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electron in a magnetic field executes a finite mo
tion (its trajectory in momentum space being a 
closed curve), whereas in crossed fields it exe
cutes an infinite one, since the trajectory (2) is 
an open curve. 

The explicit dependence of the period on the 
electric field can be obtained only for a definite 
law of dispersion. However, if E/H « 1, it is 
possible to obtain the result 

T*-:::::; T { 1- (cv0 jeHT) ~ vJ:2 dl (n + p/ R)}. (6) 

Here T is the period of revolution in a magnetic 
field, n = v 1 /I v 1l is the normal to the trajectory 
of the electron in a magnetic field, and R is the 
radius of curvature of the trajectory. The inte
gration extends over the trajectory in a magnetic 
field. Thus 6-T/T"' (c/v)(E/H). 

Once we know the frequency of revolution of the 
electron ( w* = 27r/T*), it is easy to write down 
the distance between quantum energy levels in the 
classical approximation:4•5 

tls* = TiuJ* = 2rt 1 e I TiH/c ( oS* ;as*). 

In connection with the dependence of the fre
quency of revolution of an electron in crossed 
fields on the size of the electric field, an inter
esting peculiarity should apparently occur india
magnetic resonance in those semiconductors in 
which the dependence of the energy of the current 
carriers on the quasimomentum is appreciably 
nonquadratic: the resonance frequency should 
depend on the electric current passed through 
the specimen. 

A nonquadratic dependence of the energy on 
the components of the quasi-momentum occurs 
not infrequently near the edge of the conduction 
band. Often it is a consequence of the crystal 
symmetry. Here the quadratic dependence on 
the magnitude of the momentum is retained near 
the edge of the band, but the angular dependence 
becomes complicated. Thus the energy spectrum 
of "holes" in Ge and Si crystals has the form6 

s = Ap2 ± [B2p4 + C2 (p;p~ + p;p; + PzP;)J'I', 

where A, B, and C are constants. 
To observe such effects in metals is in all 

probability impossible, since in a metal (in con
sequence of the large electrical conductivity) it 
is impossible to produce any appreciable electric 
field. To estimate the order of magnitude of the 
effect, we must start from formula (6), remem
bering however that the resonance frequencies 
are determined not by all the electrons but by 
those that have extremal effective masses. 7 It 
can be shown that for these electrons no effect 

linear in the electric field is present because 
of the symmetry of the trajectory. Therefore, 
apparently, 6-w/w"' (c/v)2(E/H)2. 

*We have in mind the mean velocity in a plane perpendicu
lar to the magnetic field. 

tExcept for an unimportant constant, e:* coincides with the 
total energy of the particle. 
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T~E identification of particles in high energy 
stars* is often made by comparing the measure
ments of the momentum p1 of one of the par
ticles with its possible limiting values under pre
determined assumptions about the mass and the 
number of remaining particles 2, 3, ..... , n. 
These last are united into one composite particle 
having some effective mass meff· The formula 
for the momentum of particle 1 at an angle of ob
servation e 1 under the assumption that the other 
particle has a mass meff gives the limiting pos-
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sible values of the momentum of particle 1.1•2•3 

Ordinarily the value m = m2 + ma + ... + mn 
is taken for meff, a result which considers the 
velocities of particles 2, 3, ... , n to be equal in 
magnitude and direction. 2 

We shall show that the solution for the bounds 
Pt max• Pt min of the momentum p1 of particle 1 
can be restricted if one takes into account the 
angles eij between the other charged particles 
i and j (i, j = 2, 3, ... , n') and if the lower 
limit Pi of their momenta pi is estimated. 

An attempt has been made ear lier4 to take into 
account information about the angles and momenta 
of the particles for purposes of identification. Un
like reference 4, the present work includes this 
information directly in meff· In this way only 
knowledge of the lower bounds of the momenta 
~s required (in reference 4, knowledge of the 
values of Pi themselves is required, which is 
difficult for large Pi and leads to an indeter
minacy in the limiting values for p 1 ) • 

To deduce a necessary formula, we note that the 
equation for the momentum p1 (or energy E1 ) of 
one of the secondary particles having the total en
ergy E and momentum P coincides with the equa
tion for p1 in the decay of a particle with energy 
E and momentum P into two particles with masses 
m1 and meff• if we take 

m;lf = (£2 + · · · + En)2- (P2 + ·. · + Pn)2• (1) 

It is easy to show that the roots of the equation 
above for p1 have the characteristic 

dplmax/dmelf < 0, dPtmin/dmelf)?. 0. 

This means that increasing the estimate for meff 
shrinks the region of solutions for the value p 1• 

To increase this estimate, we write (1) as 
three positive terms 

n n n 

Taking into account EiEj -PiPj :::: ffiiffij and Pi 
> Pi (where Pi is the lower bound of Pi ) , t we 
immediately get the following estimate: 

n' 
2 ,...._,<) -2 -2 ............. 

melf > m" :== m + Ll 2 :== m + 2 ~ p; Pi (I -cos %ii)· 
2-'(i<i (3) 

Here the sum is carried out over all pairs of 
charged particles, except particle 1. The masses 
of the neutral particles are included in m. 

Thus, if we take m instead of m for the value 
of meff• Ptmin and Ptmax come closer and 
closer together as Pi increases and eij becomes 

larger, For narrow beams of secondary particles 
the use of formula (3) gives no effect. 

If for some particles i and j not only p but 
also p is known, p can be changed to p in the 
equations and the term EiEj -PiPj -mimj can be 
added. This makes p1 max and p1 min converge 
even more. 

The most probable contribution from neutral 
particles to meff can be taken into account by 
addingto 6.2 the term !n'(!n'-1)p2(1-cos B), 
where p and e are the average values of Pi 
and eij in the given interaction. 

The results of this work are given in more de
tail in reference 5. 

The author takes this opportunity to thank I. M. 
Gramenitski1 and M. I. Podgoretskil for their val
uable comments. 

*We consider high energy stars to be those in which there 
are tracks of relativistic particles. 

tFor gray tracks, for example, one can take pi= mi; for 
neutral particles, pi= 0 is taken. 

1 I. L. Rozental', Usp. Fiz. Nauk 54, 405 (1954). 
2R. M. Sternheimer, Phys. Rev. 93, 642 (1954). 
3 G. I. Kopylov, "On Estimating the Number of 

Secondary Particles Near Limiting Angles," pre
print, Joint Inst. Nuc. Res. R-166 (1958). 

4 Birger, Grigorrov, Gus eva, Zhdanov, Slava
tinskil, and Stashkov, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 31, 971 (1956), Soviet Phys. JETP 4, 
872 (1957). 

5 G. I. Kopylov, preprint, Joint Inst. Nuc. Res., 
R-341 (1959). 

Translated by William Ramsay 
101 

NOTE ON A BARYON SCHEME 

H. OIGLANE 

Institute of Physics and Astronomy, Academy 
of Sciences, Estonian S.S.R. 

Submitted to JETP editor April 16, 1959 

J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 558-559 
(August, 1959) 

L ET us assume that each of the eight known bary
ons is described by a four-component wave function. 
The general equation for all the baryons is in this 
case an equation for a 32-component spinor. A 32-
dimensional spinor space can be treated as a rep-


