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A complete classification has been obtained for the representations of the inhomogeneous 
Lorentz group, including space reflections and time reflections of the Wigner type. The 
question of the values of the squares of the various reflection operations for particles of 
half-integral spin is investigated in detail. The results are compared with those which 
are obtained when additional requirements are imposed on the theory, in particular the 
requirement of locality of the field operators. It is shown that, in addition to mass, spin 
and parity, elementary particles have still another purely geometrical characteristic, 
which might be called the symmetry type. The question of the symmetry type for real 
particles is discussed. 

1. INTRODUCTION 

THE purpose of this paper is to obtain all possible 
laws of transformation of wave functions (state 
vectors) under space and time reflections, which 
are permitted by the requirements of relativistic 
invariance, without making use of the property of 
locality of the field operators. The following pos­
tulates are taken as the starting point. 

A. Relativistic invariance. The mathematical 
formulation of this requirement is that1 the theory 
must contain operators Mt-tv• PA.· satisfying the 
commutation relations 

[Mp.v, MM] = i (o1MM1.-1 + Op.l.Mvo +Ova Mp.l. + O).vMap.), 

[Mp.v. P1J = i (p~o 1,1,- pp.Ov), ), [pp., Pv] = 0 (1) 

B. The Wigner formulation of the law of time 
reflection2 is assumed. According to this formula­
tion, to the operation t = - t' there corresponds 
the state vector transformation 

t = - t', 'Y = I iK'Y', 

where It is a certain linear operator and K is 
the nonlinear operation of charge conjugation 

K'Y' = '¥'*. 

(2) 

(3) 

The Schwinger rule for transposition3 is obtained 
by substituting (3) into (2). The formulation within 
the framework of the conventional theory of repre­
sentations was given earlier:' 

C. The reflection operations are not assigned 
explicitly, but are determined from their geomet­
rical properties. Thus the inversion Is is de­
fined as the operator that transforms the state 
vector when we reflect the space coordinates 
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x = -x', 'Y =I,'¥'. (4) 

The time reflection operator was defined in refer­
ence 2. It is convenient to introduce still another 
operator lstK, corresponding to the reflection of 
all four axes: 

X~'= -X~, 'Y = IstK'Y'. (5) 

It is obvious that 

(6) 

Figuratively speaking, the inversion is defined as 
the operator that relates the state vector to the 
vector for the state of the same physical system 
as observed in a mirror. 

From these definitions and the fact that the se­
quences of coordinate transformations 

XI' = X~ + ;I' + Sl'vX:• 

X~ = -X~, XI' = - x;, X~ = X~- ~p. + Sp.vX: (7) 

lead to the same final system, we obtain the com­
mutation relations for the operator 1st: 

piJ.Ist- IstP; = 0, 

Ml'vist + f,tM;. = 0. 

(8) 

(9) 

The asterisk denotes complex (and not Hermitian) 
conjugation.* Similarly, we get for Is the rela­
tions 

[/,, M] = 0, [/,, p0 ] = 0, 

/,p + p/, = 0, I,N + N!, = 0, (10) 

*The operation of complex conjugation does not affect the 
imaginary. unit in the fourth components of vectors and tensors, 
so that, for example, P:' = ip:'. This point is not essential, 
since the use of contravariant vectors with the usual definition 
of conjugation leads to the same results. 
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where Ni = - iMi4• Each of the reflection opera­
tions defined by Eqs. (2)- (5) may or may not con­
tain the charge conjugation. On the other hand, 
according to (8) and (10), all these operations must 
be conserved for all interactions. 

D. For particles with integral spin, the squares 
of all reflections are equal to unity. For particles 
with half-integral spin, the square of each of the 
reflections Is, ltK, lstK may be either plus or 
minus unity, but they must have the same values 
for all the half-integral spin particles. In other 
words, the values of squares of the reflection 
operators determine the properties of space-time, 
and not the properties of individual particles. 
Therefore particles with different values for the 
square of one of the reflections cannot exist simu.l­
taneously, 5 since this would lead to the existence 
of systems with integer angular momentum and a 
negative value for the square of the reflection. 

As was shown earlier,4•6 these considerations 
can be given a geometrical interpretation if we 
extend the rotation group by adjoining an element 
I21r for the rotation through angle 27T about an 
arbitrary axis. (Such an extension occurs natu­
rally in treating the topological properties of the 
parameter space of the rotation group.) Then 
the square of each of the reflections may be equal 
to either the identity operator I or to the rotation 
through 27T, which leads to the following eight 
groups G1 - G8: 

G1 
I 

G2 
I 

G, I G. I G, Go I G. I Go 

12 
8 I I /2rt 

I 
/2rt I /2rt /21t I I I 

(ltK)2 =It!; I I /2rt j I /21t 
I 

/2ft 
I 

/2rt I 

(I stK)2 = I,tf:t I I 12tt I /21t I I 121t I I /2n 

(11) 

Table (11) holds for both integer ( I21r = 1 ) and 
half-integral (I27T = -1) spins. Real space-time 
transforms according to one of these eight groups, 
and this fixes once and for all the values of the 
squares of the reflections for all particles. Thus 
there exist eight nonequivalent space-time struc­
tures. Later we shall show that the difference be­
tween these structures is accessible to experimen­
tal test. 

E. No assumptions whatsoever are made con­
cerning the locality of the field operators, or, in 
general, concerning the form of the equations of 
motion. These initial assumptions differ in some 
ways from those usually made in investigations of 

this kind ( cf., for example, the surveys by Wick 
and Solov' ev, 7 which give references to the main 
papers). 

The adoption of postulates A and E leads to 
a great generality and enables us to obtain anum­
ber of reflection transformations which satisfy 
the requirements of relativistic invariance but 
which do not reduce to local transformations of 
the Dirac field operators. Postulate C is essen­
tially not new, but it rather restores to the reflec­
tion operators their original geometrical meaning. 
However this point does involve a change in the 
basic point of view of the investigation of there­
flection operations. Usually (cf., for example, 
reference 7 ) , certain operators ( P, C P, T, C T, 
etc) are defined to act on the field operators, and 
one investigates the conservation of these oper­
ators. Here we impose the requirement that there 
exist conserved operators Is, It, 1st, which cor­
respond to definite coordinate transformations and 
which satisfy relations (6), (8)- (10), and one of 
the columns of (11). (Failure to satisfy this re­
quirement is tantamount to denying the Euclidean 
nature of space-time.) Our problem is to find 
the explicit form of these operators. There­
quirements of postulate D are not new (though 
they contain a somewhat unusual geometrical in­
terpretation ) , but they are investigated in detail 
here for the first time. These requirements im­
pose quite rigid limitations (which are different 
for each of the eight groups) on the possible form 
of the reflection operators. 

2. PARTICLES WITH NONZERO REST MASS 

The apparatus of field theory is not suited for 
investigations which are not based on locality of 
the theory. We shall therefore make use of the 
mathematical technique which was used earlier8 

for obtaining 'the explicit form of the representa­
tions of the inhomogeneous Lorentz group. (These 
representations were first obtained by Wigner. 9 ) 

According to reference 8, the state vector of a 
free relativistic particle, with mass K and 
spin s, can always be brought to the form 

'¥~," (p), (12) 

where the kinematical variables are the three­
dimensional momentum p and the spin projection 
ms. In addition to mass and spin, the particle may 
possess other variables (such as charge) which 
are invariant under four -dimensional rotations and 
translations; we denote these by the index a. Rela­
tivistic invariance is assured by the fact that, for 
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the state vector (12)' we can define8 operators 
MJ..Llh PA. which satisfy Eqs. (1): 

, v~ M .,. a .i · S p = p, Po= e, = p- --j- z-, =- l P x op J -;- , 

N- ie .!!_ -~- (13) 
- 1' rJp e1, -- x' 

(14) 

The completeness of the argument is guaranteed by 
the fact that, to a given pair of values of mass and 
spin, there corresponds a single irreducible rep­
resentation of the inhomogeneous Lorentz group, 
which can always be reduced to the form (13). 

For the state vector (12), we must now find 
operators Is, Ito Ist , which satisfy (6), (8) - (1 0), 
and one of the columns of (11). Let us represent 
these operators in the form 

Is= !.,P, It= i,tT, 1st= i.,t PT, (15) 

where P is an operator which acts only on the 
variable p and changes the sign of the momentum: 

(16) 

while T is an operator which acts on p and ms 
(but not on a), and changes the sign of the mo­
mentum and the spin projection: 

T1Y;;,',"-(p) ~~ (-l)s-ms'¥~~s(-p). (17) 

From (16), (17) it follows that 

p-1pP = - p, p-1SP = S, 

r-1pT = - p, r-1sT = - S* 

(18) 

(19) 

P" I TT* _ I _ { 1 (integer spin) ( 
- = 2"' -- 2"- -1 (half-integer spin). 20) 

The operations P and T defined by (16) and 
(17) are the natural generalization, to the case of 
arbitrary spin, of the corresponding quantities 
which are used in the theory of spinor fields. Sub­
stituting (13) and (15) in (6), (8) - (10), we obtain, 
using (18) and (19): 

),,),t = 'A,t; (21) 

['A,, Ptd = 0, P•s, Mi'" J = 0, 

P•st, P1•J = 0, (i•sl, M1 •• ,] = 0. (22) 

G, I G, I G, G. 

1-i I i 1-il P1 P1 

"-t P2 I P2 11 11 I P2 I Pa 

I 
I 

I 
"-st ip2 l-ip21 i !-il ipa l-ip21 

According to (22), the operators A.s, A.t, and A.st 
do not act on the kinematic variables p and ms; 
i.e., they are either numbers, or they are mat­
rices with respect to the invariant variable a. 
According to (11) and (20), for single-valued 
representations, 

(23) 

and all the factors A. may be numbers. To each 
value of mass and spin , there correspond two 
equivalent representations which differ in 
parity: 

),s = I, i.1 = I; i., = - 1, i-t = 1 (integer spin). (24) 

(Representations which differ by a phase factor in 
A.t are not different, since according to (2) and (3) 
this factor can be eliminated by multiplying the 
state vector by an appropriate phase factor. ) To 
obtain the two-valued representations, we must 
substitute (15) and (20) in (11), and set I27T = -1. 
The result is 

G, I G, I G, I G• I Gs I Go I G 7 I Gs 

) ~ 
·s -1 1 -1 1 1 1 1 1 1 1 1 1 -1 1 -1 

-1 1 1 1 -1 1 1 1 1. 1 -1 1 1 1 -1 
----~--+---~--~---,--~----

-1 I 1 I 1 I -1 I 1 I -1 I -1 I 1 

(25) 

If A.t (or A.st) is a number, the quantity A.tA.{ 
(or A.stA.~t) must necessarily be positive. The 
factors A. may therefore be numbers only in 
groups G2 and G5• In the other six groups 
these factors must be two-by-two matrices acting 
on an additional independent variable, so that the 
dimensionality of the irreducible representation 
is double that of the corresponding proper group. 
One can verify directly that relations (21) and 
(25) are satisfied by the following sets of factors: 

Go I G7 

26) 

1 I -1 I P• 1-Pa 
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.The matrices p1, p2, p3 in (26) have the form 
of the corresponding Pauli matrices, and act on an 
additional (charge-type) variable of the state vec­
tor. The matrices p1, p2 correspond to an oper­
ation of the type of charge conjugation. Because 
of the presence of the operation of complex con­
jugation in (2) and (5), the matrices p1 and p2 

cannot be transformed into one another by an 
equivalence transformation if they enter into 
A.t or A.st· Table (26) exhausts the irreducible 
representations for each of the groups G1 - G8 

for the case of half-integral spin. 

3. PARTICLES WITH ZERO REST MASS 

For zero rest mass, for each value s of the 
absolute value of the spin, there are two irreducible 
representations of the proper group, which are one­
dimensional in the spin variables, and which differ 
in the sign of the projection of the spin onto the 
momentum9 ( spirality). A change in the sign of 
the momentum changes the sign of the spirality, 
so that the representations of the group including 
space reflections must be two-rowed in the spin­
like variable for the sign of the spirality. The 
operators p11 , M11v for these representations can 
be written in the form 

P = p, Po = I P I ; 
. ( a a ) cos"' M1 =-l P2 -a - Pa-a + scra -. -"-, Ps P2 sm v 

M . ( a a \ ' sin<;> 
X 2 = - l Pa ap,- Pl dps) I scra sin{}' 

M a = - i (P1 _i_ - P2 _i_) ; ap2 ap, 

N 1 = ip ~a - scr3 sin cpcot .&, 
up, 

N2 = ip a..i._ + scr3 cos <:p cot%, N 3 = ip .;._. (27) 
P2 upg 

Here a3 is the Pauli matrix which acts on the 
variable for the sign of the spirality, and cp, J. 
are the polar angles of the momentum vector. 

For integer spin, the operators Is, It, and Ist 
satisfying (6) and (8) - (11) are equal to 

I,= cr 1P, It= P, 1st= cr, (integer spin). (28) 

For each absolute value of the spin there is just 
one irreducible representation. 

For half-integral spin, we look for operators 
Is, It. Ist of the form 

l,=i.:P', lt=i;P', lst=i.;t. (29) 

The operation P' acts on the wave function in the 
same way as P, i.e., it changes the sign of the 
momentum, and its square is also equal to -1: 

P''¥ (p) = 'Y (- p), (P') 2 =- I, (30) 

since the eigenfunctions of the operators (27) con­
tain a factor exp (±icp/2 ), which is multiplied by 
i when cp is replaced by cp + 7T. Substituting (29) 
in (6) and (8) - (J 0), we find 

}.) .. ; = 'A:t, 
) .. ;cr 3 + cr 3A~ = 0, 

}.; cr3 - cr3 }.; = 0, 

A;t cr3 + cr3 A;t = 0. 

(31) 

(32) 

(33) 

(34) 

Relations (32) - (34) express the fact that the pro­
jection of the spin along the momentum does not 
change sign under time reflection, and changes 
sign under inversion. 

Substituting (29) in (11) and using (30), we ob­
tain for the values of the squares of the A."s, the 
table 

G, G2 G, G• I G, I Go G, G, 
I 

('A;)z -1 -1 
I 

1 
I 

1 -1 -1 

~.;~.;· -1 -1 ) I 
-1 -1 

~.:t) .. :·t 1 -1 -1 I -1 I -1 

(35) 

According to (33), the factor A.f for the spin 
variable is either equal to unity or proportional 
to a3• Therefore, in the groups G1, G3, G6 and G8, 

where the quantities A.tA.t* are negative, we must 
introduce an additional discrete variable, so that 
the representation becomes four-rowed. This 
doubling is not necessary in the other groups. Re­
lations (31) - (35) are satisfied by the following 
sets of factors A.', which exhaust the irreducible 
representations for the state vectors of particles 
with zero rest mass and half-integral spin: 

I G, G• G, G• G, Go I 
G, Ga 

}.~ I io1p3 io1 o, o, o, o,pg 
I 

io 1 ia 1 

~.· t I P2 Og P2 Og P2 I 
1 P2 

),;t I p,o, 02 I o1P2 o, - io2 l -ip1o1 I ia 1 ial P2 

(36) 

4. SYMMETRY TYPES OF ELEMENTARY 
PARTICLES 

In addition to mass, spin, and parity, elemen-
tary particles possess another purely geometric 
characteristic, which we may call the symmetry 
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type of the particle. The concept of symmetry 
type is based on the macroscopically obvious fact 
that, under each of the reflections x - - x, t - - t, 
xJ.L - - xJ.L, the particle can either go over into it­
self (symmetry), or into another (anti-particle 
type) state with the same mass and spin ( asym­
metry). In the latter case, the transformation of 
the state vector which is associated with the cor­
responding reflection must contain an operation C 
of the type of charge conjugation. 

For nonzero rest mass, five types of symmetry 
are possible: 

1. Complete Symmetry. The particle is trans­
formed into itself under all reflections. In this case 
the operations P ( change in signs of momenta) 
and T (change in signs of momenta and spins) 
are conserved. 

2. T -symmetry. The particle transforms into 
the antiparticle under space reflections, and is un­
changed by time reflection. PC and T are con­
served, while P and PT are not. The macroscopic 
analog of this type of symmetry is the symmetry of 
a rotating screw-nut. 

3. P -symmetry. The particle is unchanged by 
inversion and changes into the antiparticle under 
time reflection. P and CT are conserved, while 
T and PT are not. The macroscopic analog is a 
rotating weather-vane. 

4. PT -symmetry. The particle changes to the 
antiparticle under inversion, and does not change 
under reversal of all four coordinates. PC, CT, 
and PT are conserved, while P, T, and PCT 
are not. This case contradicts the PCT -theorem, 
i.e., it is not possible in a local theory. The 
macroscopic analog is a rotating conical cogwheel. 

\). Complete asymmetry. The particle does not 
change into itself under any of the reflections, i.e., 
the particle has four different states with the same 
mass and spin. In this case there are two inde­
pendent operators C1 and C2 of the type of charge 
conjugation. PC1, C2T, and PC 3T (where C3 

= C1 C2 ) are conserved. 
For zero rest mass, we associate with a state 

of the particle a definite projection of the spin 
along the momentum, which is invariant with re­
spect to proper transformations but which changes 
sign under inversion. Thus, for zero mass (and 
nonzero spin) only T -symmetry (type 2) and 
complete asymmetry (type 5) are possible. 

In some cases (for example, for photons) the 
operation C does not change the sign of any charge. 

For this reason we have been careful to call it an 
operation of the type of charge conjugation. 

There are different restrictions on the S -matrix 
for the various symmetry types. Thus, in cases 3 
and 4, the S -matrix is not symmetric, as is usual, 
but is related to its transposed matrix sT by sT 
= C -tsc. The considerations presented here can 
be presented somewhat differently, by discussing 
the transformation properties of the physical quan­
tities characterizing the particle. From group­
theoretical considerations it follows that the state 
of a free particle is described by its mass, spin, 
momentum, spin projection, as well as by other 
possible variables which must necessarily be in­
variant under proper transformations. 8 However, 
these additional variables may be either scalar 
or pseudoscalar with respect to reflections. If 
all the additional variables are scalar, the par­
ticle belongs to the first type (complete symme­
try). If the additional variable is a pseudoscalar 
with respect to inversion and a scalar with respect 
to time reflection (for example, the projection of 
the spin along the momentum in the case of zero 
mass), the particle has T -symmetry, etc. Thus 
the investigation of symmetry types of particles 
is equivalent to the investigation of the behavior 
under reflections of the quantities character-
izing the particle, such as the different 
charges. 

5. THE DffiAC EQUATION 

If we impose on the theory the requirement of 
locality of the field operators, there is an essen­
tial change in the final results, which can be fol­
lowed on the example of the Dirac spinor. Dif­
ferences occur for three reasons. First of all, 
the Dirac equation is always a four-component 
equation, whereas two-component spinors are 
possible for the groups G2 and G5 [ cf. Eq. (26)] 
found in our investigation. Secondly, certain rep­
resentations are forbidden in a local formulation. 
Thirdly, certain representations which are equiva­
lent within the framework of the general theory of 
representations may prove to be inequivalent with 
respect to local transformations. · 

Before turning to an investigation of the Dirac 
equation, let us enumerate all the "physically" in­
equivalent four-component representations, for a 
particle with spin %. which are permissible ac­
cording to table (26): 
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). st 

1 
j 

I i 

I 
P• I ip, 

2 C, I -i P• -ip, 
I 
I 

3 t 1 i 
4 -i 1 -i 
.~ i PI ipi 
6 C, -i p, -ip, 
7 ipg Pa i 
8 ip, 1 I ip, 
9 ipi Pt I i 

10 

I Ca I PI 

I 
P• 

I 
ipa 

11 Pa p, -ip, 
-

12 I 

I 
P1 

I 
Pa 

I 
-ip, 

13 I 
c. 

Pa PI ip, 

We say that two representations, for example rep­
resentations 7 and 8, are "physically" inequivalent, 
even though they are equivalent, if they correspond 
to different symmetry types. In representation 7, 
under inversion the particle goes over into itself 
(conservation of parity), while in 8 the particle 
under inversion goes over into its antiparticle 
(conservation of combined inversion). 

Now let us consider the possible transforma­
tions for the Dirac field operators, which corre­
spond to the addition of the requirement of locality 

I 

14 1 
15 -1 
16 Pa 
17 Cs 1 
18 -1 
19 P1 
20 PI 

21 

I I 
1 

I c. 22 -1 
I 

2:1 

I 
C, 

I 
ip, 

I 24 ips 

25 

I I 
ipi 

I 26 c. 
iP.s 

1 
1 
Pa 
P1 
PI 
P1 
1 

I 
P2 
F2 

Pa 

I Pt 

F2 

I P• 

), 
st 

1 
-1 
1 
PI 

-pi 
1 

P1 

p, 
-p, 

P• 
-p, 

-pg 
?t 

(37) 

to the invariance requirements (1) and (8)- (10). 
In the local formulation, these conditions are equiv­
alent to the following requirements: 1) in variance 
of the equations for the field operators, 2) invari­
ance of the commutation relations, 3) invariance 
of the definition of the vacuum. Taking account of 
these requirements, one can show that the follow­
ing nonequivalent sets of transformations of the 
Dirac field operator 1/J ( x, t) can be associated 
with the reflection transformations: 

Operators corresponding to Number of 
coordinate reflections correspond-Group 

x=~x' 

a, 

a, iP 

2 a a PC 

:3 a. PC 
4 PC 

5 p 
6 -P 
7 p 
8 p 
9 as -P 

10 -P 
11 

I 
PC 

12 PC 
13 PC 

14 a. p 
15 -P 

16 a, iP 
17 iP 

18 as iP 
19 iP 

In (38) the operations P, T, C are defined in the 
standard way, with the phase factors 

Pcji(x,t) = ir.cj;(-x, t). 

Tcji (x,t) = wr~r·~ (x, - t), 

Ccj;(x,t) = l2l•;;;(x, t). 

(39) 

(40) 

(41) 

represent a-
I =-1' X =-X tion in (37) f' fJ. 

T iPT 7 

iCT iPT 10 

iT -iPCT 12 
-iT iPCT 12 

T 
I 

PT 14 
T -PT 15 
CT PCT 17 

-CT --PCT 17 (38) 
CT -PCT 18 

-CT PCT 18 
CT PT 19 
T PCT 20 
--T -PCT 20 

iCT iPCT 21 
iCT -iPCT 22 

CT iPCT 24 
-CT -iPCT 24 

iCT --PCT 26 
-iCT PCT 26 

It can be shown that, with this choice of phase fac­
tors, the transformations (39) and (40) on the 
Dirac field operators are equivalent to the trans­
formations (16) and (17) on the corresponding state 
vector. For this reason these operations are de­
noted by the same letters. This equivalence can 



• 

SPACE AND TIME REFLECTIONS IN RELATIVISTIC THEORY 107 

be established by means of a Foldy-Wouthuysen 
transformation10 of the solutions of the Dirac 
equation for the field operators, followed by a 
shift to the configuration representation as in 
reference 11. 

Table (38) exhausts the possible laws for local 
reflection transformations of Dirac particles. We 
remind the reader that particles can exist simul­
taneously only if their operators transform accord­
ing to representations which belong to the same 
group, and that all the reflection operations are 
conserved. 

6. DISCUSSION OF RESULTS 

Our investigation shows that the known proper­
ties of space-time must be fixed in accordance 
with one of the columns of (ll), so that the ques­
tion arises ..of determining the group among G1 - G8 
according to which real space-time transforms. To 
solve this problem, we may use the following dif­
ferences between the representations of these 
groups. 

a) The pseudoscalar nature of the ground state 
of positronium. This argument does not depend on 
whether inversion is or is not accompanied by 
charge conjugation, since the two-photon system 
has even charge parity. This requirement elimi­
nates from table (37) the representations 1 - 6, 8, 
9, ll, 13, 16, 23, and 25, i.e., just those represen­
tations which are absent from the local variants 
(38). Thus the requirement of pseudoscalarity of 
positronium eliminates the possibility of group G1, 

in which the squares of all reflections are equal 
to unity. 

b) The two-component neutrino. If the neutrino 
is two-component, then, according to (36), the 
groups G1, G3, G6 and G8 are not possible. 

c) The four-component nature of all known 
spinor particles with nonzero rest mass. This 
argument, together with the previous one, makes 
those representations particularly probable for 
which the wave function of the spin - 1/ 2 particle 
may be two-component for zero rest mass, but 
necessarily four-component for particles of finite 
mass. Groups G4 and G7 satisfy this condition. 

The following group of arguments is related to 
non-conservation of the operation of charge con­
jugation C [p 1, p2 in Eq. (37)]. It is to be under­
stood that we are talking about conservation under 
all interactions, since the problem under discus­
sion involves the geometric properties of space­
time itself. Nonconservation of C has the conse­
quence that if, for example, the quantity PC is 
associated with the transformation x = - x' and 
is therefore conserved, the quantity PC • C = P 

will not be conserved. On the basis of this re­
mark, we may consider the following additional 
restrictions on the representations. 

d) Conservation of PCT. This requirement is 
a hypothesis, if the locality condition is not im­
posed on the theory. Conservation of PCT results 
in non-conservation of PT, which eliminates rep­
resentations 3, 4, 7, 9, 10, 14-16, 19 in (37). 
Taken together with a), this requirement elimi­
nates groups G2 and G3• 

e) The hypothesis of conservation of combined 
parity PC .12- 14 Conservation of PC excludes from 
(37) the representations 1-7, ll, 13, 14-18, 21, 
22, 24, and 26. Taken together with point a), this 
eliminates all the representations of the groups 
G1, G2, G6, G7 and G8• 

f) The hypothesis of conservation of T. This 
excludes from (37) the representations 1, 2, 5, 6, 
9 -ll, 13, 17 -19, 21, 22, and 24-26, so that, 
together with a) it excludes all the representa­
tions of groups G1, G3, G6, G7 and G8 • The local­
ity condition is equivalent to the combined condi­
tions a) and d) . 

Only representation 12 in (37) satisfies all the 
requirements enumerated above. This representa­
tion belongs to group G4• In (38) there correspond 
to it the two locally nonequivalent representations 
3 and 4. If we drop requirement c), the remaining 
conditions will also be satisfied by representation 
20 of the group G5 in (37). In (38) there will cor­
respond to it the two locally nonequivalent repre­
sentations 12 and 13. In this case, however, it be­
comes possible to have other particles, whose wave 
functions transform according to various represen­
tations of group G5, so that the conservation laws 
d), e) and f) lose their universal character. 

Thus, existing experimental data lead to the 
conclusion that real space-time transforms either 
according to group G4 or according to group G5, 

the more probable one being group G4, in which 
the squares of the inversion and of the reflection 
of all four axes are equal to unity. (We note that 
if we treat the reflection as a rotation through angle 
1r about some additional coordinate axis, its square 
reduces to a rotation through 21r.) It is interesting 
that such a delicate property of space-time, which 
is associated with the topology of the parameter 
space of the rotation group, turns out to be acces­
sible to experimental determination. 

In group G4, all particles must transform ac-
cording to representation 12 of (37). When we go 
over to the local formulation, the two representa­
tions 3 and 4 in (38), which are non-equivalent 
under local transformations, will correspond to 
it. These representations are characterized by 
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the fact that the transformation properties of the 
particles they describe are identical, while the field 
operators transform differently under reflection of 
all four axes. This difference between the particles 
will therefore not affect the conditions for invari­
ance of the S -matrix, as determined, for example, 
according to reference 15. But they will have a 
marked effect on the composition of the Lagrangian 
for the interaction which transforms one particle 
into another. 

With regard to actual particles, we may say that 
the 1r0 -meson belongs to the completely symmetric 
type, while the photon and charged particles have 
T -symmetry. The neutrino has T -symmetry if 
it is two-component, and is completely asymmetric 
if it is four-component. One must, however, observe 
a certain caution in drawing such conclusions. For 
example, the Wu experiment, strictly speaking, 
shows only that at least one of the particles partici­
pating in the process (for example, the neutrino) 
does not go over into itself under inversion. On 
the other hand, if say it should turn out that the 
quantities P, T and PT are not conserved in 
proton-proton collisions, this would imply that 
the proton has four different charge states, in ac­
cordance with the initial hypothesis of Lee and 
Yang. 12 It is of interest to set up a system of ex­
periments necessary for the exact determination 
of the symmetry types of all known particles. 

Usually, in investigating the reflections, one 
assigns these operations at the start for all the 
fields being studied, and then investigates the con­
servation of these operations. Such an approach is, 
on the one hand, incomplete, and on the other hand 
mixes up the purely geometrical properties of the 
reflection operations with the special properties 
of the operators of the as yet incomplete local 
theory of fields. The main result of the present 
paper is the strict separation of the geometrical 
properties of the reflection operations from the 
properties of specific equations of motion. 

Summarizing, we may say that the investigation 
of the reflection operations reduces to the answer 

to three questions: 1) According to which of the 
groups G1 - G8 does real space-time transform? 
2) According to which representation does each 
of the particles transform? 3) To which symme­
try type does each particle belong? All other 
questions which arise in studying the reflections 
either reduce to the ones enumerated or depend 
essentially on the particular choice of the equa­
tions of motion. 
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