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A stochastic equation is derived by means of the phenomenological equations of motion under 
well-defined assumptions. The thermal noise of a nonlinear resistance is considered as an 
example. 

IN view of the fact that a mathematical analysis 
of the exact dynamical picture of non-equilibrium 
statistical processes is very difficult, it is advis
able to study such processes using equations of the 
phenomenological type. This leaves only a small 
number of coordinates to be considered (the coor
dinates of a Brownian particle, the charge or cur
rent in an electrical circuit, and so on). The par
ticipation of a huge number of other particles in 
the process expresses itself implicitly in two ways. 
Firstly, there is dissipation, which is described by 
the phenomenological equation for the average ve
locity-dependent force (elementary dynamical in
teractions are non-dissipative). Secondly, there 
are the fluctuating impacts from the surrounding 
medium. The average phenomenological force 
defines the first-derivative term in the stochastic 
equation, while the fluctuating impacts cause the 
occurrence of terms (or a term) with higher de
rivatives. An evaluation of the statistics of the 
fluctuating actions so as to determine the form of 
these terms is a more difficult problem than the 
determination of the average phenomenological 
force. The latter can be determined experimen
tally and can be considered a.s given in the theory. 
From general considerations it follows that there 
is a connection between the statistics of the fluc
tuating actions and the dissipation in the system. 
The determination of these statistics from the 
dissipation mechanism is a general and important 
problem in statistical physics and has many di
verse applications. 

For the case where the dissipative force de
pends linearly on.the velocity the above problem 
was solved in the classical papers on Brownian 
motion (Langevin and others). The problem is, 
however, appreciably more complicated in the 
case of a nonlinear mechanism of dissipation, and 
has not yet been solved in general form at the 
present. Some authors (see, for instance, ref-

erence 1 ) even deny the existence of a necessarily 
unique connection between the average f9rce and 
the intensity of the impacts in the general case. 
The papers of Magalinski'l and Terletskil 2- 4 were 
devoted to a consideration of the above mentioned 
problem, but gave rise to important objections. 

In the present paper we give an exact solution 
of a well-defined problem; that is to say, we de
rive a stochastic equation under the assumption 
that the relaxation time for the velocity is much 
smaller than the relaxationtime for the coordinate. 
To do this we apply a method based on a corrected 
and extended version of the method proposed in 
references 2-4. 

Let q be one or several coordinates of an ar
bitrary mechanical system described by a Hamil
tonian H (p, p', q, q') (the q' are the remaining 
coordinates). The process of motion is deter
mined by the dynamical equations 

p = - a H ! cJq. (1) 

The totality of the influence of the· variables q', 
which correspond to the medium through which the 
particle moves, can be described phenomenolog
ically by introducing a frictional force (in the 
general case nonlinear) and fluctuating forces. 
The exact Eqs. (1) are then replaced by a phenom
enological equation of the Langevin type 

q = <D(q, q, t) = F (q, q) +; (t, q, q). (2) 

We assume that the kinetic energy pertaining to 
the coordinate q is equal to mq2/2. The function 
.P in (2) has the meaning of a force divided by the 
mass m. The division by m was performed to 
simplify the formulae and we shall continue to 
call .P a "force." 

The force .P is given in (2) as the sum of an 
average force, F = ~. and a fluctuating term 
which by definition has an average value of zero: 
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qt, q, q) =0. (3) 

For the sake of simplicity, we have chosen to write 
our equations in one-dimensional form ( q is one 
coordinate). 

The dependence of the force on the coordinate 
and on the velocity can be determined experimen
tally. One must average the action of the fluctu
ating force in that case over some time interval 
Ty, which must be longer than the correlation 
time r 1 of the fluctuating force: Ty » r 1. The 
length of the time interval over which it is avera_ged 
has no upper bound. However, to obtain as detailed 
a phenomenological description of the system as 
possible, it is desirable to choose the smallest 
value compatible with the above-mentioned in
equality. 

What we can measure is essentially not the ex
act force <I> as a function of q and q, but an 
average force ~ as a function of the average 
values q and q. The tilde on top indicates here 
an average over the time Ty. for instance, 

f+T y 
""' 1 \ . q (t -f- " ) - q (t) 
q = -"-- J qdt = ~~---

JJ t y 

(4) 

Because of the condition Ty » r 1 ~ ~ is t~ same 
as F. If we wish to find out how q and q are 
connected with the instantaneous values q and q, 
we must take into account the relaxation times of 
the latter. We introduced along with r 1 the ve
locity relaxation time 

"2~qjq~ qjF (5) 

and the coordinate relaxation time 

-r3~ Ci/!1. (6) 

Different relations are possible between the 
time constants r 1, r 2, and r 3• We consider the 
case where 

(7) 

and where we can consider phenomenological equa
tions that correspond to a time of averaging which 
satisfies the inequalities 

(8) 

(9) 

Assume, in particular, that (7) is satisfied and the 
force relaxation time r 1 is comparable with r 2 

(10) 

If we then choose our averaging time so that r 1 

« Ty « r 3, we satisfy conditi~ns (8) and (9). 
Because of inequality (8), q is the same as q 

but q differs from the instantaneous value of q. 

The trajectory in phase space is no longer a Markov 
process. Because of (7) the q ( t) process can, 
however, be considered to be a Markov process. 
Our problem is to express its statistical character
istics through the experimental function F ( 4', q), 
which is supposed to be known. 

Inequality (9) enables us to state that the time 
average is the same as the statistical average 

q=q (11) 

[we are considering an ensemble for which q ( t 0 ) 

= q0 ]. This average value is independent of the 
initial velocity q ( t 0 ), the influence of which van
ishes within a period of time of the order of r 2• 

It is thus some phenomenological function of the 
coordinate, 

(12) 

Taking (11) into account we can write the phe
nomenological equation (2) in the form 

(13) 

The function (12) can be determined from Eq. (13). 
Indeed, averaging (13) and taking (3) into account, 
we find 

v = F(v, p). 

Substituting (12) and performing the transformation 

~ = f (q) = (offoq) :0, 
we obtain the equation 

at;aq = F<f, q)/f .. (14) 

from which we can determine f(q). One can sim
plify this with the aid of (7). To do this we take 
into account Eqs. (5) and (6) which define r 2 and 
r 3• The latter can be written 

~;-1 ~ f/q~Offoq. (15) 

According to (5) F /v is of the order of 1/T2 

for most values of v; in our case, however' it is 
of order 1/r3, [i.e., appreciably smaller, because 
of (7)] as can be seen from (14) and (15). This ex
ceptional value must be determined from the equa
tion 

F (:U, q) = o. (16) 

The latter states that an average velocity is set up 
in such a way that it corresponds to a zero force 
acting upon the particle. 

Turning to the dynamical equations (1), we shall 
consider instead of the variables q and p the co
ordinate and velocity q and v = q. In that case 
Eq. (1) is transformed into 
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q = v, v = U (q, v, p', q') =- m-1aH1iJq. (17) 

Here G ( q, v, p', q') is the dynamical expression 
for the force, corresponding to the phenomenological 
expression 4>. The probability distribution density 
w = w ( q, v, p', q') changes according to the equa
tion 

· a ) a , aH aw aH aw 
w = - dq (vw - Tv (Gw) -r (j(j' a;;'- ap· aj7 _ Aw. 

(18) 

We are especially interested in the well-defined 
initial condition q = q0 at t = t 0, which corre
sponds to 

[W)t=l, = o (q- q0 ) W 0 (v, p', q') (19) 

(the initial distribution w0 ( v, p', q' ) does not 
play a large part since it relaxes rapidly). 

We introduce the functions 

l\7 = e"qw, 

Z(u) = ~ \VdQ = ~ e"qwdQ, 

w=lV/Z(u) 

(20) 

(21) 

(22) 

( drl = dq dv dp' dq') and ascertain their time varia
tion. Writing (18) in the form 

e-uqw = A (e-uq\\7) 

and differentiating we get 

W = A lV + uv lV. (23) 

If we integrate this equation over v and q we get 

i (u) = uv\\7. (24) 

where 

(25) 

Differentiating w with respect to time and substi
tuting (23) and (24), we find 

(26) 

We write the last term in (26) as a differential 
expression 

co 

- - "" 1 ( a )m ( a )n -(v-v)w= ~ m! n! -Tq -a; (~mnW). (27) 
m, n=O 

Here !3mn = !3mn( q0 ) are suitably chosen coeffi
cients. It is shown in the Appendix that they can 
easily be expressed in terms of the correlation 
functions of the velocity fluctuations; in particular, 

Por = (v - v) 2 = k2 (0), 
co 

~ 10= (q- q) (v- v) = ~ k2 -r) d-r. (28) 
0 

Because of (27), Eq. (26) is equivalent to 

q=v+a(t), ~=G(q, v, p', q')+b(t), (29) 

where a ( t) and b ( t) are random functions with 
average values 

a= 11~10• lJ = 11~01• (30) 

and with correlation functions (for r quantities a 
and s quantities b) 

k(ria, (s) b (tJ, · · · , tr+s• qo) 

= uf3,so (t 2 - t1) ••• o (t,+s- t 1) 

(cf. reference 5). 

(31) 

Equations (29) enable us to interpret w as the 
distribution density for some new mechanical sys
tem subjected to additional forces a and b, each 
with a steady and a fluctuating term. 

The additional forces can be included not only 
in the dynamic, but also in the phenomenological 
equations. In accordance with (29), Eqs. (13) are 
replaced by 

q = v + a(t), 
. -
v = F (v, q) + ~ (t) + b (t), (32) 

We use (32) to find a new phenomenological func
tion 

q=f(q,u), (33) 

which determines the average velocity. Averaging 
(32), we have .. - -

q = v +a, (34) 

As in the derivation of Eq. (16), we find from the 
second equation of (34) 

F(v, q) + lJ = o. (35) 

Solving with respect to v and denoting the corre
sponding function by f1, we get 

v = fi(q, u). (36) 

Substituting (36) into the first equation of (34), we 
get the required function (33): 

q = f (q, u) = fdq. u) +a. (37) 

The function (12) is, of course, none other than a 
particular value, f ( q, 0). 

We now turn to the problem of the diffusion of 
an initial distribution of the type (19). In the first 
period, while t - t 0 ~ T2, the fluctuations of q ( t) 
are not like a Markov process. Thereafter, when 
T2 « t- t 0 « T 3 the average velocity q approaches 
the function (12), which is independent of the initial 
velocity. For those intervals of time, the fluctuat
ing process q ( t) can at the same time be consid
ered to be a Markov process. The distributi'on 
w ( q, q0 ), obtained from the initial distribution 
o ( q - q0), then generates a Markov transition 
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probability and characterizes completely the fluc
tuating process. For time intervals satisfying the 
condition 

the coordinate q does not have time to change 
strongly, and we have from Eq. (33), for the 
chosen initial condition, 

q = qo + (t- to) f (qo, u). (38) 

According to what has been said above, the av
eraging q is then done over an ensemble corre
sponding to the included additional forces a, b, i.e., 
with the weight of w. According to (20) -- (22), 
this average can be written as 

(39) 

Because of this (38) goes over into the equation 

a In Z (u)jau = q0 + (t- t 0) f (q0 , u), (40) 

from which we can determine Z (u). When inte
grating this we take into account the initial condi
tion Z ( 0) = 1, which follows from (21), and we 
get 

u 

Z (u) = exp {q 0u + (t- t 0 ) ~ f (q0 , u) du}. (41) 
0 

For imagiri.ary values of the argument u = iv 
the function Z (u) is none other than the charac
teristic function exp ( iv). The required transition 

After substituting (44) into (42) we find 

w(q, q0)=o(q-qo) 

(46) 

To obtain the stochastic equation we :rp.ust still 
substitute (46) into (43). The term w ( q, t0 ) ob
tained after integrating with o ( q- q0 ) is shifted 
to the left-hand side and [ w ( q, t) - w ( q, t 0 ) ]/ 

( t - t 0 ) is denoted w. The result is 
00 

. "' 1 as W (q) = ~ ST (- J)s ---as [Ks (q) W (q)]. 
S=l q 

(47) 

From a mathematical point of view, the main 
result here is that the correlation functions [or, 
what is the same, the moments TJ (t1, q) ... 7J <ts• q)] 
of the random functions 7J ( t, q) in the equation 

q = t (q) + 'tj (t, q), (48) 

which is equivalent to (47), cannot be given arbi
trarily, but are uniquely determined by the force 
function F ( q, v). 

First example. A particle experiencing nonlinear 
friction. Let a conservative force g ( q) and a non
linear frictional force cp ( v) act upon the particle. 
The phenomenological Eq. (13) is of the form 

m; = g (q)- cp (v) + m';, q = v. (49) 

In this case 

'C;J~qcp'jg. 

probability can thus be obtained from it by a Fourier The condition for the applicability of the theory 
transformation given here is thus of the form 

w(q, q0)= i" ~ e-ivqz(iv)dv. (42) 

Knowing the transition probability one can evaluate 
how any other initial distribution w ( q0, t 0 ) will 
change. The Markov condition leads to 

mfrr' < '(u < qcp'fg. (50) 

The system with the additional forces included is 
described by the phenomenological equations 

mv = g (q) - cp (v) + m~ + mb, 

(43) Averaging these and solving the equation 

The choice of the initial moment is arbitrary; giving 
t 0 increasing values we can follow the complete 
evolution of the distribution density. 

It is convenient to consider a differential sto
chastic equation. To get it we expand (40) in pow
ers of t- t 0• Retaining only the first two terms 
we have 

00 
"\.l us 

Z (u) = eq,u + (t- t 0) eq,a LJ - 1 Ks (q0). (44) 
s. 

U S=l 

The function J f ( q0, u) du is here expanded in a 
0 

Maclaurin series and 

'? (v) = g (q) + mb, 

which corresponds to Eq. (35), we find 

q = a+ ~ (mb +g). 
Here 1/J is the inverse of cp ( v). According to 
(28) and (30) we then have 

a= u~JO = u (q- q) (v- v), 

In view of the fact that the velocity distribution at 
time t - t 0 » r 2 is practically the same as at 
equilibrium, i.e., a Maxwell distribution, we have 
mb = ue ( e is the temperature). 

The coefficients in (47) are evaluated from the 
(45) equations 
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f (q, u) = u~1o + ~(u8 +g); K1 =~(g), 

K2 = ~1o + fW (g), Kn = en-J~<n-l) (g) (n = 3, 4, ..• ). 
(51) 

To evaluate (310 it is expedient to take into ac
count that 

(q- q) (v- v) = f d (q- {/) 2 I dt = f d (K2 t) I dt 

'and, thus, (310 = % K2• 

Taking (37) and (45) into account we get 

K2 = 28cj/ (g)= 28 I cp' (KJ). (52) 

In the particular case where the frictional function 
is linear [ qJ ( v) = (3v ] the relation given here gives 
the usual expressions 

Ka= · · · = 0. 

Second example. The mechanical example con-

tude as (f/V)2L/C) is small because of theine
quality (53). This enables us to expand (54) in a 
power series in I. Restricting ourselves to the 
first term we have 

where 
00 

1 ( L \,'1• \" { L } Req= V21t 6) ) V(/)/exp - 28 / 2 dl (55) 
-00 

is the equivalent linear resistance by which we can 
replace the given nonlinear resistance. 

The consideration given here was restricted by 
the condition of fast relaxation of the velocity: T2 

« T3• It would be of great interest to get rid of 
this restriction. 

The author expresses his gratitude to Acade
mician M. A. Leontovich and Professor Ya. P. 

sidered is analogous to an electrical circuit contain- Terletskil for their interest in the present paper 
ing a nonlinear resistance and a nonlinear capaci- and for a number of helpful discussions. 
tance (Figure). q is then the charge on the capaci-

tance and q = I the current in the circuit, while 
the induction L plays the role of the mass. The 
relaxation times are in this case equal to 

[R = dVR/di, C = Vc/q = g(q)/q]. We can use 
for this circuit Eq. (46) with the values of the co
efficients from (51), if 

Ll R<.RC (53) 

and if qJ (I) is taken to mean the function that de
scribes the dependence of the average potential 
across the resistance on the average current after 
a time Ty » L/R 

VR =rp(l). 

When the dependence of the voltage on the in
stantaneous current 

(which corresponds to T 1 « Ty « T2 ) is known 
from experiments, we can find the function qJ 

corresponding to longer averaging times from 
the formula 

APPENDIX 

We shall find the coefficients f3mn of the ex
pansion (27). We multiply both sides of this equa
tion by E = exp [ ( q- q) X + ( v- v) y] and inte
grate over q and v. The integral J<v -v) Ewdqdv 
can be written in the form o® (x, y)/oy, where 

8 (x, y) == ~ Ew dq du 

is the two-dimensional characteristic function of 
the quantities q- q and v - v. Further integra
tions by parts give 

(27) is thus equivalent to the equation 

ae xmyn a ln 8 xmyn 
ay; = 8E mlnl ~mn or ---a!f = E mlnl ~mn· 

At the same time, the two-dimensional character
istic function can, as is well known, be expressed 
in terms of the cumulants kmn corresponding to 
the random functions q - q, v - v by the equation 

Equating the last two equations we find 

~mn = kmn+l• 

cp (l) = Y L I 2rr8 ~ V (/) exp {- 2~ (/- l) 2} d!. (54) If we know the ( m + p) th velocity correlation 

In the region of stationary fluctuations the quan
tity i2L/® (which is of the same order of magni-

function 
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we can, by integrating, obtain the cumulant 
t 

kmp = ~ · · · ~ k(m+P>:~ (tl,. •. , lm, t, • .. t) dtl• •. dtm. 

In particular, we find for the coefficients !310 and 
/3 01 (which are respectively equal to k11 , k02 ) that 
they are expressed in terms of k2 ( T) = k<2 >v<t , t + T) 

by Eqs. (28). 
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