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The 1111 phase shifts for scattering in large orbital angular momentum states are described 
in terms of the 1r1r -interaction coupling constant. If the results obtained can be extended to 
the l = 2 case and if the assumption is made that the 1r1r scattering amplitude exhibits no reso
nance at low energies, then a disagreement with experiment is obtained. 

A b k d 1 (- I [ (1) . 1 ' ' (1)] S was shown y 0 un' an Pomeranchuk, 1111 f~ 0 (p1 , p2, p3, p4) = U-p, lo'"r' L -t· 2 (p3- Pt) M 
scattering in large orbital angular momentum states 
is dominated by the diagram shown in the figure. 
This diagram contains 'the 1111 scattering amplitude 
and the 1r1r scattering amplitude. Consequently ex
perimental data on 1111 scattering phase shifts in 
large orbital angular momentum states may in 
principle yield information about the magnitude 
of 1r1r scattering. 

Principal diagram for 1Ttl 

scattering in large orbital an
gular momentum states. 

The scattering phase shifts in large angular 
momentum states are determined by the value of 
the amplitude in the vicinity of the nearest singu
larity in the momentum transfer q2. In the case 
under consideration the nearest singularity occurs 
at q2 = 4J.L2 and the next one at q2 = 16J.L2. The 
large interval between the two nearest singulari
ties encourages the speculation that the indicated 
diagram for 1111 scattering will also be dominant 
for not very large angular momenta. 

The general expression for the 1r1r scattering 
amplitude is given by 

where A, B, C are functions of the momenta Pi· 
We have here the following symmetry conditions: 
Pt-P2• B-C; P2-P3• A-B; Pt-Pa• A-C. 
Using the notation indicated in the figure we get p1 
=K, p2 =k-q/2, p3 =-K+q, p4 =-k-q/2 and 
to the substitution k- - k corresponds A- C. 

The general expression for the 1111 scattering 
amplitude is given by 
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(2) 

and we have the symmetry conditions (p1, p3 
meson momenta, p2, p4 - nucleon momenta) p1 
-p3, L<2>--L<2>, Mu> __ Mm. Inthenota-

tion of the figure: P1 = - k + q/2, P2 = p, Pa = k 
+ q/2, p4 = -p -q and for k- -k we have 

The amplitude corresponding to the diagram in 
the figure may be written as follows: 

MCLy(q 2)= 2~i ~r~f,ys(K,k- ~ .-K+q.-k- n 
X hs (- k + i , p, k + ~ , - p- q) D. (k, q) d4k, 

D. (k, q) = !(k- q/2)2- p.2rl !(k + q/2)2- p.2rl (3) 

or, after substitution of (1) and (2), as follows: 
1 \ - I (1) k' <t> I May (q2) = Z"i J [ll~y (A+ C + 3B) (up+q L + M Up) 

. - (2) ' (2) . 4 (4) -l8a·ra'a (A- C) (UP+q I L + kM I Up)] D. (k, q) d k. 

When calculating scattering phase shifts in large 
angular momentum states values of q2 near 4 J.L2 

and small values of the variable of integration k 
in (4) are of importance. An estimate of the ef
fective values of k2 may be obtained by consider
ing the integral ( q2 = - 2p2 ( 1 -cos (}) with (} the 
scattering angle and p the momentum in the c.m.s.) 

+t 
It=~ M(%)P1 (cos%)d(cos-&), 

-1 

in the same way as was done previously2 for the 
nn scattering amplitude. Such an estimate leads 
to 

I k2eff I= [J. 2 / L, (5) 

L=(l+lH/Vl-H2• ~=[J./IP!; (6) 

it is assumed that the inequality L » 1 holds. 
Since A + C + 3B and L0 > + kM<l> are even 

functions of k, and A- C and L<2> -f kM<2> are 
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odd functions of k one may, accurate to first order 
terms in 1/L, omit in (4) the term proportional to 
EayaTa. Thus, for L » 1, the 1Tll scattering am
plitude is independent of isotopic spin indices: 

Mo.y (q 2) = M (q 2) Say, 

M (q2) = 2~i ~(A + C + 38) 

X (Up+q I L(l) + kM1> I Up) /1 (k, q) d4k. (7) 

If A + C + 3B is a sufficiently smooth function 
of k inside the region (5) it can be taken out from 
under the integral sign in (7): 

where we have set - 5A. = (A+ C + 3B )k=o 
The dependence of the scattering phase shifts on 

the mechanical spin variables can be obtained with
out a knowledge of the explicit form of L<0 and 
M 0 >. As a matter of fact L0 > and Mm are func, 
tions of the vectors p, q and k. In carrying out 
the k -integration in Eq. (8) we will obtain either 
(~p+ql ~I up) or (iip_:q I p l ... u.P) in place of 
( up+q I k I up). But ( up+q I q I up) = 0 and 
( iip+q I p I up) = m ( iip+qup). It then follows that 
the spin dependence of M is contained in the 
factor (iip+qup), i.e., 

M (q2) = (up+qup) F (q2), (9) 

where the function F ( q2 ) depends on the precise 
form of L0 > and M 0 >. 

Passing from the four-component spinors u to 
the two-component v we obtain 

M (q 2) = (v" 1 m-1 (E + w) (f + ia [KXK'l <p) I v), (10) 

where 
f = 2 ~: ~ EE) [I - (E ~~ m)2 J F (q2), 

F (q2) 
"f' = 2 (£ + w) (E + m) 

(11) 

( t = cos (}, w = meson energy, E = nucleon energy). 
We next expand the amplitudes f and qJ in 

Legendre polynomials (see, e.g., reference 2): 

f = (2ilplr1 ~ [(l+l)exp(2io7) 

+ l exp (2io/)- 21- I] P1 (t) 

~ 1 p \-1 ~ [(! + I) s; + 1011 P1 (t), (12) 

cp = (2i 1 p l3f 1 ~ (exp (2io?)- exp (2iol )) dP t(t) 1 dt 
1 

~- ( 1 p [3 V 1 - t 2r1 ~ (ot- o!) P\1> (t), (13) 
l 

where ol are the scattering phase shifts in states 
of orbital angular momentum l and j = l ± % . 

Consequently* 

[(/ + I) o? + ZOII/(21+ I) 

+1 
_ <m + ~ \ r. ,_ P2

' J F (q2\ P <t> dt 
- 4 (£ + w) ) [ (£ + m)2 ' l • 

(14) 
-1 

". ,- 1 P 13 21 + 1 
0 1 - 6t =- 4 (£ + m) (E + w) IV+i) 

-'-1 

X~ (1- { 2 ) dFdi") Pt(t)dt. (15) 
-I 

For L » 1 the following formula holds :2 

+I ~ 

~ F (q 2) P 1 (t) dt = ::=- Qz(l -: 21; 2) ~ e-Ls' (I:::J.f) sds, (16) 
-1 0 

where Qz is the Legendre function of the second 
kind; 

s = l/ I - q2 /4:.t 2 = VI + (I - t) / '2:;". (17) 

and ( .6.F) is the jump in the function F ( q2 ) 

across the cut in the complex s -plane running 
from s = 0 to s = co • 

Taking irtto account the fact that dF/dt 
=-(4~2s)-1 dF/ds, aswellasthat (.6.F)=O at 
s = 0 we obtain [for s « 1: t = 1 + 2~ 2 , 1- t2 

= - 4~2 ( 1 + ~2)] 

[(l + I) s; +loll/ (21 + I) = - c1bQz (2 + 2~2), (18) 

s; - ol = -c2bQ 1 (I + 21;2), (19) 

where 

c - i":; E + m (1 - p2 + 2:"2) 
1 - m E -l- w (E + m)2 ' 

21 + 1 2p.3 Vi~ 
C2 = -, - m (E + m) (£ + w) ' 

00 

b =- ---c- e-Ls- (I:::J.F) sds. Ill ~· " 
T.l 

(20) 
0 

It is obvious that c2 « c1• In the nonrelativistic. 
approximation for the nucleons when I p I « m, but 
IP I "" p,, the ratio c2 /c1 is of the order of -12 
X (p,/m )2 f'::l 0.03. It then follOWS that oi and oz 
are almost equal. This conclusion is a consequence 
of the assumption that A + C + 3B is a sufficiently 
smooth function within the region (5), i.e., that the 
1r1r scattering amplitude has no resonances for low 
meson energy. If this assumption is not justified 
then in addition to the matrix element (up+qup), 
M will also contain the matrix element 
( iip+q I K I up) and the sign dependence of M may 
be substantially altered. 

*We make use of 
+1 
i p<ll (I) p<V (I) dt = 0 , 21 (I+ 1) . 
) l I 11 21 + 1 ' 
-1 

1 p(l) (I 
dPl(t)!dl=- sine I ), 

d[(1-f2)f(q2)]/dlz(1-1 2)df/dl for L}>1. 
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According to tbe experiments of Mukhin and 
Pontecorvo3 o2 ~ - 62, which disagrees with (18) 
and (19). Thus, if it is true that the two-pion inter
action (see figure) is already dominant for l = 2, 
the discrepancy with experiment would indicate the 
existence of a resonance in the 1r1r scattering am
plitude at low energies (about the 1r1r resonance 
see also references 4 and 5). 

For a quantitative determination of the 7rn scat
tering phase shifts for L » 1 it is necessary to 
evaluate F ( q2 ) and b. We obtain 

a -k 
f ~Y = m 0"Y + "=a'Cy (k + q; 2)' + 2p (k + q I 2) 

. k 
--;- '::y'ra (k- q; 2)2 - '2p (k- q / 2) ' 

(which is in agreement with Galanin et al.2•6 ) from 
where, making use of the results obtained in refer
ence 6, we deduce 

F(q 2) = 5::-r(Ol-l)s ~ Jn(s + 2s)J. 

where € = J.J.Im and a= 1.2. Carrying out the 
s -integration in Eq. (20) we get (see reference 6; 
it is assumed that -571. = (A+C+3B)k=o is inde
pendent of q2 ) : 

b = (5g21-j16 v~L'1') r ()( -1 + -v~~u- /-;; ~)J. 
where it was assumed that 1 « L « 4m2/J.J.2 and 
t = E..fL/2 « r, and terms quadratic in t were 
taken into account. 

In this way the values of 7rn scattering phase 
shifts for sufficiently large l provide an opportu
nity for obtaining A. which determines the 1r1r in
teraction. The qualitative discrepancy with the ex-

perimental data (indicated above ) on the signs of 
the D -wave phases, due either to a 1r1r amplitude 
resonance or to the fact that an orbital angular 
momentum two is not sufficiently large for the 
considerations here outlined to be valid even as 
an order of magnitude estimate,* precludes the 
use of the Mukhin and Pontecorvo data3 on the 
D phase shifts for a determination of the constant 
A.. 

The author expresses his indebtedness to I. Ya. 
Pomeranchuk, B. L. Ioffe and L. B-. Okun' for use
ful advice and discussions. 
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*Lowest order petturbation theory gives D phase shifts of 
opposite sign and gives a 8+ phase (which is determined more 
reliably experimentally) amounting to a significant part of its 
experimental value. This circumstance indicates that l = 2 is 
apparently too small to apply the theory developed above. The 
author is grateful to Prof. Chew for indicating this possibility. 


