
SOVIET PHYSICS JETP VOLUME 11, NUMBER 1 JULY, 1960 

EXCITATION OF VIBRATIONAL LEVELS AND COULOMB EXCITATION IN ALPHA 

DECAY 

V. M. STRUTINSKII 

Submitted to JETP editor May 7, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 122-133 (January, 1960) 

The relative probability of excitation of vibrational levels in the a decay of even -even nuclei 
is calculated. An expression for the intensity of excitation of the daughter nucleus by a par­
ticles of the main (allowed) group is derived in the quasi -classical perturbation theory ap­
proximation. The results obtained are applied to an analysis of the experimental data on the 
fine structure of a decay. 

CoNSIDERABLE progress has been made re­
cently in the interpretation of the fine structure 
of the a decay spectra of deformed nuclei .1- 7 

These papers are based ·on the physical fact, first 
noted by Hill and Wheeler, *8 that the spatial aniso­
tropy of the potential barrier in nuclei with a non­
spherical surface leads to an anisotropy in the an­
gular distribution of the a particles: the intensity 
of the current in the direction a (see Fig. 1) will 
be greater than in the direction b owing to the 
greater penetrability of the Coulomb barrier. In­
deed, the particles emitted in the direction a tra­
verse a smaller width of barrier than the particles 
emitted in the direction b ( r* in Fig. 1 is the 
radius corresponding to the turning point). In 
other words, the wave function describing the a 
decay will contain not only the s wave but also 
waves with higher angular momentum. We there­
fore have a mixture of excited states of the daughter 
nucleus with angular momenta different from that 
of the initial nucleus. We shall assume that the 
wave function at the nuclear surface is constant 
and identical for all fine structure lines belonging 
to the same rotational band. This is justified qual­
itatively by the small absorption length of the a 
particles in the nucleus. The emission of the a 
particles by the nucleus may be thought of as a 
local surface process which is not affected by the 
deformation of the nucleus. 

Besides this effect connected with the nonspher­
icity of the nuclear shape (i.e., with the anisotropy 
of the nuclear potential), there will always be 
some interaction between the a particles and the 
anisotropic component of the Coulomb field of the 
nucleus. This interaction leads to an additional 
possibility of energy and momentum exchange be­
tween the a particles and the nucleus even after 

*A similar remark was made earlier by Migdal. 9 
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the a particle has passed beyond the range of the 
nuclear interaction. This mechanism was first 
noted by Preston, 10 who also calculated its effect. 

A close analogy exists between the Coulomb 
excitation in a decay and the Coulomb excitation 
of nuclei by passing charged particles. The differ­
ence between the two is that the excitation in a 
decay occurs mainly while the a particle is still 
beneath the barrier, whereas in the usual excita-
tion the region of classical motion, r > r*, is the 
more important. Coulomb excitation also occurs 
in undeformed nuclei; its probability gives the 
lower limit for the intensity of excitation of the 
weak lines of the spectrum in an intensive allowed 
decay. The first of the above-mentioned mechan­
isms comes into play not only for nuclei with rigid 
deformation, but also for spherical nuclei in the 
discussion of the levels connected with deforma-
tions of the surface, as, for example, the vibra­
tional levels of the surface oscillations. 

The surface effect for spherical nuclei can be 
calculated rather simply by taking account of the 
fact that in this case the spatial anisotropy of the 
Coulomb field of the daughter nucleus can be neg­
lected in first approximation. The problem then 
consists in the determination of the wave function 
describing the decay on the sphere S (Fig. 1). In 
the region outside the sphere S the radial and 
angular coordinates separate, and the amplitudes 
of the partial waves at infinity are easily deter­
mined in the usual way. To find the wave function 
on the sphere S we may use the so-called adia­
batic approximation. This consists in assuming 
that the nuclear surface is rigid during the time 
the a particle passes through the region of 
greatest interaction, i.e., in our case, through the 
region between the surface of the nucleus and the 
sphere S. A precise choice of the radius of this 
sphere is not important as long as it is sufficiently 
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FIG. 1 

close to the mean radius of the nucleus so that the 
change in velocity and the bending of the a particle 
trajectory can be neglected in the dashed region of 
Fig. 1. 

For the applicability of the adiabatic appro xi­
mation in this sense it is necessary that the time 
it takes for the a particle to traverse a distance 
of the order of the deformation of the nucleus be 
small compared with the period of oscillation of 
the surface, i.e., we must require 

rxRwjv (R) < 1, (1) 

where v ( r) is the velocity of the a particles 
and aR and w are the amplitude and the fre­
quency of the surface oscillations. Substituting in 
(1) the value 

rx- V hj2B),w = V hw)..j2C~., 
where BA. and CA. are the mass parameter and 
the deformability for surface oscillations of the 
type A., we find the following relation, which is 
equivalent to the inequality (1): 

(ttwKR/21 it (R) I) V h wj2C), :(:; 0,1 <R 1, 

where it ( r) is the kinetic energy of the a par­
ticle, K =-/2m I iC (R) l/t:i (t:iw ~ 0.5 Mev, I it (R) I 
~ 15-20 Mev, KR ~ 20). 

Fixing the shape of the nuclear surface for the 
moment, we find for the wave function of the a 
particle on the surface S the following expression 
in the quasi-classical approximation: 

y(n)l =const·exp{- ~ K(r)dr}J 
S ROO S 

= const · exp {KR ~ rx~.,J~" >.t.t(n)}. 
),!1. 

(2) 

where n is the direction of the a particle. The 
surface of the nucleus is given by the equation 

R (.Q) = R [ 1 + ~ rx~.f.lY,,f.l (Q) ] , 
- Af.l 

where YAJJ. is a spherical harmonic. 
Formula (2) does not take account of the bend­

ing of the trajectory of the a particle, since this 

effect leads at worst to corrections of the next 
highest order in a. We now introduce the phonon 
creation and annihilation operators in expression 
(2) by replacing all by 

11 hj2B~.w (biq.1. + (- 1 )fl-btl'-), 

where bAJJ. and b~JJ. are the operators of annihi­
lation and creation of phonons, respectively: 

where nAJJ. is the occupation number. The func­
tion (2) has now become an operator acting on 
functions of the occupation numbers nAJJ.: 

~ (n) 1 = const ·exp {KR V hj2B~.w 
s 
X~ [b~.l'-Yi,l'-(n)+btl'-Y~l'-(n)] }· 

[L 

(3) 

Since the commutator of the operators ~ bA.JJ. YA.Jl 
Jl 

and ~ b~JJ. Y~Jl is a c -number (it is equal to 
g 

-/ ( 2A. + 1 ) I 47r ) , we can write the function (3) in 
the form 

~ (n) J s== const ·exp (c/2) exp {KR Y hj2B,_w ~ btl'- Y~P. (n)} 

xexp{KR lfttj2B,_w ~ b,_l'-y'-l'-(n)}, (4) 
[L 

where 

is the commutator of the operator KR-/t:i/2BA.w x 

~ bll YA.Jl with its conjugate operator. 
Jl 

The wave function (4) must be expanded in terms 
of the normalized (to unity) states of the daughter 
nucleus x~~J with a given number of phonons n 
and total angular momentum j, Jl· In the case of 
an even-even nucleus the amplitude of such a state 
of the daughter nucleus is given by the matrix ele­
ment of the operator (4) between the state x1~n) and 

,Jl 
the vacuum state: 

< n; j, p.f ~ (n) I 0; 0,0) = const. ~ (KRV7i;2B>.l1J)" (n; j, p.l 

x(~btY~.v( n))"l 0; 0, 0)= const·(KRV7iJ2B,_l•> )" 

X ~ Qrv;.~.i,vn Y~v, (n) · · · Y~vn (n), 
vt •• • vn 

where we used the following expression for the 
function x~~: 

(5) 

xtJ = ~ Qt,;.~.AVn bt, ... btn I 0; 0, 0 >. (6) 
'Jt· •. vn 

The Q: : : are numerical coefficients, 
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and the ci~b,B are Clebsch-Gordan coefficients. 
In (5) we have 

2J c~;.~.AVnY~., (n) ... Y~.n (n) = A{·nYjl" (n). 
vl···vn 

The coefficients Afn, just like the coefficients 

c~J~ .. A.vn• can be written as linear combinations 

of Clebsch-Gordan coefficients. For the important 
values n = 0, 1, 2 the coefficients Afn are equal 
to 

A~o = oj,o, A~l = oAi, A~2 = (2'k + 1) [8rt (2j + 1)]-'f,q~Ao' 
(7) 

Taking this into account, we find for the wave func­
tion describing the decay of a nucleus with spin 
zero 

~ = const· 2J Ai.n (KR V1ii2BAw )_nai (r) (kirf 12J x~~Wj'" (n), 
n=0.1.2 A ~" (8) 

where Gj ( r) are radial wave functions describing 
the motion of an a particle with angular mom en­
tum l = j and corresponding energy in a spherically 
symmetric Coulomb field. 

According to (8) the amplitudes of the partial 
waves at infinity are equal to the amplitudes at 
the surface S multiplied by the corresponding 
penetration factors for the Coulomb and centrifu­
gal barriers. The probability for a decay with 
the excitati()n of a vibrational state with the num­
ber of phonons n and angular momentum j, f..t 

is proportional to 

(2j + 1) \ Ak n (KRV7il 2BAwtGi (r---+ oo) \2 • (9) 

The ratio of the intensity of a decay with exci­
tation of one phonon ( j = A.) over the intensity of 
a decay to the ground state is equal to 

c<l) (2. 1) (KR V7i 2B )2 p (!$', l =A) 
>A=i = J + I Aw P (t$o, l- 0)' (10) 

and the relative intensity of the excitation of the 
two-phonon vibrational state is 

t<2>.- (2A + 1)2 (KR V 7i I 2B w )4Cio P (!$", l = i> 
'"··I - 4n A Milo P (t$o, l = 0) ' 

(11) 

P ( f£, l) denotes the penetrability of the Coulomb 
barrier for particles with energy f£ and orbital 
angular momentum l: 

r* 

P (f£, f) = exp {- 2 ~ I kt(r) I dr} 
R 

=exp {- 21 (l + 1) jxb) exp {- 2x V610R I 2Ze2 ), (12) 

where b = 2Ze2/Rf£0, K = -J 2mf£0 R/ti, and y (x) 
is a tabulated function (see, for example, the re­
view article11 ). The quantity ti/2BA,W entering 
in (10) and (11) can be expressed in terms of the 
reduced probability of the radiative transition for 
a one-phonon excitation:12 

B (Ef..; j = o---+ j = )..) = (2).. + 1) c: ZR~Y 7i 1 2BAw. (13) 

We note that this formula, which expresses the 
relation between the radiative transition probabil­
ity and the amplitude of the nuclear surface oscil­
lations, contains the model assumption of irrota­
tional flow of nuclear matter. The degeneracy of 
the two-phonon state with respect to the angular 
momentum number existing in the pure harmonic 
model can be removed by the residual interaction. 
If, however, the splitting of this level is small in 
comparison with the resolution of the apparatus, 
it is meaningful to speak only of the summed in­
tensity of the a decay to the second excited vi­
brational state. This quantity is obtained by sum­
ming (12) over j, where we use the normalization 
of the Clebsch-Gordan coefficients 6J· (do )2 = 1: 

A.oA.o 

t(2) = '1\1 c(2). ~ (21-. + 1)2 (KR V7i I 2B w)4 p (I$", I) (14) 
"A ~ <,).,I~ 4n ), P (1$0, l = 0) ' 

I 

where P ( (£", l) is the average penetrability of 
the Coulomb barrier for the a particles belong­
ing to the given group of states. 

The lowest lying excited states with even parity 
of the Pb206 nucleus ( j = 2, E ~ 0.8 Mev) and of 
the even isotopes of Po and Rn are possible ex­
amples of vibrational levels in the region of a 
active nuclei. In the table we list the results of 
the calculations for these nuclei, using formulas 
(10) to (14). The table also gives the relevant ex­
perimental data and the values of the effective 
radii R = (r0A113 + 2.5) x 10-13 em used in the 
calculations (these values of R are taken from 
the review article11 ). R0 in (13) was taken to be 
equal to roA1/3 x 10-13 em. The values of ~~2~2 
in the table were calculated with the help of (14), 
since it is not excluded that the second excited 
state of the nuclei is in reality a vibrational state 
which is threefold degenerate with respect to the 
spin or a group of close lying levels. This possi­
bility is not in disagreement with the experimental 
data. 

As is seen from the data of the table, there is 
rather close agreement between the calculated and 
the experimental values of the quantities B ( E2; 
0 - 2) or ~ <2>, although the calculated value of 
B ( E2) lies somewhat below that obtained from 
Coulomb excitation. This discrepancy is particu­
larly great in the case of Pb206 [ B ( E2 ) a decay 
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Daughter nucleus Pb20I 

cEo. Mev 5.3 
E2, Mev 0.80 
£1, Mev 
1Q-13R' em 1.42A'I•+2.5 

~(1) } 1,2·10-5 
~(2) experi· 
10-4BB (£2), em• ment 0.14 

K RV1i!2B•ro } calculated 0.29 
10-•8B (£2), em• from ~(l) 0.022 
~(2) exp 

::::! 1/1 B ( E2 ) Coull· The disagreement even becomes 
slightly worse if the Coulomb excitation in a de­
cay is taken into account (see below). A possible 
explanation of this disagreement is that in a de­
cay only the part of the quadrupole moment con­
nected with the deformation of the nuclear surface 
comes into play. In radiative transitions and Cou­
lomb excitation, on the other hand, the total quad­
rupole moment of the nucleus enters into the cal­
culation, including also the quadrupole moment of 
the nucleons in the unfilled shell. Formula (13) 
involves only the quadrupole moment of the core. 

We note that the intensity of the a decay of 
the even isotopes of Ra to the ground, first, and 
second excited states of Rn with even parity also 
agrees with the assumption that these levels have 
rotational character. The parameter of quadrupole 
deformation, a, is here assumed to be equal to 
0.07-0.09,4 which is in qualitative agreement with 
the magnitude of the moments of inertia of these 
nuclei. The smallness of the ratio of the energy 
of the second excited level over the energy of the 
first excited level ( 2. 0 - 2.4) may in this case 
be explained by the circumstance that the rotation 
of the nucleus is not adiabatic for a small moment 
of inertia of the nucleus.* 

Let us now turn to the discussion of the Cou­
lomb excitation in a decay. For simplicity we 
consider spherical nuclei, in which case the non­
spherical Coulomb field outside the nucleus can 
be neglected (with the exception of the transition 
field). In the case of a spherical nucleus the wave 
function describing the a decay of the nucleus 
into states with spin I, M = 0 (the result is, of 
course, independent of the choice of the projection 
of the angular momentum) can be written in the 
form 

*A different possible explanation of the smallness of the 
ratio of the second excited level to the energy of the first ex­
cited level 2+ for these nuclei has to do with the asymmetry 
of their surface shapes (private communication by A. S. 
Davydov). This possibility is not considered here. 

Po!1" Rn2I9 Rn!u 

7.1::1 G.5 4.78 
0.61 0.32 0.187 

0.65 0.447 
1. 58 A 'I•+ 2.5 1.E8A'/, + 2.5 1.54A'/, + 2.5 

2-10-3 4-10-• 5. 7 .w-• 
8-10-5 10-• 

0.60 unknown unknown 

0.33 0.50 0.63 
0.4.4 1.00 1.20 

5· i0-5 5.5·10-5 

~I. 0 = ~ T-1Gtj (r) L cf:!,ii-Lxii-LYlm (n) 
lj mi-L 

+ 2::r-1bli (r) ~ C{:!,il-LXi:Y tm (n), (15) 
li mi-L 

where Xjt-t and Xjt-t are wave functions describing 
the internal state of the daughter nucleus in the in­
tensive principal a decay and the state of the nu­
cleus excited by the emitted a particle via the 
Coulomb interaction, respectively. 

The Schrodinger equation satisfied by (15) has 
the form 

' 1;2 (H (X) - 2m b.,+ V0 (r) + VI(X, r)-E)~I.o(X, r) = 0, 
(16) 

where H (X ) is the Hamiltonian of the daughter 
nucleus, and X denotes the internal coordinates 
of the nucleus. Here 

2Ze2 

Vo=­
r ' 

V 2Ze2 "" 47t "" ;.. • 
1 = -,- LJ '2A + 1 LJ (ri / r) Y 1-v (ri I ri) Y 1-v (n), 

A=J, •. , l, v 

the summation. goes over all protons in the nucleus. 
We can obtain an equation for the functions bzj by 
multiplying (16) by XJt-t Ylm ( n) and integrating the 
resulting expression over the nuclear variables 
and the angular coordinates of the a particle. 
Since we assume that the effect of the transition 
field is weak, we can neglect the term containing 
the product of V 1 and bzj. The resulting equation 
for bzj has the form 

( 1i2 b.([) V w\ bl/ lo "" -2m r + o-<D;-,-Cz-1-Lii-L= LJ(al'r!r) 
l'j' 

X~ c{?,n'/'1-L' ~ dnY;m (n) < j:J.I V' I j'p.' > Yt'm' (n), 
m'!J.' 

b. (lJ = J__ _!!__ r2 _!!__- l (l + 1) (17) 
' r 2 dr dr r2 

where the primes on the indices refer to the prin­
cipal a decay. 

An analogous equation can be written down for 
the functions az' j'. It is clear' however' that it is 



VIBRATIONAL LEVELS AND COULOMB EXCITATION IN ALPHA DECAY 93 

sufficient for the calculation of the bzj in first ap­
proximation to know the az'j' only in the zeroth 
approximation. This means that we can neglect 
the inverse transitions from the secondary group 
to the principal group. In this approximation the 
functions a['j' coincide with the functions G in­
troduced earlier. 

We write the transition field <jJ.t I V1 (X, r) I j'J.t' > 
in the form 

<ifL IV 1 (X, r) I j'p.') 

2e2 "' 41t "' -A . I ""'• (t.. ) I ., ' Y 
= r- £.J 2A + 1 £.J r <1fL "'" 'I 1 fL > AY• 

A=l.... V 

where ffil ( A.v) is the operator for the electric 
multipole transition (A., v): 

rol(h)= ~r;Yi,v(rt/rt)· 
i 

(18) 

The matrix element of the operator ffil ( A.v) can 
be conveniently expressed in terms of the reduced 
matrix element < j II ffil (A.) II j' >, which is defined 
by 

(j[L/ ffil (t..v) I j'r1.') = (- I)A+i-i' c{~i't<' (2j + 1)-'1' (j ffil ().) /Jj'). 
(19) 

The reduced matrix element is related to the re­
duced transition probability B (EA.; j' - j) in the 
following way: 

B (Ef..; i' ____, i) = ~I <ir1. I ml (t..v) I i'fL'> 12 

(20) 

Substituting (19) in the right hand side of equation 
(17), we obtain, after summing over the spin pro­
jections, the following equation for the bzj ( r): 

( - ~ t,Ul 1 v _ (8- \ blj = 
2m r I o 1 j r 

- 2;2~ ( -- I )1-i'[ 4rr(2l' +I )(2j' +I )/(2),+ I )]-'1' 
1-l'j' 

where the W (abed I ef) are Racah coefficients. 
The phase of B1/ 2 (EA.) in (21) is taken to be 

that of the matrix element < j II ~ (A.) II j' >. The 
angular momenta entering in equation (21) must 
satisfy the "triangular relations" ( jj'A.), ( ll'A.), 
(jli), and (j'l'I). These inequalities connecting 
the magnitudes of the angular momenta have the 
usual physical interpretation (see Fig. 2 ) . 

In place of the functions bzj we introduce new 
functions tzj ( r), which are connected with the 
bzj by the relation 

bt1 (r) = C11 (r) exp {1i-1S!j (r)}, (22) 

where 
r 

1i-1s!j (r) = \ I klj (r) I dr, 
R 

kzj is the wave vector of the a particle [see 
Eq. (12)]. Substituting (22) in (21), we obtain for 
the function tzj the equation 

1" I 2me2 "' li ( R ))+I Pti d-,lj (r) I dr + 2 (dpli I dr) ~lj (r) = w £.J At'j' r 
l' j' 

x arr (r) exp {'li -Is 11 (r)} B'1' ().; j' ____, j) R-),, 

P11 (r) =I kli (r) J. 

FIG. 2 

In (23) we have omitted the term containing the 
second derivative of the function tZj• which is 
smaller than the other terms by the factor KR, 
and 

Alfr = {4rr (2l' +I) I (2t.. + 1)}'1'Ci?oioW (jj'll' 1}..1). 

The solution of (23) can be written in the form 

(23) 

~ < > F-0 , <2 2 1 1i v-<->> ", Ali B'f, c· ., .> R-). '-.tj r = "t'j' 1 me pli r LJ l'i' 1.; 1 ---;. 1 
r 

l'j' 

X \ (R j r'/+I d (r' I R) [pli (r')(1' exp {h- 1St1 (r')} al'i' (r). 

R ~~ 

Here t~j is the value of the amplitude on the nu­
clear surface. In our approximation this term 
corresponds to the nuclear excitation. In the par­
ticular case of vibrational levels it corresponds 
to the above-mentioned "surface" excitation. In 
this instance t~j coincides with the amplitude of 
the "surface" excitation on the sphere S. 

For the functions az' j' we may use the quasi­
classical approximation, 

arr (r) = aY·r [pl'J' (r)]-'1'exp {-1i-I St·r (r)}, (25) 

where ah, is the amplitude of the function azj 
on the surface of the nucleus. For r > r* the 
function bzj has the form 

b11 (r) = (2me2 j1i V pli (r)) 

X~ Ai!>B'1'R-)'al'r (r'') exp {i1i-1 Sli (r)} 
l' j' 

X {~* ( ~ Y+I d ( ~) exp {! [(Sti (r')- Sti (r*))- (Sl'r (r') 
R r 

- St·r (r'))l} [p 11 (r') Prr (r')J-'1' + ~ ( ~ r+I d ( ~) 
r* 

x exp {} [Sii (r')- Sl'J' (r')J} [p 11 (r') pl'J' (r')j-';,}. (26) 
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To obtain the intensity of the line ( l, j ) we must 
multiply the square of (26) by P[j ( r) and take the 
limit of the resulting expression as r - oo • The 
intensity of the line corresponding to a level with 
angular momentum j is obtained by summing 
over l. The ratio of the intensities is conveniently 
written in the form 
~t~i; 1-+i' = (4me2R (li2b"x) B (/..; j' ~ j) R_2~., 

x { ~ \2] Alfrat·r (r') (J 1 + J 2) \2 } /~I a,·r (r) 12 , (27) 
I I' I' 

where J 1 and J 2 are, respectively, integrals over 
the b;::!.rrier region and over the region of classical 
motion. 

The action function Szj in (26) is now expanded 
into a sum over the angular momenta and energies 
of the excited nucleus. The integral J 1 can then 
be written in the form 

l1 b-1 

J1 = ~ dy(l +Y2)'-1 exp{-crli.l'r(y)}, 
0 

ati.l'i' (y) = cu· y + dii' (y I (I + y2) +.tan-1 y), 

c11·=(l(l+ 1)-l'(l'+ I)Jixb, drr =xbD.i£/2'15. 

A convenient form of the integral J 2 is 
00 

J 2 = + v00b1RI.. ~ r- <"A+1l v-1 (r) exp {- iwii' t (r)} dr, 
r• 

where 
r 

t (r) = ~ v-1 (r) dr, wir = (iBi- 'lfr) I li. 
r• 

In the denominators of the integrands of the in­
tegrals J 1 and J 2 we neglected the dependence 
of Pt on l and j. Integrals analogous to J 2 
have 6een computed in the theory of the Coulomb 
excitation by charged particles.13•12 The only dif­
ference is that the time integration in J 2 goes 
from 0 to oo, and not from - oo to + oo as in the 
usual case, i.e., we integrate only over one half of 
the trajectory of the scattering particle. Further­
more, we neglected in J 2 the dependence of t ( r) 
on the orbital angular momentum. The integral 
J 2, therefore, corresponds to a head-on collision, 
i.e., to a classical orbit with eccentricity one. 

In a head -on collision the incoming and out­
going branches of the trajectory give the same 
contribution to the amplitude of electric excita­
tion. This allows us to express the integral J 2 

directly in terms of the tabulated integral 
lA.!J, (J., ~ ):12,14 

+oo 
J 2 = 21'-2ho (180°, dir / 2) = 2'-2 ~ exp {idii' (sinhw 

-oo 

+ uJ) j 2} (cosh cu + 1)-i. d<-J. 

Formula (27) can be simplified considerably 
in the case of an even-even nucleus. Then I= 0, 
l = j, and Z' = j'. If, moreover, the contribution 
from the state l' = j' = 0 is predominant, which 
is the case for spherical nuclei, we obtain from 
formula (27) 

:;o,i; o--.o=(4me2R/hb1·;r.)[4rr/(2)..+ I)]B(£1..; O~j) 

(28) 

In the decay of deformed nuclei several values 
of l usually have comparable intensity. Besides 
this, the Coulomb excitation in deformed nuclei is 
also different in tb.at there exists an appreciable 
static quadrupole potential outside the nucleus. 
Nevertheless, even in the calculation of the Cou­
lomb excitation of nonspherical nuclei one can in 
first approximation neglect the quadrupole field, 
unless, of course, the quadrupole potential is the 
transition potential itself. 

This circumstance is due to the fact that even 
the electric quadrupole excitation contributes only 
little to the intensity of the principal lines of the 
even group (j = 0, 2) (see below, and also refer­
ence 4). The electric excitation outside the sphere 
S is in this approximation also given by formula 
(27). It is convenient to write this formula in a 
somewhat different form for deformed nuclei. For 
this purpose we use a formula which expresses the 
reduced transition probability through the intrinsic 
multipole moment of the nucleus in the coordinate 
system fixed in the nucleus: 12 

B'1' (£/..; i' ~ j) = [(2/, + I) I 4rr(Q~~lcf!}oo· 

We have 

~Et-+i; o-+o = (4me2R f1ihb 1'fqJ.I ~'l.r (C!~~ol 2 (J1 -~ J2) \
2
, 

q~.,=Q~0liR~·, ~Zt·=at'(r)ja0 (r'). (29) 

For odd nonspherical nuclei we can use an ex­
pression for the transition amplitude which was ob­
tained in the adiabatic approximation (see refer­
ences 2 and 3) :* 

'l.t• r = at' r (r') I afll (r'). (30) 

Using (29) and (30), we find for an odd nucleus 

*In the determination of the wave function in the adiabatic 
approximation the nucleus is considered at rest and the law of 
conservation of energy is not observed. The accuracy of the 
adiabatic approximation is improved considerably, if the con­
servation of energy is taken into account. The adiabatic ap­
proximation in this sense becomes invalid only to the same 
extent as the nonsphericity of the Coulomb field becomes im­
portant. It therefore has quite sufficient accuracy for our pur­
poses. 
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:,"-i'->i; 1-+1 = (4me2R I nh.bi·) q~ {~I L: cVr:xr 
t l'j' 

x(JI + J2) i"}j.L: I IXz· 12 (C~f t'o) 2, 
t' 

where 

c~tr = (- J/-rt(2l' + J) 
X(2j' + l)]'hcj?oMCYtoC~~n.o V.?(jj'll'jt/). 

(31) 

In formula (31) the projection of the spin on the 
nuclear axis, K, is set equal to I, since we are 
considering a transition without change of K, 
which is equal to I in the initial nucleus. 

In those cases where the reduced electromagnetic 
transition probability is known experimentally (for 
example, through the lifetime of the state or through 
the probability of electric Coulomb excitation) the 
probability of Coulomb excitation of a given state 
in a decay can be computed directly using for­
mulas (28), (29), and (31). The values of B(E2; 
0-2) are known for the nuclei Pb206 and Po210 
( cf. the table). The integrals J 1 + J2 for these 
nuclei are equal to 0.2 and 0.77, respectively (the 
integral J 1 is obtained by numerical integration, 
the values of the integral J 2 were taken from the 
above-mentioned tables12•14 ). According to formula 
(28) we obtain for the relative probability of elec­
tric quadrupole excitation for these nuclei the val­
ues 2.0 x 10-4% and 0.03%, respectively. This 
means that pure Coulomb excitation could explain 
only approximately % to 1/7 of the observed in­
tensity of the decay to the level 2+. In order to 
explain, in the case of Ra222, the observed inten­
sity of the decay to the first excited state 2+ of 
the daughter nucleus Rn218 ( 4.5%) by Coulomb 
excitation alone, one would have to assume that 
for Rn218 one has the value B ( E2; 0 - 2 ) = 40 
x 10-48 cm4, which exceeds considerably the ex­
pected value ( 1 to 2 x 10-48 cm4). 

The reduced probability for radiative E2 de­
cay is known also for the odd nucleus Pb207 

[B (E2; % -%) = 0.028 x 10-48 cm4 ]. In the de­
cay of Po211 (%- ) , which leads to the formation of 
this nucleus, we have, besides the intensive tran­
sition to the state (%-, l' = 4), also transitions 
to the excited states (%- ) and (%- ) . Accord­
ing to formula (27) we find for the relative inten­
sity of the electric excitation of the level the value 
4.5 x 10- 5, which is approximately one hundredth 
of the experimental value ( l' = 4, l = 2; 4; 6; 
Jt +J2 = 1.2; 1.8; 0.8). 

Let us now consider the Coulomb excitation 
of levels with odd parity. In the decay of the even 
isotopes of Ra we observe, besides the intensive 
transitions to levels of the same parity, relatively 
rare transitions to excited states ( 1- ) of the 

daughter nuclei Rn ( E 1_ ~ 0. 6 Mev ) . For the 
decay Ra224 - Rn220 we have J 1 ~ 0.25 and 
J 2 ~ 0.07. According to formula (29), the ob­
served intensity of the decay ( Ra224 - Rn220 , 1-) 
would correspond to the value B ( E 1; o+ - 1- ) 
= Yso x 10- 24 cm2. For the decay Ra226 - Rn222 
(J1 = 0.10, J2 = 0.02) we obtain B (E1: o+ -r) 
= 1/10 x 10- 24 cm2. Both these values are close to 
the one-particle values of B ( E1), but are con­
siderably ( 10 to 50 times) higher than the value 
of the reduced probability expected for nuclei with 
octupole-deformed ("pear-shaped") surfaces.15 

Decays to levels with odd parity are also ob­
served in heavier even nuclei. Let us take as an 
example the decay Th228 - Ra 224 . The experimen­
tal intensity of the a decay to the level 1- leads, 
according to formula (29), to q1 = 0.45 (A.= 1, 
dipole excitation) or q3 = 9 (A. = 3, octupole ex­
citation). This value of q1 is approximately 10 
times larger than the experimental value16 and the 
value expected for "pear-shaped" nuclei. Accord­
ing to formula (29), the intensity of the Coulomb 
excitation of the level 3- of Ra224 amounts to about 
1fto of the intensity of the decay to the level 1- for 
dipole excitation and to 1/ 3 of that intJnsity in the 
case of octupole excitation (the experimental value 
is ~ Yto). In the case of Ra 226 , where the probabil­
ity for a decay to the level 1- is relatively 
smaller than in the decay Th228 - Ra224, we find 
values of q1 and q3, which are about one half of 
the former ones. 

Excitation of rotational levels with odd parity 
is also observed in the decay of Am241 : 

( 5/z, K = 5//)--+ (5/z, K = 5/ 2-, ground state). 

It can be assumed that this decay is the result of 
electric de-excitationof the daughter nucleus by 
a particles of the principal group: 

( 5/2, 5/ 2+)--+ (6/ 2 , 5/2+, excited state). 

The probability of such an electric dipole process 
was computed by a different method in reference 11. 
It appeared that one cannot explain the observed in­
tensity of the decay of Am241 to the ground state of 
Np237 by electric dipole excitation: this would re­
quire a value for the dipole moment which disa­
grees with the experimental estimates. Formula 
(31) leads to the same result. On the other hand, 
the interpretation of the decay of Am241 to the 
ground state of Np237 as an electric octupole ex­
citation would require the value ( 3 to 4) R3 for 
the octupole moment. This is close to the value 
expected for octupole-deformed nuclei (the cal­
culations were based on formula (31); we included 
the terms with j' = %. %. %. l' = 0.2, and l 
=1,3,5). 
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We note that in deformed nuclei only % of the 
observed intensity of a decay to the state 2+ 
could be explained by electric quadrupole excita­
tion. The most important effect is the deformation 
of the nuclear potential. 

The above-quoted numerical values of the in­
tensity of the Coulomb excitation of weak lines 
are true if the Coulomb excitation is the only or 
the predominant mechanism. In the a decays 
under consideration this is actually not the case 
[possible exceptions are the decays of Am241 

(A = 3) and of the even isotopes of Ra (A = 1)] . 
The amplitude of the Coulomb excitation must be 
added to the amplitude of the nuclear excitation. 
In the case of vibrational levels we combine the 
amplitude (8) with the amplitude of the Coulomb 
excitation (26) and (28), and obtain for the excita­
tion amplitude of the level 2+: 

~Coul.+ k~surf. oscUI. 

The coefficient k in front of the nuclear ex­
citation amplitude takes account of the circum­
stance that only part of the total quadrupole mo­
mentum can have an effect on the "surface" ex­
citation. Comparing the intensity calculated in 
this way with the experimental value, we find k 
= 0.25 for Pb206 and k = 0.5 for Po210 • These 
values of k are close to the values of the coeffi­
cients of the quadrupole polarization of the nuclear 
core as determined by the experimental data on the 
quadrupole moments of nuclei close to the magic 
numbers .17 • 18 

I express my gratitude to A. G. Zelenkov for 
valuable comments and help in the analysis of 
the experimental data. 

1 J. 0. Rasmussen and B. Segall, Phys. Rev. 
103, 1298 (1956). 

2 Bohr, Froman, and Mottelson, Kgl. Danske 
Videnskab. Selskab, Mat.-Fys. Medd. 29, Nr. 10 
(1955). 

3 V. M. Strutinski'l, Report, Acad. Sci. U.S.S.R. 
(1955). 

4 v. M. Strutinskil, Dokl. Akad. Nauk SSSR 104, 
524 (1955). JETP 32, 1412 (1957), Soviet Phys. 
JETP 5, 1150 (1957). 

5 v. G. Nosov, Dokl. Akad. Nauk SSSR 103, 65 
(1955). JETP 33, 226 (1957), Soviet Phys. JETP 6, 
176 (1958). 

6 P. 0. Froman, Mat.-Fys. Skr. Dan. Vid. Selsk. 
1, Nr. 3 (1957). 

7 Gol'din, Adel'son-Vel'skil, Birzgal, Piliya, 
and Ter-Martirosyan, JETP 35, 184 (1958), Soviet 
Phys. JETP 8, 127 (1959). 

8 D. L. Hill and J. A. Wheeler, Usp. Fiz. Nauk 
52, 20 (1954); [Transl. from Phys. Rev. 89, 1102 
(1953) ]. 

9 A. B. Migdal, Report, Acad. Sci. U.S.S.R. 
(1948). 

10 M. A. Preston, Phys. Rev. 75, 90 (1949) and 
82, 515 (1951). 

11 I. Perlman and J. 0. Rasmussen, Handbuch 
d. Phys. 42, Berlin (1957). 

12 Alder, Bohr, Huus, Mottelson, and Winther, 
Revs. Modern Phys. 28, 432 (1956). 

13 K. A. Ter-Martirosyan, JETP 22, 284 (1952). 
14 K. Alder and A. Winther, Kgl. Danske Viden­

skab. Selskab, Mat.-Fys. Medd. 31, Nr. 1 (1956). 
15 v. M. Strutinskil, ATOMHaR 3HeprHR (Atomic 

Energy) 4, 150 (1956). 
16 A. Bohr and B. Mottelson, Nucl. Phys. 4, 529 

(1957). 
17 M. Goeppert-Mayer and J. H. Jensen, Elemen­

tary Theory of Nuclear Shell Structure, Wiley, N.Y. 
(1955). 

18 S. T. Belyaev, Kgl. Danske Videnskab. Selskab, 
Mat.-Fys. Medd. 31, Nr. 11 (1959). 

Translated by R. Lipperheide 
20 


