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IN studying the energy distributions of products of 
reactions in which several particles emerge, which 
occur via a direct interaction with subsequent decay 
of the residual nucleus, it is necessary to take into 
account the interaction of the decay products in the 
final state. The question of the effect of final-state 
interaction on the shape of the energy spectra of re
action products was first considered by Migdal, 1 

and later by various other authors. 2 The effect of 
interaction of the reaction products in the final 
state is that, independently of the mechanism of 
the decay itself, the interaction of the products 
from the decay of a system changes the magnitude 
and shape of the effective cross section, and the 
energy and angular distributions of the decay prod
ucts. The final state interaction is assumed to be 
strong, of short range, and to affect the wave func
tions of the reaction products until they go beyond 
the range of the nuclear forces. For this treatment 
it is essential that the energies of the particles in
teracting in the final state be small. 

In the present note it is shown that the spectra 
of products of a reaction from which several par
ticles emerge can be explained quite well by com
puting in the Born approximation and taking account 
of the interaction of the particles in the final state. 
The wave function describing the relative motion 
of the particles interacting in the final state de
pends on their separation p, and must have a dif
ferent form inside ( p < Po) and outside ( p > Po ) 
the range of the nuclear forces. The parameters 
determining the nuclear interaction of the particles 
in the final state are found by matching the wave 
functions for p < Po and p > Po at the boundary 
of the region of action of the nuclear forces. 3 

As an example, we calculated the energy distri
butions of He3 nuclei from the reaction T + d 
- He3 + n + n for various angles, for a deuteron 
ene.rgy of 12 Mev, taking into account the interac
tion of the neutrons in the final state. This reac
tion can be regarded as a direct interaction accom
panied by the decay of the residual system, since 

two neutrons cannot form a bound state. In writing 
the matrix element it was assumed that the reac
tion proceeds via a direct process of temporary 
capture, i.e., the deuteron pulls a proton out of the 
triton and there is a o -function interaction between 
this proton and each of the nucleons in the deuteron. 
Evidence that the reaction proceeds via a direct 
process comes from the anisotropic angular dis
tribution of the He3 nuclei, which are ejected 
preferentially forward. 4 

The computation of the energy distributions of 
the He3 nuclei for different angles of emergence 
was made using the formula 

da;dEd!it ~I H ba l 2f (E), 

where f (E) is the density of states of He3, while 
Hba is the matrix element for the transition in
eluding the interaction of the two neutrons in the 
final state, which was taken to have the form of a 
square well with radius Po= 2.8 x 10-13 em. 

The wave function describing the internal state 
of the potentially scattering neutrons, has the form 

cjl (p) = eiqp + f (6) e-iqp I p, 

for p > p0, where q is the wave vector of the 
relative motion of the two neutrons and f ( 0) is 
the amplitude of the scattered wave. For an in
cident deuteron energy of 12 Mev, the energy of 
relative motion of the two neutrons does not ex
ceed 1.6 Mev, so that the only contribution to the 
differential cross section comes from the S -wave 
part of the partial wave expansion of the wave func
tion for the relative motion of the two neutrons. 
The spin function for two neutrons must be anti
symmetric ( s = 0) because of the Pauli principle. 
For the S -state, the radial wave function of the 
relative motion of the two neutrons for p > Po has 
the form 

!f(l) (p) = _!_ y-; (e-iqp- eiqp) + V 4~tap-1e-iq~, 
qp 

where a = - ( a - iq) - 1 is the neutron -neutron 
scattering length in an S -state. The interaction 
energy of the neutrons in our case is 70 kev. In
side the region of interaction, p < p0, the radial 
part of the wave function for the relative motion 
of the two neutrons has the form zp<2>(p) =A sin k'p, 
where A is an arbitrary constant and k' is the 
wave vector of the relative motion of the two neu
trons within the region of action of the nuclear 
forces. A and k' are found by matching the 
functions zp<O and zp<2> at the boundary of the 
region of action of the nuclear forces. 

The figure shows the energy distributions of 
He3 nuclei at angles of 25 and 75° in the center-of-
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mass system, computed including (solid curve) 
and omitting (dashed curve ) the interaction of the 
neutrons in the final state, and the experimental 
energy distribution4 of the He3 nuclei (the points 
on the figure ) . As one sees from the figure, the 
energy distributions of He3 nuclei, computed in-
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IN magnetohydrodynamics, under the condition that 

~m I ~T ~ 1M;,ud(l hM~+ 112M;,+ I) U2 

+ 3f2M;,] I (I+ 1), (1) 

the principal role in the diffusion of the shock front 
is played by thermal conductivity, while magnetic 
viscosity can be neglected. Here and below we use 
the dimensionless quantities 

u=vlv1 , M~=v~la~, M;,=v~la;,; 

where 

a;, = HU 4rcpl, ai = IP1 I P1· 

Here, Vm = c2/47ra is the magnetic viscosity, x 
the coefficient of temperature conductivity, and l 
the mean free path of the ion. The system of co
ordinates moves with the velocity of the wave in 
the direction of its propagation (for example, from 

eluding the potential scattering of the neutrons in 
the final state, give a good description of the ex
perimental results. 

In conclusion it should be mentioned that, on the 
basis of these considerations, one can not only ex
plain the energy distributions of products of reac
tions which lead to emission of several particles, 
but one also gets a value for the parameters of the 
interaction of these particles in the final state. 
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right to left) . The remaining notation is universal 
in magnetohydrodynamics. 

Account of thermal conductivity alone leads to 
the appearance of an isothermal discontinuity. It 
is well lmown that in the absence of a magnetic 
field, a gradual change in the hydrodynamic quan
tities takes place only at gas velocities smaller 
than u2 =(y+1)/(3y-1) by +oo, whereasinthis 
case Mi = ( 3y -1 )/y ( 3 ·_ y) (see, for example, 
reference 1). We call the velocity u2 = uz, for 
which the isothermal discontinuity appears, the 
limiting velocity. If the magnetic field is not 
equal to zero, then the limiting velocity can vary 
from uz = (y+1)/(3y-1) to 1, depending on the 
values of M~ and Mfu. These three quantities 
are related in the following fashion: 

Mi = 2 [I- (2 -1) ud I 1 [(51- 7) u~ 

+ (5-I) u1 - (31-1) u31- (1-l)], 

M~n = [1- (2 -'I) u1] lu~ [(3'1-1) u1-r-lJ. (2) 

The region in front of the isothermal discontinuity 
is especially clearly seen in the diagram of Mi, 
M2m. The connection between u2, M¥ and Mfu has 
the form 

M;, = (IU2 + 2 -I) I [('I+ I) u: 

In shock waves with parameters taken from. the 
shaded region, the changes of all variables take 

(3) 


