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The absorption coefficient of sound due to viscosity and heat conduction is derived in relativ­
istic hydrodynamics. The structure of relativistic low-intensity shock waves is considered. 

INTRODUCTION 

IF a relativistic liquid possesses viscosity and 
heat conduction, then this leads to the gradual dis­
sipation of the energy of the sound waves, i.e., to 
the absorption of the sound. The energy dissipated 
per unit time Emech can be found by making use 
of the equation for the entropy increase, and also 
the expression for the maximum work performed 
in the transition from a given non-equilibrium state 
to a state of thermodynamic equilibrium (see ref­
erence 1 ). 

The expression for the maximum work is 

(1) 

Here the energy E ( S) = J € ( s ) dV 0; integration is 
carried out over the volume of the liquid, dV0 is 
the element of volume in the proper system of the 
observer; E0 is the initial energy, and E ( S) is 
the energy of the body in the equilibrium state with 
the same entropy S which the body had initially. 
Starting out from (1), we can write the expression 
for the dissipated energy in the following form: 

(2) 

Here T0 = BE/os is the temperature which the body 
would have had in the state of thermodynamic equi­
librium; ds = edT, where dT is the differential 
of proper time; dV is the volume element in the 
laboratory system of the observer. The expres­
sion under the integral in Eq. (2) is determined by 
the equation for the growth of the entropy:2 

(3) 

Here S is the entropy density, n is the density 
of number of particles per unit volume, while w 
is the heat function referred to a single particle; 
Vi is the additional term in the four vector of the 
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density of material flow ni and Tik is the four­
tensor of the viscosity (see reference 2). 

CALCULATION OF THE SOUND ABSORPTION 
COEFFICIENT 

For calculation of the dissipation of energy in 
the sound wave we make use of the fact that the 
velocity of motion of the particles of the liquid v 
in the sound wave is small, and that the motion 
takes place adiabatically. Then, taking it into 
account that the temperature at an infinitely dis­
tant surface tends to a constant limit, we obtain 

Emech =- To ~ + ( v ~: + ~n dV + T ox H- ~. (a;:)' 
2 aT aw 1 a•w 

+ wT ax ax + w ax2 

-/. (a:X rJ dV- T 0 
4~ 1~ H ~ }(-~~ r dV. (4) 

(Here TJ and t are the two coefficients of vis cos­
ity, while K is the coefficient of heat conduction, 
taken in correspondence with its nonrelativistic 
value.) 

For the determination of the integrals entering 
into (4), we make use of a series of relations which 
hold for a sound wave and also of a number of 
thermodynamic relations between arbitrary ther­
modynamical quantities. It is not difficult to show 
(see reference 2 ) that the following relations hold: 

p' = (8p I ae)a e' = (WI c2) CoV, 

w' = (8w I 8p)a p' =(WI nc2) CoV, 

T' =(aT I ap)a p' =(WI c2) Co (aT I 8p)a v (5) 

( c0 is the sound velocity, W is the heat function 
per unit volume). The primed quantities in these 
relations refer to small increments in the sound 
wave, the derivatives are taken at constant entropy 
a per single particle, and the velocity v = Bcp/ox, 
where cp is the velocity potential. The mean en­
ergy density of the sound wave in relativistic hy-
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drodynamics in the laboratory system is given by 
the expression 

(6) 

If we denote by 

Cp = T (ocr I oT)p. cv = T (ocr I oT)v (6a) 

the heat capacity per single particle at constant 
pressure and constant volume 1/n = mV, · respec­
tively, then, if we make use of the thermodynam­
ical identities 

dE= nTdcr- n2wd (1 In). dw = Tdcr -i (I In) dp, 
dp .. =- crdT + (1 In) dp, (7) 

we can obtain the following formulas: 

c-c-T-- --[ a ( 1 )]z / a , 1 · 
v P - aT n p ap ( n Jr• (8) 

(9) 

[a (1 1 n)] = ~[a (1 1 n)J- . 
ap a cp ap T 

(10) 

Making use of (9), and the value of the derivatives 

ap -- \¥' 2 2 
iJ( 1 I'n)a -- nc0 jc, (lOa) 

we write out Eq. (8) in the form 

__ _ __ cvTWc~ [ a (1 1 n) J·P2. cv cp- 2 n aT 
cpnc 

(11) 

The integrals entering into (4) will be computed 
for a plane wave of the form v = v0 cos (kx- wt ), 
the time average energy of such a wave in a volume 
V0 of liquid being, in accord with (6), 

E- 1 2v , -L 2 ) . 2 = 2 Vo o \E 1 P 1 c . (12) 

The first integral in Eq. (4) vanishes in the mean; 
the same also applies to the integral of ( a2w I ax2 )/w. 
Using (8)- (12) and 

3 = n y_ __ (_i_) • aT n p 
(12a) 

( {3 is the coefficient of thermal expansion), the 
sound absorption coefficient 

(13) 

takes the following final form in relativistic hydro­
dynamics: 

I='> ( :2~2 
\ 'l H- (-} 'Y)-[- ~) +% (:2\f--+-). 

J..<E: .... p1 COL I V p 

'lz . 1 1 c ' c ) l 
-- ~"~ i -;;: -c-)-; (1- 3~ 1 \ \1 p I \ ' . 

(14) 

(where k = w/c0 ). In the nonrelativistic limit, (14) 
goes over into the usual expression for the sound 
absorption coefficient. 

THICKNESS OF SHOCK WAVES 

It is well known that a weak shock wave in non­
relativistic hydrodynamics has a finite thickness 
which is inversely proportional to the amplitude 
of the wave. 

The distribution of thermodynamical quantities 
over the thickness of the shock wave is found with 
the help of the usual hydrodynamical laws of con­
servation of mass, energy and momentum, with ac­
count of streaming produced by viscosity and heat 
conduction. In relativistic hydrodynamics, the cor­
responding conservation laws have the following 
form: 

nv 
x ( T • • [ a r ~ \ i_ a ( ~ )] 

- 1 - v• 1 c• -w) -ax \ T) + c• 7ft T 

::r.=n=.;v ===o:- = j, 
V 1- v2 I c2 

(15) 

-- v" -- ( 4 , 1 [ a; ; av J nw -'- - - -~ ~ -+- -
c• (1- v2 lc2 ) I p 3 I + ) c (1- v2 I c•)'j, ax C2 at 

v• 
= nw c2 (1- v2 1 c2 ) + p, (16) 

nw v - (-34_ 'Y) + ~) ---=vc--.........,-,.,:- [ aaxv + cv• aavt ·] 
c ( 1 - v2 I c2) c2 ( 1 - u2 1 c2 ) " 

u 
= nw -c"•'7(1'--v-.;-2 1-:-c-;;c•):- (17) 

(the shock wave moves from the right to the left, 
the state in front of the shock wave is denoted 
without bars ) . 

Proceeding in the usual fashion, we expand the 
values of all quantities on the shock wave in a 
series of powers of the entropy jump A.a = a- a 
and the pressure jump A.p = p- p. Taking the 
thermodynamic identities (7) into account, we have 

w-w=TI1cr+ -11p+--- 11p 2 , 
- 1 1 a(1) 

n 2 ap n a 

/l--n == -11 - - uu-fl- -- 2 a(1)" 2 a(1) 
ao n i p ap n 0 

[ 1 a• ( 1 \ a ( 1 · )•' x 11p- n2 - .,.--- -1 -n(- -) J tl.p2 • 2 ap2 n ; a ap n a 

Here we have neglected terms in A.a and A.p 
higher than the first and third, because A.a- (as 
we shall see below) has an order of smallness 

(18) 

not higher than second. Further, we express the 
derivatives in (15) in terms of derivatives of p 
and a .• In this case, it is necessary to recall that 
differentiation with respect to x and t increases 
the order of smallness of quantities per unit value 
(since the width of the shock wave is inversely pro­
portional to the amplitude of the wave). Therefore, 
the derivatives 8p/8x and 8p/at are quantities 
of second order of smallness, while the derivatives 
8a/8x and 8a/8t are third order. Thus, on the 
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whole, the mass flow brought about by the thermal 
conductivity has a second order of smallness in 
Eq. (15). As a result we obtain (15) in the form 

;; u ( T \z 1 (aw w ar \ ·- ( i' ) op 
(1-v' I c')'j, =X w) T ,aPa- T opa) I. I+ n2c2 ax 

j ( i 2 
)'' i)p 1 ° -1· nc2 I + n2c2 Tt + 1 · (19) 

It is then easy to find the expansion for v. Hence, 
substituting the resultant expansions in (16), we 
find an equation which connects the pressure and 
entropy jumps (this relation is too cumbersome 
to write down here). 

To determine the energy jump D.a on the dis­
continuity, it is necessary to make use of both 
Eqs. (16) and (17), first subtracting the second, 
multiplied by v/c, from the first. Carrying out 
a number of transformations of the thermodynam­
ical derivatives, we finally obtain the following ex­
pression of second order relative to D.p: 

[(1 + i' ) + i' 2 a ( 1 \] Cl [ 3 i' a ( 1 ) 
n2c2 n2c2 wn 7fP n) p + 2 n2c2 n a;; n 

(20) 

where 

1 '4 \ (w)(1 1· a=--1-3 '1]-t-C,+x-2 ---) 
c \ J nc cv op 

-~(-1 __ 1 )2(1---"-"-
c' cv c P ~ pw) 0 

(20a) 

The right side of Eq. (20) vanishes along with 
op/ox and op/ot at great distances on both sides 
of the surface of discontinuity ( a replacement 
of op/ox by op/ox is valid with accuracy up to 
terms of third order of smallness). At these dis­
tances, the pressure is equal to p and p1, re­
spectively. In other words, the quadratic (in p) 
expression on the left side of (20) has the roots 
p = p and p = p1. Therefore Eq. (20) can be rep­
resented in the form 

= a1 j (1 + L) _!___ (-1 ) [ op + i ap J 
n'c' op n a ax nc' (1 + j' 1 n'c')';, at . 

(21) 

From the system of ordinary differential equations 
which correspond to Eq. (21), we find, by integrat­
ing with respect to x, 

- PI+ p Pl-P X 
P- -2- = -2- tanh~ , (22) 

X 

where 

0 _ 8a (s + 2p) 1 n'W 

x - [ 3 a ( 1 ) ( w ) az ( 1 )J ( . c2 'I, (23) (PI-P)----+--- 1--o_\ 
nc2 ap n ,nc 2 op2 n c2 ) 

Here it is taken into account that the velocity of the 
weak shock wave in zeroth approximation is equal 
to the sound velocity c~ and therefore can be ex­
panded to the same approximation: 

(23a) 

As expected, the quantity a is related to the sound 
absorption coefficient (14), namely y = aw2• 

The quantity Ox determines the width of the 
shock wave in relativistic hydrodynamics. We see 
that even here the width of the shock wave is in­
versely proportional to the amplitude of the wave. 
In the nonrelativistic limit, the first term in the 
square brackets in the denominator can be neg­
lected in comparison with the second; then, (23) 
reduces to the well-known nonrelativistic expres­
sion. 

Integration over t gives 

- P1 + P P1- p t P- - 2 - = - 2 - tanh 1\ , (24) 
t 

where 

Ot=--------~8a~(~e_+~2p~)~c~0 ~;n~2~W~c~'-------~~ 

(Pl- p) [2._ _!___ (__!_) + ( W) ~ ( __!_)] (1- c~ )'/z (25) 
nc2 ap n \nc2 op2 \ n C2-

6t determines the variation of the pressure over 
the thickness of the shock wave as a function of 
time. In the nonrelativistic limit, 6t tends to 
zero. 

For the variation of the entropy inside the dis­
continuity, we have the following results: 

Clo = 16:~aT (~)a [n~' a~ ( +) + (,~,) a~2z ( + )J (PI- W 
X( h-2 ~-t- h-2 1 \(1 T ) (26) \cos llx cos rlt) - nwiJT jopa . 

The entropy reaches a maximum inside the discon­
tinuity (for x = 0 and t = 0 ). At large distances 
on both sides of the shock wave, for x - ± oo and 
t- ± oo , this formula gives Ci = a. This is con­
nected with the fact that in relativistic hydrodynam­
ics, as well as in nonrelativistic, the total discon­
tinuity in the entropy is a quantity of third order in 
D.p, while u- a is of second order. 
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