WA=2t = 5 Mev is given in the figure. It is of inter­
est that in the case of two-particle interactions, w 
~ const for ae/aA = 0 for nuclei consisting of 
closed shells + 1 nucleon. We note that the require­
ment of constant volume per nucleon in the nucleus 
leads to a change in w qualitatively analogous to 
that displayed in the figure. This is quite under­
standable, in so far as the conditions of constancy 
of volume and Eq. (1) are essentially equivalent. 
It is of interest to see how much w (A) is affected 
by taking into account several factors which were 
neglected earlier. It was noted above that taking 
the dependence of Em on A into account does 
not change the curve shown in the figure. 

We did not take into account the fact that there 
can be two nucleons in each state. As can be seen 
from Eqs. (11) and (12), this does not change awl 
aA for closed shells, and diminishes aw/aA in­
side the shell by a factor of about two. The shape 
of the curve is unchanged. 

Taking into account the difference of ae/aA 
from zero can qualitatively change the dependence 
of w = w (A) if, as seen from Eq. (11), ae/aA < 0 
and I ae/aA I > wA. A substantial change in e from 
an additional particle is, however, improbable. We 
shall therefore assume that I ae/aA I « wA· For 
P I= 0, even a small value of ae/aA can substanti­
ally change the trend of the curve. If one assumes1 

that for a value of the order of ae/aA ~ BQ/BA and 
P near (but not equal to) zero, one can neglect all 
of the terms in Eq. (11) except ae/aA, then, as 
numerical evaluation shows, one obtains 

1iiJc,>loA =A [~eN-'- _!!_p (N -t- ~)' ' 2 I 2 2 

-A(N+f)]-1 o0/oA. (13) 

*Use of a potential more realistic than the oscillator one 
would clearly lead to smoothing of the curve w = w(A) in the 
region of shell closing. 
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If a substantial number of nucleons are outside 
closed shells, a term proportional to w must be 
included in (11). In so far as w is a discontinuous 
function, as we have seen earlier, one might wonder 
about the validity of expressions obtained by differ­
entiating w. However, it is clear that one can avoid 
differentiation by writing Eq. (1) as E~) = E~+l). 
The result so obtained coincides with the above. 

In all of the above results we neglected the pres­
ence of residual interaction. In order to include it, 
the total energy of the nucleus is written in the form 

E = Es.c.+} ~ U;k, (14) 
ik 

where Uik is the energy of a residual interaction 
between pairs, Es.c. is the total energy of the 
system described by the self-consistent field. Set­
ting Uik ~ u, we find a formula differing from 
Eq. (11) by the presence of terms on the right-hand 
side: 

-}A (A- I) au/ aA +}(A- I) u. (15) 

Even a small change in the residual interaction 
can change the dependence of w on A substan­
tially. However, the applicability of the shell model 
in describing single-particle excitations indicates 
that u « t:iw, at least. In this case, inclusion of 
the residual interaction does not change the jumps 
in w in the region of closed shells; however, it 
might greatly change the dependence of w on A 
inside the shells. 

It is easy to relate BVi I BA and Buik I BA. To 
do this, one should consider that with a self-con­
sistent field, the Hamiltonian (3) should be re­
placed by 

(16) 

If the Hamiltonian (3) leads to (2), then an analo­
gous relation follows also for (16). In so far as 
BErn IBA = 0, then from (16) it follows that 

Em= EF + (<P lhav,;aA I <P) + + ~(<J! fau,kfaA f<J!), 
ik 

from which, taking Eq. (2) into account, we find 

(<PI Lav, 1 a A\ <P) + (<PI+ hau," 1 a A I <P) 
i ik 

=(<PI+ ~au,k;aA I <P). 
i.k 

(17) 

The potential Vi usually used in nuclear theory, 
which depends only on r and includes spin -orbit 
interaction, does not lead to BErn IBA = 0. There­
fore, BViiBA 7' 0 (this is confirmed by calcula­
tions of excited levels of several nuclei3 ). Since, 

as we shall show, in the nucleus (} 7' Em, i.e., 
BUikiBA 7' 0, it follows from Eq. (17) that BVi/BA 
and Buik I BA 7' 0 in general. We note that only in­
direct experimental data on uik exists, and this 
in insufficient quantity. 

In so far as the calculation of residual interac­
tion, the energy of which is W = 2EA+l- EA- EA+ 2, 

is concerned, Eq. (1) leads to W = 0. The ex­
perimentally observed values, W = 1.5-3 Mev, 
show that Eq. (1) is not exactly fulfilled in nuclei. 
Taking W into account, just as taking into account 
BEmiBA « 0.01, does not change the curve 1 sub­
stantially. 

We shall try now to take into account the effect 
of deformations of nuclei with a considerable num­
ber of nucleons outside closed shells on the depend­
ence of w on particle number. Employing the 
model of Inglis,4 we write the total energy of the 
nucleus as (the nucleus is assumed to be stretched 
along the z axis) 

(18) 

where {3 is the nuclear deformation, parameter 

E 1 = T ~1iw ( n + T)--} V AA, 

Ea = -} ~1iw (n + 3 + 3nz), (19) 

and the sum is carried out over all occupied states. 
For close shells, {3 = 0; therefore, the positions of 
the jumps in w = w (A) do not change by including 
the effect of deformations. For {3 7' 0, we can 
write the expression for V A• remembering that 
VA does not increase gradually, but in jumps, 
with the filling of subshells (a subshell consists 
of a group of nucleons with the same n and nz ) : 

VA = 1iw [ ( N + f) + f ~ ( N - 3N z - 3) 

+ f ~2 (N + 3Nz + 6) +(I- o (P)) 

+ 2~ (I - 0 (s))- 2 ~ 2 (I - 0 (s))] + e, (20) 

where s is the number of nucleons in the last un­
filled subshell, Nz is the quantum number along 
the symmetry axis corresponding to the last filled 
subshell. Then, instead of Eq. (11), we have: 
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n (ow J oA) H-eN+ fP ( N + +) -t A ( N + t-) + ~ [ t ~ (n- 3n,) -+A (N- 3N,) J + ~ 2 [ t 2J (n + 3nz + 3) 

-+A (N + 3N. + 3)]} = fnw [eN I A+ P(N + -})1 A -(N + -})+: Ail(P)] + ~nw[Ao (s) 

+ (t A-1 -to I oA) ~ (n- 3n.)] + ~ 2nw[- Ail (s)+(-} A-1 -to 1 oA) ~ (n + 3 + 3n.)] 

+ Tiw (8~ 18A) [+A (N- 3N.) -+ ~(n- 3n.)J + ~ (8~ I oA) Tiw [+A (N + 3Nz + 3) -~ (n + 3n, -+- 3)]+ t Aa9 18A; 

The formula obtained is analogous to Eq. (11). 
If, as earlier, it is assumed that the total energy 
of the last nucleon changes so that {3tiw > !ae/aA, 
then jumps in w (small in magnitude) appear 
also in the region of the filling of sub shells. In 
order to compare Eqs. (21) and (11), we give the 
relations between aw/aA and w, obtained from 
Eqs. (21) and (11) with f3max = 0.3 and {3 = 0 at 
the limits of the shells (see Table I): 

The increase in absolute value of the quantity 
aw/BA is explained by the appearance of jumps 
in the filling of subshells ( P = 1, 10, 21 ) . For 
p = 0 

Tioru 1 a A = 2.63Tiw + 2.80 as 1 a A. 

The separation energies of the last nucleon and 
the mean energy per nucleon are known from ex­
periment; from these, one can obtain 11 and aejaA. 
It does not follow that 11 = E F can be identified 
with the separation energy of the last nucleon Q: 

Q = EA+l- EA ~ + eNnOwl a A+ i- PTiow I oA 

+ + ttw (N + -f)-+ Aav 1 a A-tv A + E2a~ 1 oA 

+ ~a£2 I oA + 2~Ea0~ I a A+ ~2aEa I a A. (22) 

From Eqs. (7), (9), (19), and (22), 11 and ae/aA 
can be expressed in terms of Q and Em = Q 
[if Eq. (1) is valid]. In particular, in the neighbor­
hood of closed shells 

fJ = 2nw[*A-1eN+% A-1 P(N +~ )-HN+f )+io(P)-Emjnwj, 

aa _ ~{('!; aw _ iro) [.!. e + ~ P(N + 2)-.!.A(N --L ~)] aA - A ,. aA A 4 N 4 2 2 ' 2 

[ N t A ]} +nw 4 + 8 - 2 o(P) . (23) 

(21) ----------------------------------------
From Eq. (23) it follows that, as assumed above, 
ae/aA « w. This conclusion remains valid if terms 
depending on {3 are taken into account. For closed 
shells, for example, e ~ - 2Em and !Aae/aA =::: 0. 
Inside shells 8 ~ - 2Em and !ABI1/BA ~ 0. Conse­
quently, within the framework of our assumptions 

Em =f=Ep. (24) 

It was shown above that in systems with two­
particle interactions, Em = EF in Eq. (1) is valid. 
We calculated Em for nuclei, assuming that the 
two-particle interaction led to a self-consistent 
oscillator potential, took account of (1) and came to 
Eq. (24), in contradiction to Eq. (2). In addition, 
it turned out that if ae/aA ~ 0, w changes sharply 
in the region of closed shells. The difference be­
tween Em and E F can be explained either by the 
dependence of the two-particle interaction on A or 
by the inclusion of a three-particle force. 

2. Within the Hartree approximation, a system 
with three-particle interactions is equivalent to one 
with two-particle interactions if 

U;k = ~ (~I I vikl 141)· 
I 

Here BUik/BA r! 0. We assume that the inclusion 
of the three-particle interaction, together with the 
two-particle one, leads to an oscillator self con­
sistent potential. Then, in the expression for Em, 
the potential energy will be prefixed by the coeffi­
cient % - % a, rather than %, where a charac­
terizes the relative contribution of the three-par­
ticle interaction in the mean energy per nucleon. 

We shall first show that inclusion of the three-

TABLE I. Values of tiBw/aA = atiw + bae/aA for N = 5 

2 10 11 21 22 

~=#) 
a I -0.094 -0.251 0.354 -0.095 0.212 -0.204 
b 

I 
+1.07 +1.07 +1.10 +1.10 +1.29 +1.29 

~=0 
a -0.122 -0.122 -0.047 -0.047 -0.050 -0.050 
b +2.18 +2.18 +1.12 +1.12 -t-0.765 +O. 765 
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TABLE ll. Values of ti8w/8A = atiw + b88/8A for N = 5 

I I' I 
I I 
i 

10 11 21 

I I 
;ko I a 

I 
z- -o.m:~ 

I 

:::o-0.023 z-0.015 -0.015 --o.o:w -o.o::.o 

I 
b +0.317 +0.317 +0.266 +0.266 +0.234 +O.n4 

~'fO 
a -0.031 -0.072 -0.066 -0.036 0.047 -0.037 
b +0.274 +0.274 +0.251 +0.251 +0.26 +0.26 

particle interaction does not lead to a qualitative 
change in the dependence of w on A: 

a) for closed shells it follows from Eq. (11) that 
the sign of aw/aA changes for a >" 0 if 

{feN-+ A (N + +)}~{(+-+ o:)CN 

- ( +-T oc) A ( N + -i-)} 
changes sign with the growth of a from 0 to 1. 
In so far as CN > %A(N+%) then CN > A(N+%) 
x ( lf2 - 1/ 3 a ) I ( % - Ys a ) if a :::: 0; 

b) inside shells the coefficient of aw/aA does 
not change sign as a increases from 0 to 1, since 
the sign of the coefficient of w in Eq. (11) does not 
depend on a (within the limits 0 ::s a ::s 1). Con­
sequently, the character of the curve, i.e., the signs 
of ow/oA and the positions of jumps in w, is un­
changed. 

The situation with the mean energy is different; 
its magnitude depends essentially on a. This is 
connected with the fact that the coefficient of aw/aA 
in Eq. (11) changes within very large limits with 
changing a. For example, for N= 5, a = O, the 
quantity {%eN- %A(N+%) }=10 for a =0.5, 
whereas it is equal to 56 for a = 0.5 and 100 for 
a = 1. Already, for a = 0.1, the coefficient of 
ow/oA is doubled. Inclusion of the three-particle 
interaction, while not changing the character of the 
curve* 1, can diminish the jumps in w several 
times and can make the dependence of w on A 
smoother. 

The parameters of the potential well obtained 
from calculations of low-lying excited states of 
nuclei are roughly equal3 for nuclei consisting of 
closed shells ± 1 nucleon. From this it is difficult 
to assert that the scheme of a two-particle type of 
self-consistent potential is inapplicable, and that 
it is necessary to introduce a three-particle inter­
action. However, if one succeeds in showing that 
'08/BA ~ 0, then the constancy of the potential 
would have to be explained by introducing a three­
particle interaction. 

The dependence of w on A for a >" 0 is ob­
tained analogously to Eq. (12) 

*Equations (11) and (23) are not independent, but are con­
nected by Eq. (1). Therefore, there is left to our disposal one 
parameter ae/aA which can be and should be chosen so that 
for nuclei consisting of closed shells +1 nucleon, w ;;; const. 

(BN + P) ((9-2a) CN- (6-4a) BN (N + 6f2)] 

<•) = <•)(l) BN ((\!- :!a)CN- (6 4a)BN(N + 5/2l+ (3 + 2a)P(N+6fi)l · 

(25) 

For closed shells, aw/oA is obtained from Eq. (11) 
by the substitutions %-%-%a; %-%-%a; 
The formulas (13) and (23) are modified, and the co­
efficient 2 in Eq. (14) is replaced by 6/( 3- 2a ). 
For example, e ~ - 3E for a= 0.5. 

We now take into account effects of nucleon de­
formation. Proceeding in the same way as in the 
derivation of Eq. (21), and taking into account the 
three-particle interaction, we obtain instead of 
Eq. (21) 

fi (CJc,>idA) { :2 (9- 2o:) CN + :2 (9- 2oc) P (N + +) 
-+ (3- 2oc) A (N + f-)+ ~ [~ 1~ (9- 2oc) (n- 3nz) 

--} (3- 2o:) A (N- 3Nz) ]+~2 [2J~(9- 2oc)(n + 3+ 3nz) 

- +- (3- 2o:) (N + 3Nz + 3)]} ~~ 1~ (9- 2oc) n(J) [CAr/A 

+ (P/A- I) (N + +> + (6- 4~);(9- 2o:)Ao (P)] 

+ ~nt.) [+ (3 -- 2o:) Ao (s) + 1~ (9- 2~) (A-1 - a;CJA) 

~ (n- 3nz)l --f ~ 21i<u [ ,-+ (3- 2o:) Ao (s) 

+ 1~ (9- 2o:) (A- 1 - CJ/CJA) ~ (n + 3n2 + 3)] 

+ n(]) (CJ~/CJA) [+ (3- 2o:) A (N -- 3N z) 

- :s (9- 2~) ~ (n- 3nz)] + n<u~d~{CJA 1·*- (3- 2o:) 

A (N -1- 3N z + 3)- +.- (9- 2a) ~ (n + 3n 2 + 3)] 

+~(3-2o:)ACJ8jCJA. (26) 

The effect of a in the quantity 8w/8A can most 
easily be shown by a concrete example. Values of 
tiow/8A for a = 0.5, N = 5, /Jmax = 0.3 are given 
in Table II. It is easy to obtain expressions for e 
=Em, analogous to Eqs. (22) and (23), including 
the three-particle interaction. 

Recently a number of authors have discussed 
the use of a potential which depends on momentum 
(or, which is the same thing, the so-called effec­
tive mass approximation) in the shell model. A 
number of arguments can be adduced, according 
to which a system of strongly-interacting nucleons 
can be replaced by a model system of weakly-inter­
acting quasiparticles (of number equal to the num­
ber of nucleons) so that the energies of the ground 
and low-excited states coincide in the two cases. 5 
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Construction of a self-consistent potential for quasi­
particles in nuclear matter leads to its dependence 
on the momentum of the quasiparticle, or to an ef­
fective mass, which, in turn, depends (but only 
weakly) on the momentum. 5 In the case of finite 
nuclei it is also possible to go over to a model 
system of quasiparticles, moving with effective 
mass in the field of a self-consistent potential 
(and the self-consistent potential and effective 
mass depend on the quantum numbers defining the 
quasiparticle state, see reference 6). Therefore, 
it might be hoped that replacement of the true mass 
by the effective mass would diminish the magnitude 
of the residual interaction [see Eq. (14)]. It is of 
interest to see how much the introduction of an ef­
fective mass changes the conclusions reached 
above. It is easy to see that introduction of the 
same effective mass for all nucleons is equivalent 
to increasing the frequency w A by the factor 
( m/meff) 1/ 2• Repeating the above development, 
we see that the qualitative character of curve 1 
is not changed, but that the depth of the potential 
well is increased by a factor of about ( m/meff) 1/ 2• 

We note that the discontinuous changes in the 
parameters of the shell-model potential came, as 
seen from the above conclusions, from changes in 
the depth of the potential well with the addition of 
a single nucleon outside a closed shell. In fact, for 
arbitrary potential, the following relation is valid 
[compare Eq. (9)]: 

V = - ~ flE;i- fJ, 
kj 

depends essentially on the energy of the incident 
nucleon and differs from the shell-model potential. 
We give below several considerations, according 
to which the real part of the optical potential should, 
for arbitrary energy of the incident nucleon, differ 
in general from the shell-model potential. 

3. Up to now the problem of the change in the 
potential well of the nucleus necessary to ensure 
fulfilment of Eq. (1) was considered. In the prob­
lem of the interaction of an incident nucleon with 
the nucleus, the Hamiltonian is written as 

(- 71,2'\12 I 2m+ u<A+I>). 

If the incident nucleon leads to a complete recom­
position of the target nucleus, then 

u<A+I> = u<A> + au<A>;aA, (27) 

or if there is no recomposition, u(A+t) = u(A). 
In the present work, using Eq. (1), the magnitude 

of au(A) /BA was found, i.e., the correction to the 
real part of the optical potential for low energies. 
From this it is clear that calculations of excited 
states of nuclei by several authors using the optical 
potential do not have a strong basis in view of Eq. 
(27). For an oscillator potential we have 
v<A+-l> =- (N+ +> (nw + niJ(•);aA) 

+ T m (w + iJwjiJA)2r 2 - 6- iJ6jiJA, 

where Bw/BA is determined either from Eq. (11) 
or from Eqs. (21) and (26). 

In conclusion, it is my pleasant duty to express 
my deep gratitude to L. A. Sliv for numerous dis­
cussions and interest. 
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reached earlier about the shell-model potential. 
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